Molecular Scissors: Lambda Digest Student Materials Introduction…………………………………………………………………………………………………………………………2 Pre-LabQuestions……………………………………………………………………………………………………………….5 LabProtocol…………………………………………………………………………………………………………………………6 DataCollectionWorksheet………………………………………………………………………………………………….9 Post-LabQuestionsandAnalysis………………………………………………………………………………………..10 PlasmidMaps…………………………………………………………………………………………………………………….13 Lastupdated:3/15/2017 Molecular Scissors Introduction Doyouknowwhatrestrictionenzymesare?Alsoknownasrestrictionendonucleases,restriction enzymesareimportantenzymesthatcutDNAatspecificsequencescalledrestrictionsites.Restriction enzymeswerediscoveredwhenscientistsnoticedthatbacterialviruses(bacteriophages)caninfect somebacterialcellsandnotothers.Thebacterialhostcellsthatareresistanttoinfectionproduce enzymesthatcuttheinvadingviralDNA.ThesmallfragmentsofviralDNAcannotbeusedtomakenew completeviruses–stoppinginfectionofthebacteriacell.Scientistnamedtheseenzymesrestriction endonucleasesorrestrictionenzymesfortheirabilityto“restrict”orlimitviralinfection(seeFigure1). Figure1.Bacteriadefendingthemslevesagainstbacteriophages http://www.biomedheads.com/uploads/2/6/0/4/26041745/8703912_orig.jpg Sincethediscoveryofthefirstrestrictionenzyme,hundredsofrestrictionenzymeseachthatrecognizes andcutsDNAatdifferentrestrictionsiteshavebeenindentified.Thenameofeachrestrictionenzyme comesfromthegenus,speciesandstrainofthebacteriathatnaturallyproducedit.Forexample,the enzymeEcoRIcomesfrom: E=Eschericiagenus co=colispecies R=strainRY13 I=romannumeralIforthefirstenzymeindentifiedinthebacterium Mostoftherestrictionezymesusedbyscientistsrecognizerestrictionsitesthatarefourtoeightbase pairslong.Let’slookatarestrictionsiteforEcoRI: 5’GAATTC3’ 3’CTTAAG5’ Lookcloselyatthesequences.Doyounoticeanythingspecial?Readthetopstrandlefttoright outloud….nowreadthebottomstrandrighttoleft. 2 Didyounoticethatyouwerereadingthesamesequence?Thisiscalledapalindromeanditisoftena characteristicofrestrictionsites.Inthiscase,EcoRIcutsbetweentheGandtheAwhenreadingfrom5’ to3’.Becausetheenzymecutseachofthetwostrandsoftherestrictionsite,itleavesstaggeredcuts thatproduce“stickyends.”Theseshort,unpairedsequencesarethesameforanyDNAthatiscutby EcoRI. Thisissometimeindicatedinthismanner: 5’G/AATTC3’ 5’GAATTC3’ or 3’CTTAA/G5’ à 5’ATCAGG 3’TAGTCC CCATT3’ GGTAA5’ 3’CTTAA G5’ Whilenotascommon,someenzymeslikeHaeIIIcutbothstrandsofDNAatthesameposition, producingbluntends. 5’ATCAGG/CCATT3’ 3’TAGTCC/GGTAA5’ TheabilityofrestrictionenzymestocutDNAatknownsitesmakethemanimportanttoolin biotechnology.ScientistscancutopenaDNAsequenceandinsertanothersequenceintotheopening (Figure2). Figure2.UsingrestrictionenzymestocreaterecombinantDNA 5’ 3’ Originaldouble-strandedDNAmolecule withasinglerestrictionsiteforEcoRI 3’ GAATTC CTTAAG FragmentsoforiginalDNAmolecule producedbydigestionwithEcoRIand double-strandedDNAtobeinserted intooriginalDNAmolecule. restriction enzymesite Cutwithrestrictionenzyme 5’ 3’ NewDNAcomposedoforiginal moleculeandinsertedmolecule. 