Dear MST User, In the following you find a list of interactions/molecule classes that have been analyzed with MST as well as with other methods. Thus, this compilation does not reflect the whole spectrum of systems that have been measured with MST so far. The list gives detailed information on instrument settings and assay conditions to also support your assay development. Antibody - Antigen Target Name Ligand MST Kd Orthogonal Kd Litera- Buffer ture MST Conditions mAB08 mAB08 Cocaine, no serum Cocaine, 20 % serum Benzoylegonine Cocaethylene BSA-SNC 7.8 nM 105 nM 2.5 ± 6.8 nM (ITC) 113 ± 820 nM (ITC) (1) PBS + 0.05 % Tween-20 NT.115 standard treated capillaries NT-647 23.7 nM 47 nM 6.6 nM 18.6 ± 48.7 nM (ITC) 34.4 ± 129 nM (ITC) - MB007-antibody 10 ± 0.6 nM 14.9 ± 0.8 nM (IC50 in Cell Assay) (2) 50 mM sodium phosphate pH 7.4, 150 mM NaCl, 0.05 % Tween-20 NT.115 standard treated capillaries 30 % LED, 25 % MST mAB08 mAB08 mAB08 GM-CSF Cytokine 1 Protein - protein Target Name Ligand MST Kd Orthogonal Kd Litera- Buffer ture MST Conditions Β-Lactamase TEM1 WT BLIP 3.5 ± 0.6 nM (3,4) W112A BLIP W150A BLIP 474 ± 76 nM 1750 ± 220 nM 3.2 ± 0.6 nM (SPR) 360 ± 60 nM 3800 ± 600 nM NT.115 standard treated capillaries 50 % LED, 80 % MST Grb2 Grb2 0.66 ± 0.20 µM µM range (DLS) (5) NEMO UBAN-ZF NEMO UBAN-ZF NEMO UBAN-ZF linear diUbi K63-linked diUbi linear tetraUbi 3.24 µM No binding 0.34 µM 1.4 µM (ITC) 131 µM (ITC) Western Blot – not quantifiable (6,7) (6,7) (7) 50 mM Tris-HCl, pH 7.6, 150 mM NaCl, 10 mM MgCl2, 0.05 % Tween-20 NT.115 10 % LED, 40 % MST NT-647 25 mM Tris-HCl pH 8.0, 100 mM NaCl, 0.1 % BSA, 0.1 % Tween-20, 0.5 mM DTT NT.115 NT-647 Protein - Ion Target Name Ligand MST Kd Orthogonal Kd Literature Buffer MST Conditions Calmodulin M13 4.48 ± 1.7 nM 1.6 nM (22) PBS +0.025 % Tween-20 Calcium 2.8 ± 0.2 µM µM-range (23) 1 × PBS NT.115 standard treated capillaries 80 % LED, 20 % MST NT.115 2 Protein -Small molecule Target Name Ligand MST Kd Orthogonal Kd Literature Buffer MST Conditions Hsp90 17-DMAG 0.503 ± 0.099 μM 0.35 ± 0.04 μM (ITC) (8,9) 50 mM Tris-HCl, pH 7.4, 150 mM NaCl, 10 mM MgCl2, 0.05 % (v/v) Tween-20, 5 % (v/v) ethanol NT.115 hydrophilic treated capillaries 40 % LED, 40 % MST NT-647 NT.LabelFree standard treated capillaries 20 % MST NT.115 standard treated capillaries 80 % LED, 40% MST NT-647 NT.115 hydrophilic treated capillaries 80 % LED, 40 % MST NT.115 standard treated capillaries 0.593 ± 0.387 μM P38a Kinase P53 Kinase BIRB796 2.3 ± 0.17 nM 0.1 nM (10) (stopped flow – fluorescence) 2.5 % DMSO in MST-Buffer SB203580 24 ± 4.37 nM 15 nM (ITC) (11) MST Buffer PD169316 18 ± 15 nM 130 nM (IC50) (SPR) (12,13) SB202190 SB239063 48 ± 21 nM 8 ± 12 nM 37 nM 44 nM (IC50) (13,14) (13,15) 50 mM Tris, 150 mM NaCl, 10 mM MgCl2, 0.05 % Tween-20, pH 7.8 200 mM TAPS/Tris pH 8.0, 1 mM DTT, 0.05 % Tween-20 Nutlin3 36.3 nM FP-Based Binding Assay 36 nM (16) 79 % LED 20 % MST 3 Target Name Ligand MST Kd Orthogonal Kd Literature MDM2 Kinase P53 260 nM 50 - 300 nM (17) RhoA