1 Dear MST User, In the following you find a list of

Dear MST User,
In the following you find a list of interactions/molecule classes that have been analyzed with MST as well as with other methods. Thus, this compilation does
not reflect the whole spectrum of systems that have been measured with MST so far. The list gives detailed information on instrument settings and assay
conditions to also support your assay development.
Antibody - Antigen
Target Name
Ligand
MST Kd
Orthogonal Kd
Litera- Buffer
ture
MST Conditions
mAB08
mAB08
Cocaine, no serum
Cocaine, 20 %
serum
Benzoylegonine
Cocaethylene
BSA-SNC
7.8 nM
105 nM
2.5 ± 6.8 nM (ITC)
113 ± 820 nM (ITC)
(1)
PBS + 0.05 % Tween-20
NT.115
standard treated capillaries
NT-647
23.7 nM
47 nM
6.6 nM
18.6 ± 48.7 nM (ITC)
34.4 ± 129 nM (ITC)
-
MB007-antibody
10 ± 0.6 nM
14.9 ± 0.8 nM
(IC50 in Cell Assay)
(2)
50 mM sodium phosphate pH 7.4,
150 mM NaCl, 0.05 % Tween-20
NT.115
standard treated capillaries
30 % LED, 25 % MST
mAB08
mAB08
mAB08
GM-CSF
Cytokine
1
Protein - protein
Target Name
Ligand
MST Kd
Orthogonal Kd
Litera- Buffer
ture
MST Conditions
Β-Lactamase
TEM1
WT BLIP
3.5 ± 0.6 nM
(3,4)
W112A BLIP
W150A BLIP
474 ± 76 nM
1750 ± 220 nM
3.2 ± 0.6 nM
(SPR)
360 ± 60 nM
3800 ± 600 nM
NT.115
standard treated capillaries
50 % LED, 80 % MST
Grb2
Grb2
0.66 ± 0.20 µM
µM range (DLS)
(5)
NEMO UBAN-ZF
NEMO UBAN-ZF
NEMO UBAN-ZF
linear diUbi
K63-linked diUbi
linear tetraUbi
3.24 µM
No binding
0.34 µM
1.4 µM (ITC)
131 µM (ITC)
Western Blot –
not quantifiable
(6,7)
(6,7)
(7)
50 mM Tris-HCl, pH 7.6, 150 mM
NaCl, 10 mM MgCl2, 0.05 % Tween-20
NT.115
10 % LED, 40 % MST
NT-647
25 mM Tris-HCl pH 8.0, 100 mM NaCl,
0.1 % BSA, 0.1 % Tween-20, 0.5 mM
DTT
NT.115
NT-647
Protein - Ion
Target Name
Ligand
MST Kd
Orthogonal Kd
Literature
Buffer
MST Conditions
Calmodulin
M13
4.48 ± 1.7 nM
1.6 nM
(22)
PBS +0.025 % Tween-20
Calcium
2.8 ± 0.2 µM
µM-range
(23)
1 × PBS
NT.115
standard treated capillaries
80 % LED, 20 % MST
NT.115
2
Protein -Small molecule
Target Name
Ligand
MST Kd
Orthogonal Kd
Literature
Buffer
MST Conditions
Hsp90
17-DMAG
0.503 ±
0.099 μM
0.35 ± 0.04 μM
(ITC)
(8,9)
50 mM Tris-HCl, pH 7.4, 150 mM
NaCl, 10 mM MgCl2, 0.05 % (v/v)
Tween-20, 5 % (v/v) ethanol
NT.115
hydrophilic treated capillaries
40 % LED, 40 % MST
NT-647
NT.LabelFree
standard treated capillaries
20 % MST
NT.115
standard treated capillaries
80 % LED, 40% MST
NT-647
NT.115
hydrophilic treated capillaries
80 % LED, 40 % MST
NT.115
standard treated capillaries
0.593 ±
0.387 μM
P38a
