LabManual AcceleratedPhysicsVersion3.2 © 2011 eScience Labs, Inc. All rights reserved www.esciencelabs.com • 888.375.5487 TableofContents Introduction Lab1:TheScientificMethod Lab2:LabReports Lab3:Measurements NewtonianMechanics Lab4:LinearMotion Lab5:ProjectileMotion Lab6:TypesofForces Lab7:Newton’sLaws Lab8:Gravity Lab9:WorkandEnergy Lab10:SimpleMachines Lab11:CenterofMass Lab12:Momentum Lab13:CircularMotion Lab14:TorqueandRotation Lab15:Oscillations MatterandThermalPhysics Lab16:ExploringMatter Lab17:ChangeofPhase Lab18:PropertiesofSolids Lab19:FluidMechanics Lab20:TemperatureandHeat Lab21:Thermodynamics Lab22:HeatTransfer WavesandLight Lab23:PropertiesofWaves Lab24:Sound Lab25:LightandColor Lab26:GeometricOptics ElectricityandMagnetism Lab27:ElectricFields Lab28:ElectricCurrent Lab29:TypesofCircuits Lab30:MagneticFields Lab31:ElectromagneticInduction 3 GoodLaboratoryPractices GoodLaboratoryPractices Sciencelabs,whetheratuniversitiesorinyourhome,areplacesofadventureanddiscovery.Oneofthefirst thingsscientistslearnishowexcitingexperimentscanbe.However,theymustalsorealizesciencecanbedanͲ gerouswithoutsomeinstructionongoodlaboratorypractices. General x Readtheprotocolthoroughlybeforestartinganynewexperiment.Youshouldbefamiliarwiththe actionrequiredeverystepoftheway. x Useeyeprotectionwhenexperimentingwithchemicals,batteries,andprojectiles. x Keepallworkspacesfreefromclutteranddirtydishes. x Washyourhandsaftereachexperiment. x Thoroughlyrinselabware(testtubes,beakers,etc.)betweenchemicalexperiments.Todoso,wash withasoapandhotwatersolutionusingabottlebrushtoscrub.Rinsecompletelyatleastfourtimes. Letairdry. x Donotaimprojectilesorothermovingmaterialsatotherindividuals. MaterialsandChemicals x Useonlythematerialsneededforeachactivity x Alwayshandlehotwatercarefullyandwithnecessaryhandandeyeprotection. x Whenusingknivesorblades,alwayscutawayfromyourself. x Neverusemorebatteriesthananexperimentspecifies.Donotcreateelectricalcircuitsotherthan thosespecifiedbythelabmanual. x Avoidcreating“shortcircuits”withelectricalequipment.Thiscancauseunsafebatterytemperatures. x Immediatelydryanywetelectronics—especiallyinthecaseofspilledliquids.Makesurematerialsare completelydrybeforeresumingwork. x Avoidprolongedexposureofbatteriesandchemicalstodirectsunlightandextremetemperatures. x Immediatelysecurethelidorsealthepackageofliquids,powders,andothermaterialsafteruse. 4 GoodLaboratoryPractices x Usetesttubecapsorstopperstocovertesttubeswhenshakingormixing–notyourfingers! x Useanewpipetteforeachchemicaldispensed. x Neverreturnexcesschemicalbacktotheoriginalbottle.Thiscancontaminatethechemicalsupply. x Becarefulnottointerchangelidsbetweendifferentchemicalbottles. x Wipeupanychemicalspillsimmediately.CheckMSDSsforspecialhandlinginstructions(providedon www.eScienceLabs.com). x Readthelabelsonallchemicals,andnotethechemicalsafetyratingoneachcontainer.Readall MSDS(providedonwww.eScienceLabs.com). x ReadtheMSDSbeforedisposingofachemicaltoinsureitdoesnotrequireextrameasures.