5’ 5’ 3’ 3’ 5’ AATTC G CTTAAG 5’AATTC G 3’ G 3’ CTTAA 5’ G AATTC CTTAA G JoinDNAfragmentswithDNAligase 3 ’5 ’ GAATTC G CTTAA Whydoyouthinkthisissuchanimportantprocedure? IfyouthoughtaboutinsertingDNAfromoneorganismintotheanotherorganisms,ormakingcertain drugs,orfixingageneticdiseasethenyouareontherighttrack.Forexample,ifascientistwantsto studyaspecificprotein,shecaninsertthegeneforthatproteinintobacterialDNAandhavemillionsof bacterialcellsmaketheprotein.Itisnotreallyquitethatsimplebutyougettheidea. RestrictionenzymesalsoallowscientiststocreatemapsofDNAbasedonthepostionofrestrictionsites. OnekindofphysicalmapofDNAisarestrictionmap.Restrictionmapsincludethelocationandorderof 3 sitescutbydifferentrestrictionenzymes(seeFigure3).Thesephysicalmapsareimportanttoscientists astheyidentifiyandworkwithDNAmolecules. Figure3.RestrictionmapoflambdaDNAcutwithBamHI Fragmentsizes 5505 16,841 5626 6527 7233 6770 basepairs(bp) Howdoyoucreatearestrictionmap?AftertheDNAiscutwithdifferentenzymes,scientistseparatethe fragmentsbygelelectrophoresisandanalyzetheresultingpatterns.Gelelectrophoresisisacommon waytomeasuremolecularsizes.Hereisananalogytoexplaingelelectrophoresis.Imagineaverydense forestoftreeswhereeachtreeisonlyonefootawayfromeveryothertree.Youandamousemust eachrunthroughtheforestfrompointAtopointB.Youandthemousebeginatthesametime.Which willreachtheothersidefirst,youorthemouse? Ingelelectrophoresis,thegelisanalogoustotheovergrownforest.Thegelisameshformedof polymers,muchlikeJELL-O®.JELL-Oisameshofgelatinmadefromanimalproductslikecollagen.The gelsforelectrophoresisareameshofagarose,whichispurifiedfromseaweed.Ingelelectrophoresis themoleculesareanalogoustoyouandthemouse.Smallmoleculeswillmovemorequicklythrough themeshthanwilllargemolecules,forthesamereasonsthatthemousemovesmorequicklythrough thethickforestthanyoudo. Sofarsogood,butonceamoleculeissuspendedinthegel,whydoesitmove?DNA,RNAandprotein moleculesoftenhaveasurfacecharge.Thismeansthatifanelectricfieldisappliedtothegel, moleculeswithanegativesurfacechargewillmovethroughthegeltowardsthepositivelycharged anodeandmoleculeswithapositivesurfacechargewillmovethroughthegeltowardsthenegatively chargedcathode.Whentwo(ormore)moleculeshavethesamechargethemoleculeswillmove throughthegelbasedupontheirsize,smallermoleculesmovefasterthroughthegelthenlarger molecules(Figure4). Figure 4. Agarose gel electrophoresis of DNA http://www.discoveryandinnovation.com/BIOL202/notes/lecture23.html Inthislab,youwillbeingusingDNAfromabacteriophagecalledlambda(l)andcuttingitwithtwo enzymes:EcoRIandHindIII.OnceyouhavecuttheDNA,youwillrunitonanelectrophoresisgeland comparelambda(l)cutwiththetwodifferentenzymesanduncutlambda(l)DNA. Tomakethingsalittlemoreinteresting,theenzymesarenotidentified.Therearetwotubes,AandB. OnehasEcoRIandthetheotherhasHindIII.Yourjobistofigureoutwhichtubecontainswhichenzyme. 4 Molecular Scissors Pre-LabQuestions Directions:AfterreadingthroughtheintroductionandprotocolfortheMolecularScissorslab,answer thefollowingquestions. 1. Whatarerestrictionenzymesandwherearetheyfoundinnature? 2. YoufindatypeofbacteriathatisresistanttotheT-4bacteriophage.Howmightyouexplainthe bacterium’sresistancetothisvirus? 3. TherestrictionenzymePvuIrecognizesa6basepair,“palindromic”sequenceindoublestranded DNA.Threebasesofonestrandaregiven,completetherestrictionsiteforPvuI. 5’ 3’ T↓CG 3’ 5’ PvuIcutsbothstrandsofDNA.Thepositionofthefirstcutisindicatedbythearrowabove. Drawanarrowtoindicatethepositionofthesecondcut. 4. ImagineyouhaveacircularpieceofbacterialDNA(aplasmid)inwhichyouwanttoinsertageneto studyaprotein.Youneedtodecidewhatrestrictionenzymetousetocutopentheplasmid–EcoRI orHaeIII.Whatenzymewouldyouusetocuttheplasmid?Explainyouranswer. 