Kinase
P53
Kinase
BIRB796
2.3 ± 0.17 nM
0.1 nM
(10)
(stopped flow –
fluorescence)
2.5 % DMSO in MST-Buffer
SB203580
24 ± 4.37 nM
15 nM (ITC)
(11)
MST Buffer
PD169316
18 ± 15 nM
130 nM (IC50)
(SPR)
(12,13)
SB202190
SB239063
48 ± 21 nM
8 ± 12 nM
37 nM
44 nM (IC50)
(13,14)
(13,15)
50 mM Tris, 150 mM NaCl,
10 mM MgCl2, 0.05 % Tween-20,
pH 7.8
200 mM TAPS/Tris pH 8.0, 1 mM
DTT, 0.05 % Tween-20
Nutlin3
36.3 nM
FP-Based
Binding Assay
36 nM
(16)
79 % LED
20 % MST
3
Target Name
Ligand
MST Kd
Orthogonal Kd
Literature
MDM2
Kinase
P53
260 nM
50 - 300 nM
(17)
RhoA
GTPase
G04 (compound)
400 nM
Multiple Cell
based assays
(18)
Rac
GTPase
P67
31.6 nM
Activity
(19)
P67
Phox-I1
97.5 nM
Activity
(19)
Buffer
MST Conditions
50 mM HEPES, 50 mM NaCl, 0.01 %
Tween-20 and 2 mM MgCl2
NT.115
NT-647
NT.115
NT-647
4
Protein - Sugar
Target Name
Ligand
MST Kd
Orthogonal Kd
Literature
Buffer
MST Conditions
Nod factor
NFR5
4.0 ± 1.5 nM
(35)
0.6 ± 0.25 nM
50 mM Tris, pH 8, 0.2 M NaCl,
2 mM β-ME, 0.36 % (w/v) FosCholine
NT.115
100 % LED, 50 % MST
NFR1
10.1 ± 2.5 nM
(SPR)
4.9 ± 1.3 nM (SPR)
Riproximin
ASF
2 binding sites:
11 nM and 7 µM
2 binding sites:
48 nM and 1.1 µM
(ITC)
(36)
PBS with 50 mM galactose and
0.05 % Tween-20
NT.115
standard treated capillaries
NT-647
Lysozyme
Glc-NAc
18.8 ± 1.9 mM
25 mM (ITC)
(37)
MST-Buffer with GlcNAc
(dissolved in NaActetate Buffer)
NT.115
40 % MST
NT-488
FedF
Blood group A type
1 hexa- saccharide
NFR1
2.9 µM ± 1.6 µM
SPR (35.2 µM)
BSI (1.76 µM)
0.6 ± 0.25 nM
(38)
20 mM HEPES pH 7.4, 150 mM
NaCl, 0.005 % Tween-20
NT.115
NT-647
0.6 ± 0.25 nM
5
Protein - nucleic acids
Target Name
Ligand
MST Kd
Orthogonal Kd
Literature
Buffer
MST Conditions
Thrombinaptamer
Thrombin
30 ± 19 nM
25 ± 25 nM
(24,25)
20 mM Tris-HCl pH 7.4, 150 mM
NaCl, 5 mM KCl, 1 mM CaCl2, 1 mM
MgCl2, 0.01 % Tween-20, 4 % BSA
NT.115
NT-647
Thrombin
Fibrinogen aptamer
32 ± 15 nM
25 ± 25 nM
(24,26)
Heparin aptamer
133 ± 42 nM
0.5 – 237 nM
(SPR, SELEX,
ACE)
(26-29)
20 mM Tris-HCl pH 7.4,
NT.115
150 mM NaCl, 5 mM KCl, 1 mM
standard treated capillaries
CaCl2, 1 mM MgCl2, 0.1 % Tween-20
Pur-α
Transcription
Factor
CAG-Triplet
opa-Repeat
834 ± 179 nM
1406 ± 128 nM
716 ± 202 nM
1211 ± 128 nM
(Anisotropy)
(30)
DNA gyrase
4,5’-bithiazole
compounds
Cmp1: 51.5 µM
47.4 ± 8.8 µM
(SPR)
6.6 ± 2 µM
(SPR)
(31)
n/a
n/a
n/a
n/a
(32)
Cmp2: 7.9 µM
STAT3-EGFP
STAT3-EGFP
STAT3-EGFP
STAT3-EGFP
GAS
S+100
S+100 mutant1
S+100 mutant2
37.9 ± 1.0 µM
23.3 ± 0.6 µM
740 ± 21 µM
No binding
20mM Tris pH 7.4, 100 mM KAc,
3.5 mM MgCl2, 0.1 % BSA, 0.01 %