(provided onwww.eScienceLabs.com) 5 Lab5:ProjectileMotion Lab5:ProjectileMotion Conceptstoexplore x Scalarsvs.vectors x Projectiles x Parabolictrajectory AsyoulearnedintheLinearMotionLab,aquantitythatconveysinformationaboutmagnitudeonlyiscalledascalar. However,whenaquantity,suchasvelocity,conveysinformationaboutmagnitudeanddirection,wecallitavector. Alongwithcarryingthatextrabitofinformationaboutthepathofmotion,vectorsarealsousefulinphysicsbecausethey canbeseparatedintocomponents.Infact,anyvectorcanberesolved(brokendownto)anequivalentsetofhorizontal (xͲdirection)andvertical(yͲdirection)components,whichareatrightanglestoeachother. A Ay Ax Figure1:ThevectorAcanbebrokenupintohorizontalandverticalcomponents,AxandAy. Consideravectorarrowdrawnonarectangularcoordinateplane,asvectorApicturedinFigure1(Fordistinction,the boldedtypesignifiesavector).ThehorizontalcomponentofavectoristhedistancealongthexͲaxisthatthevectorcovͲ ers,whiletheverticalcomponentisinthedirectionoftheyͲaxis.Iftheanglebetweenthehorizontalcomponentandthe vectorisɽ,youcanusetrigonometrytofindthemagnitudeofthecomponents: Ay A sin T Ax A cos T whereAisthemagnitude,orlength,oftheoriginalvector.UsingthePythagoreanTheorem,themagnitudeofanyvecͲ torcanbeexpressedintermsofitscomponentsas A Ax2 Ay2 55 Lab5:ProjectileMotion andtheanglefromthehorizontalaxiscanbefoundusing: tan ș Ax Ay Vectoradditionisdonebyaddinghorizontalandverticalcomponents.Inotherwords,thehoriͲ zontalcomponentofthenewvector—oftencalledthe“resultant”—issimplythesumofthe horizontalcomponentsofthetwoaddedvectors.Likewise,theverticalcomponentofthereͲ sultantisthesumoftheindividualverticalcomponents.Youcanthenfindthemagnitudeand angleoftheresultantusingthetrigonometricequationsabove. Figure2:Someexamples ofprojectilesareacanͲ nonballfiredfromacanͲ Aprojectileisanyobjectwhich,onceprojectedataninitialvelocity,continuesinmotionbyits non,abaseballhitbya owninertiaandisinfluencedonlybythedownwardforceofgravity.RememberthatNewton’s bat,andballsbeingjugͲ Lawsdictatethatforcescauseacceleration,notsimplymotion.Therefore,theonlyforceacting gledintheair.Allthese objectsfollowacurved onaprojectileinitsFreeBodyDiagramistheforceofgravitydownward.Thismayseem pathduetotheforceof counterͲintuitivesincetheobjectmightinitiallybemovinginseveraldirections,bothhorizonͲ gravity. tallyandvertically,butgravityactsonlyontheverticalmotionoftheobject. OneconvenientthingaboutusingvectorstodescribeprojectilemoͲ tionisthatwecanseparatethevelocityoftheprojectileintohorizonͲ talandverticalmotion.Theverticalcomponentofthevelocity changeswithtimeduetogravity,butthehorizontalcomponentreͲ mainsconstantbecausenohorizontalforceisactingontheobject(air resistanceaddsquiteabitofcomplicationathighervelocitiesbutwill beneglectedinthislab).Wecanthusanalyzeeachcomponentofthe projectile’svelocityseparately.Thecombinationofa(constantly) changingverticalvelocityandaconstanthorizontalvelocitygivesa projectile’strajectorytheshapeofaparabola. Figure3:Whenaprojectile(water,inthiscase)is launchedupwardtheverticalaccelerationwill reachzeroatthetopoftheparabola.Asgravity pullstheobjecttowardtheEarththeobjectaccelͲ erates.Horizontalvelocityremainsconstant throughoutthismotion. 