5. ManymoleculesofDNAfromavirushavebeencutwithvariouscombinationsoftherestriction enzymesEcoRI,BamHI,HindIII.Therestrictionmapandresultinggelareshownbelow.Which sampleonthegelshowsDNAthathasbeencutwithbothBamHIandHindIII?Explainyouranswer. DNAfromvirus EcoRI BamHI 1 2 3 4 wells EcoRI HindIII 5 Molecular Scissors LabProtocol There’sbeenamixupinthelab–labelsonyourtubesofrestrictionenzymeshavefallenoff.Youknow thatyouhaveatubeofEcoRIandatubeofHindIII,butyoudon’tknowwhichoneiswhich.Inorderto identifytheenzymesintubesAandB,youwillhavetoperformdigestsofDNAfromabacteriophage calledlambda(l).OnceyouhavecuttheDNAyouwillrunitonanelectrophoresisgeltocomparethe cutanduncutDNAandtheresultsofthetwodifferentenzymes.Bycomparingthegelresultstothe restrictionsmapsinFigure5youwillbeabletofigurewhichtubecontainswhichenzyme. Figure5:RestrictionMapsforLambda/HindIIIandLambda/EcoRI Materials:checkyourworkstationstomakesureallsuppliesarepresentbeforebeginningthelab. StudentWorkstation: CommonWorkstation: • • • • • • • • • • • • • • • • • • 1icebucketorstyrofoamcupwithcrushedice 1p20micropipetteandpipettetips 1microcentrifugetuberack 1tubewith500µLwater 1tubeCutSmart®bufferwith20µLbuffer 1tubelambdaDNAwith10µLDNA(500ng/µl) 1tubeEnzymeAwith1µLrestrictionenzyme 1tubeEnzymeBwith1µLrestrictionenzyme 1tubeDNALadderwith10µLQuickLoad®1kbExtendLadder 1tubeControl(empty) 1tubeloadingdyewith30µL6Xdye 1agarosegel(0.6%)withDNAstain 1electrophoresisunitwithpowersupply 1extrafinepointpermanentmarker • 37°Cwaterbathorincubator 65°Cwaterbathorincubator microcentrifuge(optional) UVlightorbluelight transilluminator 1Xelectrophoresisbuffer 6 Caution:Keepallreagenttubesonice. Procedure: 1. Findthefourmicrocentrifugetubes,labeledenzA,enzB,ControlandLadder 2. Usingyourp20micropipette,setuptherestrictiondigestsusingTable1below.Itisagoodideato checkoffthereagentsasyouaddthem. Table1:Set-upforrestrictiondigestoflambdawithEcoRIandHindIII. Addthe Tube FollowingReagents: EnzA EnzB Control Ladder Water 42µL 42µL 43µL 5µL CutSmartBuffer none 5µL 5µL 5µL none lDNA 2µL 2µL 2µL EnzymeA(alreadyadded) none none none 1µL EnzymeB(alreadyadded) none none none 1µL Ladder(alreadyadded) none none none 10µL 50µL 50µL 50µL 15µL TotalVolume Caution:Makesureyouuseacleantipforeachpipettingtransfer. 3. Usingthecentrifuge,quicklyspinthetubestogetallthereagentstothebottom.Ifyoudonothave acentrifuge,youcangentlytapthemonthebenchtoconsolidatethecontentsinthebottomofthe tube. 4. PutalltubesexcepttheLadderinthe37°Cwaterbathfor30-45minutesorforthetimeittakesyou tomakeyourgel. 5. Duringtheincubation,add5µLofsterilewatertothetubelabeledladder. 6. Prepareorsourcea0.6%agarosegeland1Xelectrophoresisbufferasinstructedbyyourteacher. 7. Removeyourreactiontubesfromthe37°Cwaterbath. StoppingPoint–Checkwithyourteacherbeforecontinuingwiththeprotocol. 8. Add8µLofloadingdyetothereactiontubes(EnzA,EnzBandControl).Mixbyflickingthetubeand poolreagentsatthebottombycentrifugingortappingonthebench. Caution:Makesureyouuseacleantipforeachreactiontube. 9. Afterloadingdyeisadded,heatyourreactiontubesto65°Cfor5minutes.Movetubesdirectlyto ice. 7 Caution:DonotheattheLadder. 10. Assemblethegelboxandpositionitwhereitwillrun. Tip:Checktomakesurethatthegeltrayisinthecorrectionorientationwiththewellsclosest tothenegativeelectrode. 11. Load15µLofeachsampleandtheladderintoawellofthegelandrecordwhichsamplewentinto whichwell.UseTable2tohelpyouknowwhereonthegeleachsampleisloaded. 12. Runyoursamplesasinstructedbyyourteachersuntilthefrontloadingdyeistwo-thirdsoftheway downthegel. Table2:Gelelectrophoresis Lane(leftto right) Sample name 1 Caution:Makesureyouuseacleantipforeachsample. 