GTPase G04 (compound) 400 nM Multiple Cell based assays (18) Rac GTPase P67 31.6 nM Activity (19) P67 Phox-I1 97.5 nM Activity (19) Buffer MST Conditions 50 mM HEPES, 50 mM NaCl, 0.01 % Tween-20 and 2 mM MgCl2 NT.115 NT-647 NT.115 NT-647 4 Protein - Sugar Target Name Ligand MST Kd Orthogonal Kd Literature Buffer MST Conditions Nod factor NFR5 4.0 ± 1.5 nM (35) 0.6 ± 0.25 nM 50 mM Tris, pH 8, 0.2 M NaCl, 2 mM β-ME, 0.36 % (w/v) FosCholine NT.115 100 % LED, 50 % MST NFR1 10.1 ± 2.5 nM (SPR) 4.9 ± 1.3 nM (SPR) Riproximin ASF 2 binding sites: 11 nM and 7 µM 2 binding sites: 48 nM and 1.1 µM (ITC) (36) PBS with 50 mM galactose and 0.05 % Tween-20 NT.115 standard treated capillaries NT-647 Lysozyme Glc-NAc 18.8 ± 1.9 mM 25 mM (ITC) (37) MST-Buffer with GlcNAc (dissolved in NaActetate Buffer) NT.115 40 % MST NT-488 FedF Blood group A type 1 hexa- saccharide NFR1 2.9 µM ± 1.6 µM SPR (35.2 µM) BSI (1.76 µM) 0.6 ± 0.25 nM (38) 20 mM HEPES pH 7.4, 150 mM NaCl, 0.005 % Tween-20 NT.115 NT-647 0.6 ± 0.25 nM 5 Protein - nucleic acids Target Name Ligand MST Kd Orthogonal Kd Literature Buffer MST Conditions Thrombinaptamer Thrombin 30 ± 19 nM 25 ± 25 nM (24,25) 20 mM Tris-HCl pH 7.4, 150 mM NaCl, 5 mM KCl, 1 mM CaCl2, 1 mM MgCl2, 0.01 % Tween-20, 4 % BSA NT.115 NT-647 Thrombin Fibrinogen aptamer 32 ± 15 nM 25 ± 25 nM (24,26) Heparin aptamer 133 ± 42 nM 0.5 – 237 nM (SPR, SELEX, ACE) (26-29) 20 mM Tris-HCl pH 7.4, NT.115 150 mM NaCl, 5 mM KCl, 1 mM standard treated capillaries CaCl2, 1 mM MgCl2, 0.1 % Tween-20 Pur-α Transcription Factor CAG-Triplet opa-Repeat 834 ± 179 nM 1406 ± 128 nM 716 ± 202 nM 1211 ± 128 nM (Anisotropy) (30) DNA gyrase 4,5’-bithiazole compounds Cmp1: 51.5 µM 47.4 ± 8.8 µM (SPR) 6.6 ± 2 µM (SPR) (31) n/a n/a n/a n/a (32) Cmp2: 7.9 µM STAT3-EGFP STAT3-EGFP STAT3-EGFP STAT3-EGFP GAS S+100 S+100 mutant1 S+100 mutant2 37.9 ± 1.0 µM 23.3 ± 0.6 µM 740 ± 21 µM No binding 20mM Tris pH 7.4, 100 mM KAc, 3.5 mM MgCl2, 0.1 % BSA, 0.01 % Tween-20 NT.115 NT.115 standard treated capillaries 90 % LED, 80 % MST NT-647 25 mM HEPES, pH 7.2; 50 mM NaCl; 2.5 mM MgCl2; 0.025 % NP40 NT.115 standard treated capillaries 50 % LED 6 Nucleic acids Target Name Ligand MST Kd Orthogonal Kd Literature Buffer MST Conditions ATP/AMPaptamer ATP/AMP 60 ± 4 µM (ATP) Coincidence with literature Fluorescence spectroscopy (33,34) 20 mM Tris-HCl pH 7.6, 300 mM NaCl, 5 mM MgCl2, 0.01% Tween-20 NT.115 NT-647 87 ± 5 µM (AMP) (25) Membrane Proteins Target Name Ligand MST Kd Orthogonal Kd Literature Buffer MST Conditions Receptor GluA2LBD Glutamate 835 ± 43 nM 821 nM (fluorescence spectroscopy) (13,39) 10 mM HEPES pH 8.0, 150 NaCl, 1 mM EDTA NT.LabelFree standard treated capillaries 4-Glu-Azu 22 ± 8 µM 19 ± 5 µM Calcium 221 ± 23 µM Synaptotagmin-1 206 ± 40 µM NT.115 NT.LabelFree 5 µM - 1 mM (ITC) (40-42) 20 mM HEPES, 150 mM KCl, 2.5 mg/ml BSA, pH 7.4 20 mM HEPES, 150 mM KCl, pH 7.4 NT.115 hydrophobic treated capillaries 25 % LED, 40 % MST NT.LabelFree hydrophobic treated capillaries 80 % LED, 40 % MST 7 Target Name Ligand MST Kd Orthogonal Kd Literature Buffer MST Conditions NTS1 GPCR Neurotensin 3 nM 1 nM (43) NT.LabelFree standard treated capillaries Compound SR 48692 30 nM 52 nM 50 mM Tris pH 7.4, 50 mM NaCl, 0.1 % DDM, 0.01 % CHS, 85 mM imidazole Liposomes Target Name Ligand MST Kd Orthogonal Kd Literature Synaptotagmin-1 (in Liposome) PtdIns(4,5) P2 Liposomes Docking/ Tethering Docking/ Tethering (DLS + EM) (44) Synaptotagmin-1 PIP2-Liposome 36.2 ± 7.4 µM (- Calcium) 10.6 ± 2.3 µM (+ Calcium) Buffer MST Conditions NT.115 20 mM HEPES, 150 mM KCl, 2.5 mg/ml BSA, pH 7.4 NT.115 hydrophobic treated capillaries 25 % LED, 40 % MST 20 mM HEPES, 150 mM KCl, pH 7.4 NT.LabelFree hydrophobic treated capillaries 80 % LED, 40 % MST 8 References: 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. Ramakrishnan, M., Alves De Melo, F., Kinsey, B. M., Ladbury, J. E., Kosten, T. R., and Orson, F. M. (2012) Probing cocaine-antibody interactions in buffer and human serum. PloS one 7, e40518 Blech, M., Seeliger, D., Kistler, B., Bauer, M. M., Hafner, M., Horer, S., Zeeb, M., Nar, H., and Park, J. E. (2012) Molecular structure of human GM-CSF in complex with a disease-associated anti-human GM-CSF autoantibody and its potential biological implications. The Biochemical journal 447, 205-215 Albeck, S., and Schreiber, G. (1999) Biophysical characterization of the interaction of the beta-lactamase TEM-1 with its protein inhibitor BLIP. Biochemistry 38, 11-21 Schreiber, G., and Jerabek-Willemsen, M. (2012) Using MST to analyse the binding of the β-Lactamase TEM1 to BLIP. Application Note NT012 Lin, C. C., Melo, F. A., Ghosh, R., Suen, K. M., Stagg, L. J., Kirkpatrick, J., Arold, S. T., Ahmed, Z., and Ladbury, J. E. (2012) Inhibition of basal FGF receptor signaling by dimeric Grb2. Cell 149, 1514-1524 Lo, Y. C., Lin, S. C., Rospigliosi, C. C., Conze, D. B., Wu, C. J., Ashwell, J. D., Eliezer, D., and Wu, H. (2009) Structural basis for recognition of diubiquitins by NEMO. Molecular cell 33, 602-615 Hadian, K., Griesbach, R. A., Dornauer, S., Wanger, T. M., Nagel, D., Metlitzky, M., Beisker, W., Schmidt-Supprian, M., and Krappmann, D. (2011) NFkappaB essential modulator (NEMO) interaction with linear and lys-63 ubiquitin chains contributes to NF-kappaB activation. The Journal of biological chemistry 286, 26107-26117 Onuoha, S. C., Mukund, S. R., Coulstock, E. T., Sengerova, B., Shaw, J., McLaughlin, S. H., and Jackson, S. E. (2007) Mechanistic studies on Hsp90 inhibition by ansamycin derivatives. Journal of molecular biology 372, 287-297 McLaughlin, S. H. (2011) Binding of the geldanamycin derivative 17-DMAG to Hsp90 measured with fluorescence label and label-free. in Application Note Pargellis, C., Tong, L., Churchill, L., Cirillo, P. F., Gilmore, T., Graham, A. G., Grob, P. M., Hickey, E. R., Moss, N., Pav, S., and Regan, J. (2002) Inhibition of p38 MAP kinase by utilizing a novel allosteric binding site. Nature structural biology 9, 268-272 