Geometry Introduction to Proofs Worksheet Name _______________________________________ Complete each proof by choosing a reason for each statement. 1. Given: Prove: bisects 3≅ 2 3≅ SRT; 1 Statements 1. bisects SRT; 3≅ 1 1. ______ 2. 1≅ 2 2. ______ 3. 3≅ 2 3. ______ 2. Reasons_________________ Choose from these reasons: a) Definition of bisector b) Substitution Property c) Given Given: BD = AD Prove: BD + DC = AC Statements 1. BD = AD 1. ______ 2. AD + DC = AC 2. ______ 3. BD + DC = AC 3. ______ Reasons_________________ Choose from these reasons: a) Substitution Property b) Given c) Segment Addition Postulate For #3 – 7, choose reasons from the following list for each proof. a) Substitution Property e) Definition of bisector b) Angle Addition Property f) Given c) Definition of midpoint g) Segment Addition Postulate 3. Given: Prove: is the bisector of 2≅ 3 GAI; Statements 1. is the bisector of 1≅ 3 Reasons GAI; 1≅ 3 1. __________________________________ 2. 1≅ 2 2. __________________________________ 3. 2≅ 3 3. __________________________________ . 4. Given: AB = 9; BC = 7 Prove: 16 = AC Statements Reasons_________________ 1. AB = 9; BC = 7 1. __________________________________ 2. AB + BC = AC 2. __________________________________ 3. 9 + 7 = AC 3. __________________________________ 4. 16 = AC 4. __________________________________ 5. Given: Prove: ≅ M is the midpoint of ≅ Statements 1. 2. ≅ Reasons_________________ ; M is the midpoint of 1. __________________________________ ≅ 2. __________________________________ 3. ≅ 6. Given: H is the midpoint of Prove: ≅ 3. __________________________________ Statements 1. H is the midpoint of ; ≅ Reasons_________________ ; ≅ 1. __________________________________ 2. ≅ 2. __________________________________ 3. ≅ 3. __________________________________ 7. Given: Prove: bisects ≅ ; ≅ Statements ; Reasons_________________ ≅ 1. bisects 1. __________________________________ 2. ≅ 2. __________________________________ 3. ≅ 3. __________________________________ For #8-21, indicate with YES or NO whether or not the information can be assumed from the diagram. 8. N, P, and Q are collinear. 9. M is the midpoint of 10. 11. . ≅ MLP and PLQ are adjacent angles. 12. LP is greater than MN. 13. RMN and 14. NLQ ≅ NMP form a linear pair. NMP 15. M is between L and N. 16. RML and 17. NQL is a right angle. 18. bisects 19. intersects NMP are vertical angles. MLQ. 20. LM is less than LN. 21. m MPQ is greater than m MPL. Use for #8-21.
© Copyright 2026 Paperzz