Tween-20
NT.115
NT.115
standard treated capillaries
90 % LED, 80 % MST
NT-647
25 mM HEPES, pH 7.2; 50 mM
NaCl; 2.5 mM MgCl2; 0.025 % NP40
NT.115
standard treated capillaries
50 % LED
6
Nucleic acids
Target Name
Ligand
MST Kd
Orthogonal Kd
Literature
Buffer
MST Conditions
ATP/AMPaptamer
ATP/AMP
60 ± 4 µM (ATP)
Coincidence
with literature
Fluorescence
spectroscopy
(33,34)
20 mM Tris-HCl pH 7.6, 300 mM
NaCl, 5 mM MgCl2, 0.01%
Tween-20
NT.115
NT-647
87 ± 5 µM
(AMP)
(25)
Membrane Proteins
Target Name
Ligand
MST Kd
Orthogonal Kd
Literature
Buffer
MST Conditions
Receptor GluA2LBD
Glutamate
835 ± 43 nM
821 nM
(fluorescence
spectroscopy)
(13,39)
10 mM HEPES pH 8.0, 150 NaCl,
1 mM EDTA
NT.LabelFree
standard treated capillaries
4-Glu-Azu
22 ± 8 µM
19 ± 5 µM
Calcium
221 ± 23 µM
Synaptotagmin-1
206 ± 40 µM
NT.115
NT.LabelFree
5 µM - 1 mM (ITC)
(40-42)
20 mM HEPES, 150 mM KCl,
2.5 mg/ml BSA, pH 7.4
20 mM HEPES, 150 mM KCl, pH
7.4
NT.115
hydrophobic treated
capillaries
25 % LED, 40 % MST
NT.LabelFree
hydrophobic treated
capillaries
80 % LED, 40 % MST
7
Target Name
Ligand
MST Kd
Orthogonal Kd
Literature
Buffer
MST Conditions
NTS1 GPCR
Neurotensin
3 nM
1 nM
(43)
NT.LabelFree
standard treated capillaries
Compound
SR 48692
30 nM
52 nM
50 mM Tris pH 7.4, 50 mM NaCl,
0.1 % DDM, 0.01 % CHS, 85 mM
imidazole
Liposomes
Target Name
Ligand
MST Kd
Orthogonal Kd
Literature
Synaptotagmin-1
(in Liposome)
PtdIns(4,5) P2
Liposomes
Docking/
Tethering
Docking/
Tethering (DLS +
EM)
(44)
Synaptotagmin-1
PIP2-Liposome
36.2 ± 7.4 µM
(- Calcium)
10.6 ± 2.3 µM
(+ Calcium)
Buffer
MST Conditions
NT.115
20 mM HEPES, 150 mM KCl,
2.5 mg/ml BSA, pH 7.4
NT.115
hydrophobic treated capillaries
25 % LED, 40 % MST
20 mM HEPES, 150 mM KCl,
pH 7.4
NT.LabelFree
hydrophobic treated capillaries
80 % LED, 40 % MST
8
References:
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
Ramakrishnan, M., Alves De Melo, F., Kinsey, B. M., Ladbury, J. E., Kosten, T. R., and Orson, F. M. (2012) Probing cocaine-antibody interactions in buffer
and human serum. PloS one 7, e40518
Blech, M., Seeliger, D., Kistler, B., Bauer, M. M., Hafner, M., Horer, S., Zeeb, M., Nar, H., and Park, J. E. (2012) Molecular structure of human GM-CSF in
complex with a disease-associated anti-human GM-CSF autoantibody and its potential biological implications. The Biochemical journal 447, 205-215
Albeck, S., and Schreiber, G. (1999) Biophysical characterization of the interaction of the beta-lactamase TEM-1 with its protein inhibitor BLIP.
