1 LOGO Chapter 2 Coordinate System Transformation Part 2 iugaza2010.blogspot.com Express B in Cartesian (b)B 2r sin cos ar r cos cos a r sin a Ax (sin cos ) * 2r sin cos (cos cos ) * r cos cos (sin ) * rsin Ax (2r sin cos ) (r cos cos ) (rsin ) 2 2 2 2 2 2 2 r2 r Ax 2 (2r sin 2 cos2 ) ( rcos 2 2 cos2 ) (r 2 sin 2 ) r r 2 1 r 2 2 2 2 2 2 ( r 2 sin 2 cos2 ) ( r c os cos ) ( sin ) 2 2 r r 2 1 r 2 2 2 (x2 ) ( z x ) ( y ) 2 2 r r Ax 2x2 x y z 2 2 2 zx (x y ) 2 2 x y z 2 2 2 x2 y2 z 2 y2 2 2 x y 3 (a) Prove that: ax.aρ=cosφ A 1ax B 1a x cos convert B to cartesian : Bx cos - sin By sin cos Bz 0 0 Bx cos 0 1 0 0 1 0 y sin z r cos r sin x2 y2 r x2 y2 z 2 B Bx ax cos ax ax.a ax. cos ax cos 4 A cos a z sin az 2 (a) Transform A to rectangular 2 1 x Ax cos2 cos2 2 cos2 A y sin cos 1 sin cos sin A x2 y2 ax xy x2 y2 x2 y2 xy cos x 2 y 2 x cos Az z 2 sin z 2y x2 x2 ay z 2yaz A (3,4,0) 1.8ax 2.4ay | A | 3 y sin z r cos r sin x2 y2 r x 2 y 2 5 z 2 A cos a z sin az 2 (b) Transform A to spherical Ar sin A cos A 0 0 0 1 x cos y sin z r cos r sin cos cos - sin 0 0 z 2 sin Ar cos sin z 2 sin cos ( r sin ) cos sin ( r sin )(r cos ) 2 sin cos r sin 2 cos r 3 sin cos3 sin A r sincos cos r 3 sin2 cos2 sin A 0 A Ar ar A a A a 6 Find the value of A at point(3,-4,0) from part (b) Ar r sin cos r sin cos sin 2 3 3 A r sincos cos r 3 sin2 cos2 sin A 0 A Ar ar A a A a ( x, y, z ) (3,4,0) (r , , ) (5, / 2,53.13o ) A ( 5, / 2, 53.13o ) 3ar | A | 3 as in part(a) 7 Calculate the distance between the points: (a) P1=(2,1,5) and P2=(6,-1,2) P1P 2 P 2 P1 4ax 2ay 3az | P1P 2 | 16 4 9 5.38 (b) P1=(3,pi/2,-1) and P2=(5,3pi/2,5) d 1 2 2 1 2 cos( 2- 1) (Z2 -Z1 ) 2 2 cyl . 2 2 d 2 cyl . 52 32 2(5)(3) cos( ) (6)2 100 d 10 OR Or convert all points to Cartesian coordinates : (3, pi/2,-1) (0,3,-1) (5,3pi/2,5) (0,-5,5) d 0 64 36 10 8 (c) P1=(10,pi/4,3pi/4) and P2=(5, pi/6,7pi/4) 2 2 2 d sph. r r 2r r 2 cos 1 cos 2 - 2r r 2 sin 1 sin 2 cos( 2- 1) 2 1 1 1 d 2 sph. 99.11 Other Sol. Convert all points to Cartesian 9 H ρz cos aρ sin 2 At point (1,/3,0) find : a ρ 2 az H (1, pi / 3,0) 0.5 a az (a) H.ax first we must convert H to cartesian or A to cyl. 3 Hx ρz cos cos sin sin 0 0 0 0.433 4 2 note : We dont need to find Hy & Hz only we need Hx H.ax 0 ( Hx ax Hyay Hzaz).ax Hx 0.433 10 H ρz cos aρ sin 2 At point (1,/3,0) find : a ρ 2 az (b) Hxaθ A sin A 0 A cos z cos 0 - sin first we must convert H to sph or A to cyl. 0 0 1 1 0 0 A cos A 0 Az sin 1 ) tan 1 ( ) / 2 z 0 A cos 90 0 A 0 tan 1 ( Az sin 90 1 a 0 H (1, pi / 3,0) 0.5 a az 0 H x A H x az (0.5 a az) x ( az) a az 0.5 0 1 0.5 a -1 11 H ρz cos aρ sin 2 At point (1,/3,0) find : a ρ 2 az H (1, pi / 3,0) 0.5 a az (c) Find the vector component of H normal to surface ρ=1 ( H .a )a 0.5a az.a a 0 aρ ρ=1 (cyl.) 12 H ρz cos aρ sin 2 At point (1,/3,0) find : a ρ 2 az H (1, pi / 3,0) 0.5 a az (d) Find the scalar component of H tangential to plane Z=0 az normal to plane Z 0 D Dt Dn Dn az Dt D Dn 0.5a 13 x=const. y=const. z=const. y x x z z y Represent Infinite Plane 14 ρ=const. 0 φ 2π z Circular Cylindrical φ=const. 0ρ z semi infinite plane z=const. 0 0 2 infinite plane 15 r=const. 0 π 0 φ 2π Sphere (center at origion) θ=const. φ=const. 0r 0r 0 π 0 2 circualr cone infinite plane 16 θ=pi/4 φ=2pi/3 x= 10 r=1 , θ=pi/3 , φ=2pi/3 ρ=3 , φ=2pi/3 ρ=3 , z=1 r=4 , φ =pi/6 r=4 , θ =pi/6 φ =pi/6 , z=10 y=1, z=0 Cone semi-infinite plane infinite plane Point Straight line circle semi circle circle radial line line 17 θ=pi/4 Cone 18 φ=2pi/3 semi-infinite plane 19 x= 10 infinite plane 20 ρ=3 , φ=2pi/3 Straight line 21 ρ=3 , z=1 circle 22 23 24 25 26 (1) Unit vector normal to the surface θ=30 (2) Unit vector normal to the surface ρ=2 aρ ρ=2 (cyl.) 28 (3) Unit vector normal to the surface φ=3pi/2 semi-infinite plane 29 J r sin cos a r - cos2 sin a tan ln r a 2 at T(2, /2, 3/2) determine the vector component of J that is : (a) Parallel to az ( J .az) az convert az to spherical : Ar cos * (1) cos(pi/2) 0 A -sin * (1) -sin(pi/2) -1 A 0 A -a ( J .(a ))(a ) cos(2 ) sin cos sin(3 / 2) 1 ( J .(a ))(a ) (1)(a ) a 30 (b) Normal to surface φ=3pi/2 ( J .a )a (tan 2 ln r )a tan( pi / 4) ln 2a ln 2 a 31 (c) Tangential to the spherical surface r=2 D Dt Dn Jt J Jn Jn r sin cos a r Jt J Jn cos2 sin a tan 2 ln r a a ln 2 a 32 (d) Parallel to the line y=-2,z=0 ( J .ax) ax ax a ( J .a ) a ln 2a 33 LOGO iugaza2010.blogspot.com [email protected] 34
© Copyright 2026 Paperzz