Young, P. R., McLaughlin, M. M., Kumar, S., Kassis, S., Doyle, M. L., McNulty, D., Gallagher, T. F., Fisher, S., McDonnell, P. C., Carr, S. A., Huddleston, M. J., Seibel, G., Porter, T. G., Livi, G. P., Adams, J. L., and Lee, J. C. (1997) Pyridinyl imidazole inhibitors of p38 mitogen-activated protein kinase bind in the ATP site. The Journal of biological chemistry 272, 12116-12121 Nordin, H., Jungnelius, M., Karlsson, R., and Karlsson, O. P. (2005) Kinetic studies of small molecule interactions with protein kinases using biosensor technology. Analytical biochemistry 340, 359-368 Seidel, S. A., Wienken, C. J., Geissler, S., Jerabek-Willemsen, M., Duhr, S., Reiter, A., Trauner, D., Braun, D., and Baaske, P. (2012) Label-free microscale thermophoresis discriminates sites and affinity of protein-ligand binding. Angewandte Chemie 51, 10656-10659 Frantz, B., Klatt, T., Pang, M., Parsons, J., Rolando, A., Williams, H., Tocci, M. J., O'Keefe, S. J., and O'Neill, E. A. (1998) The activation state of p38 mitogen-activated protein kinase determines the efficiency of ATP competition for pyridinylimidazole inhibitor binding. Biochemistry 37, 13846-13853 9 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. Barone, F. C., Irving, E. A., Ray, A. M., Lee, J. C., Kassis, S., Kumar, S., Badger, A. M., White, R. F., McVey, M. J., Legos, J. J., Erhardt, J. A., Nelson, A. H., Ohlstein, E. H., Hunter, A. J., Ward, K., Smith, B. R., Adams, J. L., and Parsons, A. A. (2001) SB 239063, a second-generation p38 mitogen-activated protein kinase inhibitor, reduces brain injury and neurological deficits in cerebral focal ischemia. The Journal of pharmacology and experimental therapeutics 296, 312-321 Lu, Y., Nikolovska-Coleska, Z., Fang, X., Gao, W., Shangary, S., Qiu, S., Qin, D., and Wang, S. (2006) Discovery of a nanomolar inhibitor of the human murine double minute 2 (MDM2)-p53 interaction through an integrated, virtual database screening strategy. Journal of medicinal chemistry 49, 37593762 Schon, O., Friedler, A., Bycroft, M., Freund, S. M., and Fersht, A. R. (2002) Molecular mechanism of the interaction between MDM2 and p53. Journal of molecular biology 323, 491-501 Shang, X., Marchioni, F., Sipes, N., Evelyn, C. R., Jerabek-Willemsen, M., Duhr, S., Seibel, W., Wortman, M., and Zheng, Y. (2012) Rational design of small molecule inhibitors targeting RhoA subfamily Rho GTPases. Chemistry & biology 19, 699-710 Bosco, E. E., Kumar, S., Marchioni, F., Biesiada, J., Kordos, M., Szczur, K., Meller, J., Seibel, W., Mizrahi, A., Pick, E., Filippi, M. D., and Zheng, Y. (2012) Rational design of small molecule inhibitors targeting the Rac GTPase-p67(phox) signaling axis in inflammation. Chemistry & biology 19, 228-242 Papalia, G. A., Leavitt, S., Bynum, M. A., Katsamba, P. S., Wilton, R., Qiu, H., Steukers, M., Wang, S., Bindu, L., Phogat, S., Giannetti, A. M., Ryan, T. E., Pudlak, V. A., Matusiewicz, K., Michelson, K. M., Nowakowski, A., Pham-Baginski, A., Brooks, J., Tieman, B. C., Bruce, B. D., Vaughn, M., Baksh, M., Cho, Y. H., Wit, M. D., Smets, A., Vandersmissen, J., Michiels, L., and