Biochemistry 38, 11-21
Schreiber, G., and Jerabek-Willemsen, M. (2012) Using MST to analyse the binding of the β-Lactamase TEM1 to BLIP. Application Note NT012
Lin, C. C., Melo, F. A., Ghosh, R., Suen, K. M., Stagg, L. J., Kirkpatrick, J., Arold, S. T., Ahmed, Z., and Ladbury, J. E. (2012) Inhibition of basal FGF receptor
signaling by dimeric Grb2. Cell 149, 1514-1524
Lo, Y. C., Lin, S. C., Rospigliosi, C. C., Conze, D. B., Wu, C. J., Ashwell, J. D., Eliezer, D., and Wu, H. (2009) Structural basis for recognition of diubiquitins by
NEMO. Molecular cell 33, 602-615
Hadian, K., Griesbach, R. A., Dornauer, S., Wanger, T. M., Nagel, D., Metlitzky, M., Beisker, W., Schmidt-Supprian, M., and Krappmann, D. (2011) NFkappaB essential modulator (NEMO) interaction with linear and lys-63 ubiquitin chains contributes to NF-kappaB activation. The Journal of biological
chemistry 286, 26107-26117
Onuoha, S. C., Mukund, S. R., Coulstock, E. T., Sengerova, B., Shaw, J., McLaughlin, S. H., and Jackson, S. E. (2007) Mechanistic studies on Hsp90
inhibition by ansamycin derivatives. Journal of molecular biology 372, 287-297
McLaughlin, S. H. (2011) Binding of the geldanamycin derivative 17-DMAG to Hsp90 measured with fluorescence label and label-free. in Application
Note
Pargellis, C., Tong, L., Churchill, L., Cirillo, P. F., Gilmore, T., Graham, A. G., Grob, P. M., Hickey, E. R., Moss, N., Pav, S., and Regan, J. (2002) Inhibition of
p38 MAP kinase by utilizing a novel allosteric binding site. Nature structural biology 9, 268-272
Young, P. R., McLaughlin, M. M., Kumar, S., Kassis, S., Doyle, M. L., McNulty, D., Gallagher, T. F., Fisher, S., McDonnell, P. C., Carr, S. A., Huddleston, M.
J., Seibel, G., Porter, T. G., Livi, G. P., Adams, J. L., and Lee, J. C. (1997) Pyridinyl imidazole inhibitors of p38 mitogen-activated protein kinase bind in the
ATP site. The Journal of biological chemistry 272, 12116-12121
Nordin, H., Jungnelius, M., Karlsson, R., and Karlsson, O. P. (2005) Kinetic studies of small molecule interactions with protein kinases using biosensor
technology. Analytical biochemistry 340, 359-368
Seidel, S. A., Wienken, C. J., Geissler, S., Jerabek-Willemsen, M., Duhr, S., Reiter, A., Trauner, D., Braun, D., and Baaske, P. (2012) Label-free microscale
thermophoresis discriminates sites and affinity of protein-ligand binding. Angewandte Chemie 51, 10656-10659
Frantz, B., Klatt, T., Pang, M., Parsons, J., Rolando, A., Williams, H., Tocci, M. J., O'Keefe, S. J., and O'Neill, E. A. (1998) The activation state of p38
mitogen-activated protein kinase determines the efficiency of ATP competition for pyridinylimidazole inhibitor binding. Biochemistry 37, 13846-13853
9
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
Barone, F. C., Irving, E. A., Ray, A. M., Lee, J. C., Kassis, S., Kumar, S., Badger, A. M., White, R. F., McVey, M. J., Legos, J. J., Erhardt, J. A., Nelson, A. H.,
Ohlstein, E. H., Hunter, A. J., Ward, K., Smith, B. R., Adams, J. L., and Parsons, A. A. (2001) SB 239063, a second-generation p38 mitogen-activated