56 AsshowninFigure4,theprojectilewithhorizontalandverticalmoͲ tionassumesacharacteristicparabolictrajectoryduetotheeffects ofgravityontheverticalcomponentofmotion.ThehorizontalmoͲ tionistheresultofNewton’sFirstLawinaction(youwillleanabout thisinLab7)–theobject’sinertia!Ifairresistanceisneglected,there arenohorizontalforcesactinguponprojectile,andthusnohorizontal acceleration.Itmightseemsurprising,butaprojectilemovesatthe samehorizontalspeednomatterhowlongitfalls! Thekinematicequations(Figure5)fromthepreviouslabcandescribe bothcomponentsofthevelocityseparately.FormosttwoͲ dimensionalprojectilemotionproblems,thefollowingfourequations willallowyoutosolvefordifferentaspectsofaprojectile’sflight,as Lab5:ProjectileMotion longasyouknowtheinitialpositionandtheinitialvelocity.InthislabyoucanassumethatprojectilesarefiredeithervertiͲ callyorhorizontally,sothattheinitialvelocitiesineithercasewilleitherbevx = voxorvy = voy.(Thetermvox canberead as“initialvelocityinthexdirection.”) Figure4:Asthecannonballintheupperpicturetravelsaparabolicpath,itgainsvelocityduetogravͲ ity.Youcanseethatthespacebetweensuccessive“snapshots”oftheballgetsgraduallylarger.BeͲ causegravityonlyacceleratestheballdirectlydownward,onlytheverticalvelocityoftheball changes.Asyoucanseeinthesecondfigure,theverticalspacingincreasesaccordingtot2,whilethe horizontalspacingisconstant.Onesurprisingresultoftheindependenceofverticalandhorizontal motionsisthatiftwoprojectilesarelaunchedatthesametimefromthesameheight,theywillhitthe groundandthesametime!Theirhorizontalvelocitiesdonotaffecttherateatwhichtheywillfall. 57 Lab5:ProjectileMotion Inthecasewhereaprojectileisnotlaunchedeitherverticallyorhorizontally,theinitialvelocitycomponentscanbeexͲ pressedastrigonometricfunctionsofthetotalinitialvelocity,vo: v ox vx v cos T voy v sin T Asyoucansee,forș = 0 (acompletelyhorizontallaunch),thehorizontalvelocityisequaltothetotalinitialvelocityv,while theverticalvelocityisequaltozero.Meanwhile,forș = 90 (averticallaunch),thehorizontalvelocityiszerowhilethevertiͲ calvelocityisequaltothetotalinitialvelocity. UsingthekinematicsequationsofFigure5youcancalculatethe totaldistanceorrange,R,ofaprojectile.Iftheprojectileisfiredat anangle,therangeisafunctionoftheinitialangleɽ,theinitialveͲ locity,andtheforceofgravity.Usingalittlealgebra,youcanderive thisexpressionusingthekinematicsequationsabove: v sin( 2T ) g 2 R Figure5:Fourusefulkinematicequationsfor projectilemotion: x xo v x t vy voy gt y y o voy t 1 2 gt 2 2 g y yo Thisrangeequationisusefulsolongastheinitialheightandfinal 2 2 heightoftheprojectileareequal.Iftheobjectendsuphigheror y oy lowerthanitstarted,youwillhavetousetheindividualkinematics equationstosolveforthetotalrange.Itisimportanttoremember thatinmanycases,airresistanceisnotnegligibleandaffectsboththehorizontalandverticalcomponentsofvelocity. Whentheeffectofairresistanceissignificant,therangeoftheprojectileisreducedandthepaththeprojectilefollowsis notatrueparabola. v 58 v Lab5:ProjectileMotion Figure6:Thepathofaprojectileintheabsenceofairresistanceisaperfectparabola(top);however,with airresistancetheprojectileexperiencesadeceleratingforceintheoppositedirectionofitsmotion.The resultistheshortenedcurveshown(bottom). 