PRE$CALCULUS*HONORS*TEST*REVIEW*1.4—1.5*! 1. Determine whether the equation represents y as a function of x. x 2 + y2 = 4 2. Evaluate f (x) = x + 8 − 2 at each value: a. f (−8) b. f (1) c. f (x − 8) ⎧ x 2 + 2, 3. Evaluate f (x) = ⎨ ⎩2x + 4, a. f (−2) b. f (0) c. f (1) x ≤ −1 x > −1 4. Find the value(s) of x for which f (x) = g(x) . f (x) = x 4 − 2x 2 , ! g(x) = 2x 2 at each value: ! Find the domain of the function. 5. x 2 − 16 . f (x) = 2 x −4 6. f (x) = 7. f (x) = 4 x 2 + 3x 1 3 + 2 x x −1 In 8-9, (a) find the zeros of the function, (b) use a graphing utility to graph the function, (c) approximate the intervals over which the function is increasing, decreasing, or constant, (d) find the relative maximum(s) and/or minimum(s), and (e) determine whether the function is even, odd, or neither. ! 8. f (x) = 3x 2 + 22x − 16 9. f (x) = x 2 − 9x + 14 4x ! Determine the intervals over which the function is increasing, decreasing, or constant. Determine the domain and range. ⎧ x + 3, x ≤ 0 ⎪ 10. f (x) = ⎨ 3, 0<x<2 ⎪2x + 1, x ≥ 2 ⎩ ⎧2x + 1, 11. Sketch the graph of f (x) = ⎨ 2 ⎩ x − 2, ! x ≤ −1 x > −1 . ! ⎧ 3x − 1, x < −1 ⎪ 12. Sketch the graph of f (x) = ⎨5, −1 ≤ x ≤ 1. ⎪x2 , x >1 ⎩ 13. Find the surface area of a sphere in terms of its volume. Find the difference quotient and simplify your answer. 14. For f (x) = x 3 − 5x 2 + x , find 15. For f (x) = 5x , find ! f (x + h) − f (x) , h ≠ 0. h f (x) − f (5) ,x ≠ 5. x−5 ! Find the average rate of change of the function from x1 to x2 . 16. f (x) = x 3 − 3x 2 − x, x1 = 1, x2 = 3 ! ! ! ! ! ! ! ! Write*the*height*h*of*the*rectangle*as*a*function*of*x.*** * 17. ! !
© Copyright 2026 Paperzz