Myszka, D. G. (2006) Comparative analysis of 10 small molecules binding to carbonic anhydrase II by different investigators using Biacore technology. Analytical biochemistry 359, 94-105 Parent, A. P., M.; Rak, A. (2011) Interactions of small fragment–like molecules with a model protein - Carbonic anhydraze II. in Application Note Findlay, W. A., Martin, S. R., Beckingham, K., and Bayley, P. M. (1995) Recovery of native structure by calcium binding site mutants of calmodulin upon binding of sk-MLCK target peptides. Biochemistry 34, 2087-2094 Tsuruta, H., and Sano, T. (1990) A fluorescence temperature-jump study on Ca2(+)-induced conformational changes in calmodulin. Biophysical chemistry 35, 75-84 Bock, L. C., Griffin, L. C., Latham, J. A., Vermaas, E. H., and Toole, J. J. (1992) Selection of single-stranded DNA molecules that bind and inhibit human thrombin. Nature 355, 564-566 Baaske, P., Wienken, C. J., Reineck, P., Duhr, S., and Braun, D. (2010) Optical thermophoresis for quantifying the buffer dependence of aptamer binding. Angewandte Chemie 49, 2238-2241 Lippok, S., Seidel, S. A., Duhr, S., Uhland, K., Holthoff, H. P., Jenne, D., and Braun, D. (2012) Direct detection of antibody concentration and affinity in human serum using microscale thermophoresis. Analytical chemistry 84, 3523-3530 Tang, Q., Su, X., and Loh, K. P. (2007) Surface plasmon resonance spectroscopy study of interfacial binding of thrombin to antithrombin DNA aptamers. Journal of colloid and interface science 315, 99-106 Tasset, D. M., Kubik, M. F., and Steiner, W. (1997) Oligonucleotide inhibitors of human thrombin that bind distinct epitopes. Journal of molecular biology 272, 688-698 10 29. 30. 31. 32. 33. 34. 35. 36. 37. 38. 39. 40. 41. 42. Li, Y., Guo, L., Zhang, F., Zhang, Z., Tang, J., and Xie, J. (2008) High-sensitive determination of human alpha-thrombin by its 29-mer aptamer in affinity probe capillary electrophoresis. Electrophoresis 29, 2570-2577 Aumiller, V., Graebsch, A., Kremmer, E., Niessing, D., and Forstemann, K. (2012) Drosophila Pur-alpha binds to trinucleotide-repeat containing cellular RNAs and translocates to the early oocyte. RNA biology 9, 633-643 Brvar, M., Perdih, A., Renko, M., Anderluh, G., Turk, D., and Solmajer, T. (2012) Structure-based discovery of substituted 4,5'-bithiazoles as novel DNA gyrase inhibitors. Journal of medicinal chemistry 55, 6413-6426 Timofeeva, O. A., Chasovskikh, S., Lonskaya, I., Tarasova, N. I., Khavrutskii, L., Tarasov, S. G., Zhang, X., Korostyshevskiy, V. R., Cheema, A., Zhang, L., Dakshanamurthy, S., Brown, M. L., and Dritschilo, A. (2012) Mechanisms of unphosphorylated STAT3 transcription factor binding to DNA. The Journal of biological chemistry 287, 14192-14200 Jhaveri, S. D., Kirby, R., Conrad, R., Maglott, E. J., Bowser, M., Kennedy, R. T., Glick, G., and Ellington, A. D. (2000) Designed Signaling Aptamers that Transduce Molecular Recognition to Changes in Fluorescence Intensity. Journal of the American Chemical Society 122, 2469-2473 Li, N., and Ho, C.