59 Lab5:ProjectileMotion Experiment1:Calculatingthedistancetraveledbyaprojectile Inthisexperimentyouwillapplywhatyouknowaboutprojectilemotionandusekinematicstopredicthowfaraprojectile willtravel. Materials x Ramp x Marble x Cornstarch x 4Sheetsofblackconstructionpaper x Measuringtape x Monofilamentline x Washer x *Papertowel x *Water *Youmustprovide Figure7:RampsetupforExperiment1 Procedure1 1. PlacetheramponatableasshowninFigure7(referencethediagramatthebeginningofthemanualforramp assemblyinstructions).Markthelocationatwhichyouwillreleasethemarble.Thiswillensurethemarble achievesthesamevelocitywitheachtrial. 2. Createaplumblinebyattachingthewashertothemonofilamentline. 3. Holdthestringtotheedgeofthetableandmarkthespotatwhichtheweighttouchestheground.(Note:The plumblinehelpstomeasuretheexactdistancefromtheedgeoftheramptothepositionwherethemarble “lands.”) 4. Laydownarunwayofconstructionpaper. 5. Wetthemarbleallover,anddropintothecornstarchbagtocoat.Rollonapapertoweltoachieveasmoth, evencoatalloverthemarble(youdonotwantanychunksasitwillaffectthepathofmotion).WhenthemarͲ blehitstheconstructionpaper,theforcewilltransfersomeofthecornstarchtothepaperandallowyoutopinͲ pointwherecontactwasfirstmade. 5. Begintheexperimentbyreleasingthemarbleatthemarkedpointontheramp. 6. Measurethedistancetraveledtothefirstmarkmadeontheconstructionpaperusingthemeasuringtape.ReͲ cordthisvalueinTable1below. 7. RepeatSteps5Ͳ6twomoretimesandfindtheaveragedistance.RecordyourdatainTable1. 8. Next,usethisaveragedistancetocalculatetheaverageinitialvelocityofthemarblewhenleavingthetable. AverageVelocityCalculation: 60 Lab5:ProjectileMotion Procedure2 1. Findahighertable,orstacksomebooksunderneaththeramptoincreasetheheight.Measurethestarting heightattheendoftherampasbefore. 2. Usingtheaveragevelocityfoundearlier,predicthowfarawaythemarblewilllandusingthekinematicequaͲ tions.RecordthisdistanceinTable2.(Hint:youuseoneequationtofindthetotaltimeintheairusingtheiniͲ tialandfinalheights,andanothertofindthehorizontaldistance) 3. Measurethisdistanceoutandmarkitbeforeyoureleasethemarble.ReleasethemarblethreetimesandreͲ cordthedistancetraveledinTable2. 4. Completethetablesbelowusingyourmeasurements. 5. OPTIONALExercise:Setuptheramptoanewheight,andcalculatethepredictedrange.PlaceaStyrofoamcup withasmallamountofwateratyourpredicteddistance.Releasethemarblefromtheramp,testingyourpreͲ dictionbywhetherornotitlandsinthecup. Table1:Projectiledistanceandvelocitydata Table+Ramp Height Distancetraveled AverageDistance AverageVelocity Table2:Projectiledistanceandvelocitydata Table+Ramp Height Calculated Distance ActualDistance ActualDistanceAverͲ age 61 Lab5:ProjectileMotion Questions 1. Ifyouweretothrowaballhorizontallyandatthesametimedropanexactcopyoftheballyouthrew,which ballwouldhitthegroundfirstandwhyisthisso? 2. Whatforcesareactingonthemarblebeforeandafteritleavestheramp? 3. Describetheaccelerationofamarblefortheperiodafteritleavestherampandbeforeithitstheground. 4. DidyourpredictioninProcedure2comeclosetotheactualspot?Findthepercenterrorofyourpredicted distance(expected)comparedtotheactualaveragedistance(observed). 62 Lab5:ProjectileMotion 5. Explainsomepossiblesourcesoferrorthatcouldhaveproducedthedeviationabove. 