protein kinase inhibitor, reduces brain injury and neurological deficits in cerebral focal ischemia. The Journal of pharmacology and experimental
therapeutics 296, 312-321
Lu, Y., Nikolovska-Coleska, Z., Fang, X., Gao, W., Shangary, S., Qiu, S., Qin, D., and Wang, S. (2006) Discovery of a nanomolar inhibitor of the human
murine double minute 2 (MDM2)-p53 interaction through an integrated, virtual database screening strategy. Journal of medicinal chemistry 49, 37593762
Schon, O., Friedler, A., Bycroft, M., Freund, S. M., and Fersht, A. R. (2002) Molecular mechanism of the interaction between MDM2 and p53. Journal of
molecular biology 323, 491-501
Shang, X., Marchioni, F., Sipes, N., Evelyn, C. R., Jerabek-Willemsen, M., Duhr, S., Seibel, W., Wortman, M., and Zheng, Y. (2012) Rational design of small
molecule inhibitors targeting RhoA subfamily Rho GTPases. Chemistry & biology 19, 699-710
Bosco, E. E., Kumar, S., Marchioni, F., Biesiada, J., Kordos, M., Szczur, K., Meller, J., Seibel, W., Mizrahi, A., Pick, E., Filippi, M. D., and Zheng, Y. (2012)
Rational design of small molecule inhibitors targeting the Rac GTPase-p67(phox) signaling axis in inflammation. Chemistry & biology 19, 228-242
Papalia, G. A., Leavitt, S., Bynum, M. A., Katsamba, P. S., Wilton, R., Qiu, H., Steukers, M., Wang, S., Bindu, L., Phogat, S., Giannetti, A. M., Ryan, T. E.,
Pudlak, V. A., Matusiewicz, K., Michelson, K. M., Nowakowski, A., Pham-Baginski, A., Brooks, J., Tieman, B. C., Bruce, B. D., Vaughn, M., Baksh, M., Cho,
Y. H., Wit, M. D., Smets, A., Vandersmissen, J., Michiels, L., and Myszka, D. G. (2006) Comparative analysis of 10 small molecules binding to carbonic
anhydrase II by different investigators using Biacore technology. Analytical biochemistry 359, 94-105
Parent, A. P., M.; Rak, A. (2011) Interactions of small fragment–like molecules with a model protein - Carbonic anhydraze II. in Application Note
Findlay, W. A., Martin, S. R., Beckingham, K., and Bayley, P. M. (1995) Recovery of native structure by calcium binding site mutants of calmodulin upon
binding of sk-MLCK target peptides. Biochemistry 34, 2087-2094
Tsuruta, H., and Sano, T. (1990) A fluorescence temperature-jump study on Ca2(+)-induced conformational changes in calmodulin. Biophysical
chemistry 35, 75-84
Bock, L. C., Griffin, L. C., Latham, J. A., Vermaas, E. H., and Toole, J. J. (1992) Selection of single-stranded DNA molecules that bind and inhibit human
thrombin. Nature 355, 564-566
Baaske, P., Wienken, C. J., Reineck, P., Duhr, S., and Braun, D. (2010) Optical thermophoresis for quantifying the buffer dependence of aptamer binding.
Angewandte Chemie 49, 2238-2241
Lippok, S., Seidel, S. A., Duhr, S., Uhland, K., Holthoff, H. P., Jenne, D., and Braun, D. (2012) Direct detection of antibody concentration and affinity in
human serum using microscale thermophoresis. Analytical chemistry 84, 3523-3530
Tang, Q., Su, X., and Loh, K. P. (2007) Surface plasmon resonance spectroscopy study of interfacial binding of thrombin to antithrombin DNA aptamers.