-M. (2008) Aptamer-Based Optical Probes with Separated Molecular Recognition and Signal Transduction Modules. Journal of the American Chemical Society 130, 2380-2381 Broghammer, A., Krusell, L., Blaise, M., Sauer, J., Sullivan, J. T., Maolanon, N., Vinther, M., Lorentzen, A., Madsen, E. B., Jensen, K. J., Roepstorff, P., Thirup, S., Ronson, C. W., Thygesen, M. B., and Stougaard, J. (2012) Legume receptors perceive the rhizobial lipochitin oligosaccharide signal molecules by direct binding. Proceedings of the National Academy of Sciences of the United States of America 109, 13859-13864 Bayer, H., Essig, K., Stanzel, S., Frank, M., Gildersleeve, J. C., Berger, M. R., and Voss, C. (2012) Evaluation of riproximin binding properties reveals a novel mechanism for cellular targeting. The Journal of biological chemistry 287, 35873-35886 Cooper, A. (1974) Thermochemistry of binding of alpha- and beta-N-acetylglucosamine to hen egg-white lysozyme. Effects of specific oxidation of tryptophan-62. Biochemistry 13, 2853-2856 Moonens, K., Bouckaert, J., Coddens, A., Tran, T., Panjikar, S., De Kerpel, M., Cox, E., Remaut, H., and De Greve, H. (2012) Structural insight in histoblood group binding by the F18 fimbrial adhesin FedF. Molecular microbiology 86, 82-95 Armstrong, N., Mayer, M., and Gouaux, E. (2003) Tuning activation of the AMPA-sensitive GluR2 ion channel by genetic adjustment of agonist-induced conformational changes. Proceedings of the National Academy of Sciences of the United States of America 100, 5736-5741 Radhakrishnan, A., Stein, A., Jahn, R., and Fasshauer, D. (2009) The Ca2+ affinity of synaptotagmin 1 is markedly increased by a specific interaction of its C2B domain with phosphatidylinositol 4,5-bisphosphate. The Journal of biological chemistry 284, 25749-25760 van den Bogaart, G., Meyenberg, K., Diederichsen, U., and Jahn, R. (2012) Phosphatidylinositol 4,5-bisphosphate increases Ca2+ affinity of synaptotagmin-1 by 40-fold. The Journal of biological chemistry 287, 16447-16453 Meyenberg, K., and Van den Bogaart, G. (2011) Binding of Calcium Ions to Synaptotagmin measured with fluorescence label and label-free. Application Note NT006 11 43. 44. Labbe-Jullie, C., Botto, J. M., Mas, M. V., Chabry, J., Mazella, J., Vincent, J. P., Gully, D., Maffrand, J. P., and Kitabgi, P. (1995) [3H]SR 48692, the first nonpeptide neurotensin antagonist radioligand: characterization of binding properties and evidence for distinct agonist and antagonist binding domains on the rat neurotensin receptor. Molecular pharmacology 47, 1050-1056 van den Bogaart, G., Thutupalli, S., Risselada, J. H., Meyenberg, K., Holt, M., Riedel, D., Diederichsen, U., Herminghaus, S., Grubmuller, H., and Jahn, R. (2011) Synaptotagmin-1 may be a distance regulator acting upstream of SNARE nucleation. Nature structural & molecular biology 18, 805-812 V12_2013-11-20 12
© Copyright 2026 Paperzz