63 Lab5:ProjectileMotion Experiment2:SqueezeRocketprojectiles Theobjectiveofthislabistoobservethedistanceaprojectilewilltravelwhenthelaunchangleischanged. Materials x x x x x 4SqueezeRockets 1SqueezeRocketBulb Protractor Measuringtape StopWatch ****Pleaseexercisegreatcautionwhenfiringtheserockets.BesurethelineoffireisclearofpeopleandbreakableobͲ jectspriortolaunchinganyrocket.**** Procedure 1. NOTE:Rocketswilloftentakeunpredictableflightpaths.Toensuredataprecision,onlyrecordtrialsinwhich therockettravelsaparabolicpathandcontactsthegroundwiththefrontendfirst. 2. Markthespotfromwhichtherocketswillbelaunched. 3. LoadaSqueezeRocketontothebulb. 4. Usingaprotractor,aligntherockettoanangleof90°(vertical). 5. Squeezethebulb(youwillneedtoreplicatethisforceforeachtrial),andsimultaneouslystartthestopwatch uponlaunch(alternatively,haveapartnerhelpyoukeeptime).Measureandrecordthetotaltimetherocketis intheair.Repeatthisstepthreeormoretimes,andaverageyourresults. t a vg 5. Calculatetheinitialvelocityoftherocket(vinitial = voy )usingthekinematicsequationsprovided.Recordyour calculationinTable3below.(Hint:youcantaketheinitialheightaszero.Theverticalvelocityiszeroatthe peakoftheflight,whenthetimeisequaltoȀʹ.) 6. Repeatthistrialtwomoretimes,andrecordthevaluesinTable3below. 7. Choosefouradditionalanglestofiretherocketfrom.Beforelaunchingtherocket,calculatethepredicted rangeusingthekinematicsequationsandtheangleoflaunch.Rememberthatyoucanusezeroforanyinitial positions,andthattheaccelerationduetogravity,g,is–9.8m/s2.RecordthesevaluesinTable3. 8. Next,aligntherocketwiththefirstanglechoiceandfireitwiththesameforceyouusedinitially.Trytorecord launcheswheretherockettravelsinaparabolaanddoesnotstallorflutteratthetop(thismighttakeseveral repetitions).Measurethedistancetraveledwiththemeasuringtape.Repeatthisfortwoadditionaltrials,reͲ cordingtheactualrangeinTable3. 64 Lab5:ProjectileMotion 9. RepeatStep7fortheremaininganglesandrecordthedatainTable3. Table3:Projectilerangevs.launchangledata Initial Initial Velocity(m/s) Angle 90° Predicted Range(m) 0 ActualRange(m) Average %Error Questions 1. Drawadiagramshowingarocketflyingatanarbitraryangle.Indicatetheforceduetogravityandforcedueto airresistance.Whydoesthedirectionofthenetforcechangeoverthecourseoftherocket’strajectory? 65 Lab5:ProjectileMotion 2. Explainhowthelaunchangleaffectsboththetrajectoryandfinalrangeoftherocket.Whatangle(orrangeof angles)appearstoproducethegreatestrange? 3. Knowingthekinematicsequations,whatangleshouldyieldthegreatestprojectilerange,disregardingairresisͲ tanceandotherfactors?Showallcalculations. 4. Howdoesairresistanceaffecttheaccuracyandprecisionofyourrocketdatainthislab? 66 Lab5:ProjectileMotion 5. Calculatethepercenterrorbetweenyourmeasuredvaluesandthepredictedvalues.Giventhenatureofthe squeezerocketandyourresults,commentonanyothersourcesoferrorthatsignificantlyaffectyourdisͲ tancemeasurements. 6. Howwouldakickeronafootballteamusehisknowledgeofphysicstobetterhisgame?Listsomeother sportsorinstanceswherethisinformationwouldbeuseful. 67 1500WestHampdenAvenue Suite5ͲH Sheridan,CO80110 303Ͳ741Ͳ0674ڄ888ͲESLͲKITS www.eScienceLabs.com
© Copyright 2026 Paperzz