Journal of colloid and interface science 315, 99-106
Tasset, D. M., Kubik, M. F., and Steiner, W. (1997) Oligonucleotide inhibitors of human thrombin that bind distinct epitopes. Journal of molecular
biology 272, 688-698
10
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
Li, Y., Guo, L., Zhang, F., Zhang, Z., Tang, J., and Xie, J. (2008) High-sensitive determination of human alpha-thrombin by its 29-mer aptamer in affinity
probe capillary electrophoresis. Electrophoresis 29, 2570-2577
Aumiller, V., Graebsch, A., Kremmer, E., Niessing, D., and Forstemann, K. (2012) Drosophila Pur-alpha binds to trinucleotide-repeat containing cellular
RNAs and translocates to the early oocyte. RNA biology 9, 633-643
Brvar, M., Perdih, A., Renko, M., Anderluh, G., Turk, D., and Solmajer, T. (2012) Structure-based discovery of substituted 4,5'-bithiazoles as novel DNA
gyrase inhibitors. Journal of medicinal chemistry 55, 6413-6426
Timofeeva, O. A., Chasovskikh, S., Lonskaya, I., Tarasova, N. I., Khavrutskii, L., Tarasov, S. G., Zhang, X., Korostyshevskiy, V. R., Cheema, A., Zhang, L.,
Dakshanamurthy, S., Brown, M. L., and Dritschilo, A. (2012) Mechanisms of unphosphorylated STAT3 transcription factor binding to DNA. The Journal of
biological chemistry 287, 14192-14200
Jhaveri, S. D., Kirby, R., Conrad, R., Maglott, E. J., Bowser, M., Kennedy, R. T., Glick, G., and Ellington, A. D. (2000) Designed Signaling Aptamers that
Transduce Molecular Recognition to Changes in Fluorescence Intensity. Journal of the American Chemical Society 122, 2469-2473
Li, N., and Ho, C.-M. (2008) Aptamer-Based Optical Probes with Separated Molecular Recognition and Signal Transduction Modules. Journal of the
American Chemical Society 130, 2380-2381
Broghammer, A., Krusell, L., Blaise, M., Sauer, J., Sullivan, J. T., Maolanon, N., Vinther, M., Lorentzen, A., Madsen, E. B., Jensen, K. J., Roepstorff, P.,
Thirup, S., Ronson, C. W., Thygesen, M. B., and Stougaard, J. (2012) Legume receptors perceive the rhizobial lipochitin oligosaccharide signal molecules
by direct binding. Proceedings of the National Academy of Sciences of the United States of America 109, 13859-13864
Bayer, H., Essig, K., Stanzel, S., Frank, M., Gildersleeve, J. C., Berger, M. R., and Voss, C. (2012) Evaluation of riproximin binding properties reveals a
novel mechanism for cellular targeting. The Journal of biological chemistry 287, 35873-35886
Cooper, A. (1974) Thermochemistry of binding of alpha- and beta-N-acetylglucosamine to hen egg-white lysozyme. Effects of specific oxidation of
tryptophan-62. Biochemistry 13, 2853-2856
Moonens, K., Bouckaert, J., Coddens, A., Tran, T., Panjikar, S., De Kerpel, M., Cox, E., Remaut, H., and De Greve, H. (2012) Structural insight in histoblood group binding by the F18 fimbrial adhesin FedF. Molecular microbiology 86, 82-95
Armstrong, N., Mayer, M., and Gouaux, E. (2003) Tuning activation of the AMPA-sensitive GluR2 ion channel by genetic adjustment of agonist-induced
conformational changes. Proceedings of the National Academy of Sciences of the United States of America 100, 5736-5741
Radhakrishnan, A., Stein, A., Jahn, R., and Fasshauer, D. (2009) The Ca2+ affinity of synaptotagmin 1 is markedly increased by a specific interaction of its
C2B domain with phosphatidylinositol 4,5-bisphosphate. The Journal of biological chemistry 284, 25749-25760
van den Bogaart, G., Meyenberg, K., Diederichsen, U., and Jahn, R. (2012) Phosphatidylinositol 4,5-bisphosphate increases Ca2+ affinity of
synaptotagmin-1 by 40-fold. The Journal of biological chemistry 287, 16447-16453
Meyenberg, K., and Van den Bogaart, G. (2011) Binding of Calcium Ions to Synaptotagmin measured with fluorescence label and label-free. Application
Note NT006
11
43.
44.
Labbe-Jullie, C., Botto, J. M., Mas, M. V., Chabry, J., Mazella, J., Vincent, J. P., Gully, D., Maffrand, J. P., and Kitabgi, P. (1995) [3H]SR 48692, the first
nonpeptide neurotensin antagonist radioligand: characterization of binding properties and evidence for distinct agonist and antagonist binding
domains on the rat neurotensin receptor. Molecular pharmacology 47, 1050-1056
van den Bogaart, G., Thutupalli, S., Risselada, J. H., Meyenberg, K., Holt, M., Riedel, D., Diederichsen, U., Herminghaus, S., Grubmuller, H., and Jahn, R.
(2011) Synaptotagmin-1 may be a distance regulator acting upstream of SNARE nucleation. Nature structural & molecular biology 18, 805-812
V12_2013-11-20
12