2 3 4 5 6 7 8 13. Whilethegelisrunningcalculatethesizeoftherestrictionfragmentsthatyouexpectwhenlamda DNAiscutwitheachoftheenzymesandrecordtheminTable3below. Table3:SingledigestrestrictionfragmentsofLambdaDNAcutwithEcoRIandHindlll • Hint:fortheHindIIIdigest,look HindIII EcoRI atthemapinFigure5.Starting at“start”andmovingtothefirst Restriction Fragmentsin Restriction Fragmentsin restrictionsite,thesizeofthe Fragments descendingorder Fragments descendingorder fragmentis23,130bp. 23,130 • Todeterminethesizeofthe 2,027 secondfragment,subtractthe basepairnumberofthefirstsite (23,130)fromthenumberofthe secondsite(25,157). • Continuethisprocess,recording thesizeofthefragmentsinthe table.Whenyouhavefinished, inthesecondcolumnofthe tablelistthefragmentsin descendingorder. 14. Onceyourgelisfinishedrunningexaminethelocationofthebandsandcompletethedata collectionworksheet. 8 Molecular Scissors DataCollectionWorksheet Directions:AftercompletingtheMolecularScissorslab,answerthequestionsbelow. 1. Ontheimagebelowdrawwhatyouseeaftergelelectrophoresis −electrode Ladder(Kb) 48.5 20 15 10 8 6 5 4 3 2 1.5 1 0.5 +electrode 2. DeterminewhichenzymewasEcoRIandwhichwasHindIII.Recorditbelow. EnzymeA_______________ EnzymeB_______________ 3. TherestrictionsiteforEcoRIisGAATTC.Basedonyourresults,howmanytimesdoesthesequence occurinthelambdasequence?______ 4. Whenyoucomparetherestrictionmapstoyourresultsarethereanymissingbands?Canyou suggestanyreasonswhythereisthisdiscrepancy? 5. WhatisthetotallengthoftheLambdaDNA? 9 Molecular Scissors Post-LabQuestionsandAnalysis Directions:AftercompletingtheMolecularScissorslab,answerthequestionsbelow. ScientistscanuseelectrophoresisresultstodeterminethesizeofunknownDNAsamples.Scientists havedeterminedthatDNAfragmentsmovethroughthegelatatratethatisinverselyproportionalto thelog10oftheirmolecularweight(ornumberofbasepairs).So,ifyourunasetoffragmentswith knownsizesonagelalongwiththeunknownfragment,youcancreateastandardcurvewiththeknown fragmentsanduseittodeterminethesizeoftheunknownfragments.Let’stryit. 1 2 3 A 4 5 B C 1. ThegelimageabovedepictsagelwithaDNAstandardinlane1andtwounknownsinlanes3and5. MeasurethedistancethateachbandintheDNAstandardhasmovedfromthewellandrecordit nexttothecorrespondingbandinTable4(onthenextpage).Tip:Youshouldmeasurefromthe frontedgeofthewelltotheleadingedge(furthestfromthewell)ofeachband 2. Measurethedistancethateachoftheunknownbandshastraveledfromthewellsandrecordthe distanceinTable4. 3. UsethedatafromTable4tocreateastandardcurveusingeitherExcelorsemi-logpaper.Thexaxis isdistancetraveledandtheyaxisisbasepairlength.Connectthedatapointswitha“best-fit”line. 4. Usethestandardcurvetodeterminethesizeofthethreeunknownfragments.Recordthesizeof thefragmentsA,BandCinTable4. 10 Table4.Restrictiondigestgeloftwounknowns. DNAStandard Size(bp)ofDNA Distance(mm)moved fromwell Skipthisband–verylarge 23,000 bandswillskewthestandard curve 9,416 6,557 4,361 2,322 2,027 Unknowns Band Size(bp)of Distance(mm)moved DNA fromwell A 30.9 B C 5. UsethedatafromTable4tocreateastandardcurveusingeitherExcelorsemi-logpaper.Thexaxis isdistancetraveledandtheyaxisisbasepairlength.Connectthedatapointswitha“best-fit”line. 6. Usethestandardcurvetodeterminethesizeofthethreeunknownfragments.Recordthesizeof thefragmentsA,BandCinTable4. 11 12 Maps of Lambda DNA with EcoRI and HindIII Restriction sites 13
© Copyright 2026 Paperzz