Letting dv = dx Using Integration by parts twice Recurring Integrals Letting dv = dx Example R2 −2 ln(x + 3)dx. Z Z u dv = uv − Annette Pilkington v du. Integration by Parts Letting dv = dx Using Integration by parts twice Recurring Integrals Letting dv = dx Example R2 −2 ln(x + 3)dx. Z Z u dv = uv − I v du. Let u = ln(x + 3), dv = dx du = 1 dx x +3 Annette Pilkington and v = x. Integration by Parts Letting dv = dx Using Integration by parts twice Recurring Integrals Letting dv = dx Example R2 −2 ln(x + 3)dx. Z Z u dv = uv − I v du. Let u = ln(x + 3), dv = dx du = I Z 2 −2 1 dx x +3 and v = x. Z ˛2 ˛ ln(x + 3)dx = x ln(x + 3)˛ − −2 Annette Pilkington Integration by Parts 2 −2 x dx x +3 Letting dv = dx Using Integration by parts twice Recurring Integrals Letting dv = dx Example R2 −2 ln(x + 3)dx. Z Z u dv = uv − I Let u = ln(x + 3), dv = dx du = I Z 2 −2 I v du. 1 dx x +3 and v = x. Z ˛2 ˛ ln(x + 3)dx = x ln(x + 3)˛ − −2 2 −2 x dx x +3 R2 x To calculate −2 x+3 dx, we use substitution with w = x + 3. Then x = w − 3 and w (−2) = 1, w (2) = 5. We get Z 2 Z 5 x w −3 dx = dw w −2 x + 3 1 Z 5 Z 5 ˛5 3 ˛ = 1dw − dw = 4 − 3 ln |w |˛ = 4 − 3(ln(5)). 1 1 1 w Annette Pilkington Integration by Parts Letting dv = dx Using Integration by parts twice Recurring Integrals Letting dv = dx Example R2 −2 ln(x + 3)dx. Z Z u dv = uv − I Z 2 −2 v du. Z ˛2 ˛ ln(x + 3)dx = x ln(x + 3)˛ − −2 Annette Pilkington Integration by Parts 2 −2 x dx x +3 Letting dv = dx Using Integration by parts twice Recurring Integrals Letting dv = dx Example R2 −2 ln(x + 3)dx. Z Z u dv = uv − I Z 2 −2 I v du. Z ˛2 ˛ ln(x + 3)dx = x ln(x + 3)˛ − −2 2 −2 x dx x +3 ˛2 ˛ = x ln(x + 3)˛ − (4 − 3 ln(5).) −2 Annette Pilkington Integration by Parts Letting dv = dx Using Integration by parts twice Recurring Integrals Letting dv = dx Example R2 −2 ln(x + 3)dx. Z Z u dv = uv − I Z 2 −2 I v du. Z ˛2 ˛ ln(x + 3)dx = x ln(x + 3)˛ − −2 2 −2 x dx x +3 ˛2 ˛ = x ln(x + 3)˛ − (4 − 3 ln(5).) −2 I = 2 ln(5) + 2 ln(1) − (4 − 3 ln(5).) = 2 ln(5) − 4 + 3(ln(5)) = 5 ln(5) − 4. Annette Pilkington Integration by Parts Letting dv = dx Using Integration by parts twice Recurring Integrals Using Integration by parts twice. Example R (ln x)2 dx. Z Z u dv = uv − Annette Pilkington v du. Integration by Parts Letting dv = dx Using Integration by parts twice Recurring Integrals Using Integration by parts twice. Example R (ln x)2 dx. Z Z u dv = uv − I v du. Let u = (ln(x))2 , dv = dx du = 2 ln x dx x Annette Pilkington and v = x. Integration by Parts Letting dv = dx Using Integration by parts twice Recurring Integrals Using Integration by parts twice. Example R (ln x)2 dx. Z Z u dv = uv − I Let u = (ln(x))2 , dv = dx du = I v du. Z 2 2 2 ln x dx x Z (ln x) dx = x(ln x) − 2 Annette Pilkington and v = x. x ln x dx = x(ln x)2 − 2 x Integration by Parts Z ln x dx Letting dv = dx Using Integration by parts twice Recurring Integrals Using Integration by parts twice. Example R (ln x)2 dx. Z Z u dv = uv − I Let u = (ln(x))2 , dv = dx du = I Z 2 2 2 ln x dx x Z (ln x) dx = x(ln x) − 2 I v du. and v = x. x ln x dx = x(ln x)2 − 2 x In a previous example, we saw that Z 2 ln(x) dx = 2[x ln x − x] + C Annette Pilkington Integration by Parts Z ln x dx Letting dv = dx Using Integration by parts twice Recurring Integrals Using Integration by parts twice. Example R (ln x)2 dx. Z Z u dv = uv − I Let u = (ln(x))2 , dv = dx du = I v du. Z 2 2 2 ln x dx x Z (ln x) dx = x(ln x) − 2 and v = x. x ln x dx = x(ln x)2 − 2 x Z ln x dx I In a previous example, we saw that Z 2 ln(x) dx = 2[x ln x − x] + C I Therefore Z Z (ln x)2 dx = x(ln x)2 − ln x dx = x(ln x)2 − 2x ln x − 2x + C = x(ln x)2 − 2x ln x + 2x + C Annette Pilkington Integration by Parts Letting dv = dx Using Integration by parts twice Recurring Integrals Example Example R e 2x cos(5x) dx. Z Z u dv = uv − Annette Pilkington v du. Integration by Parts Letting dv = dx Using Integration by parts twice Recurring Integrals Example Example R e 2x cos(5x) dx. Z Z u dv = uv − I v du. Let u = e 2x , dv = cos(5x)dx du = 2e 2x dx Annette Pilkington and v= sin(5x) 5 Integration by Parts Letting dv = dx Using Integration by parts twice Recurring Integrals Example Example R e 2x cos(5x) dx. Z Z u dv = uv − I v du. Let u = e 2x , dv = cos(5x)dx du = 2e 2x dx I and v= sin(5x) 5 Z e 2x cos(5x) dx = e 2x sin(5x) − 5 Z e 2x cos(5x) dx = e 2x sin(5x) 2 − 5 5 Annette Pilkington Z 2e 2x Z Integration by Parts sin(5x) dx 5 e 2x sin(5x) dx Letting dv = dx Using Integration by parts twice Recurring Integrals Example Example R e 2x cos(5x) dx. Z Z u dv = uv − I Let u = e 2x , dv = cos(5x)dx du = 2e 2x dx I I v du. and v= sin(5x) 5 Z e 2x cos(5x) dx = e 2x sin(5x) − 5 Z e 2x cos(5x) dx = e 2x sin(5x) 2 − 5 5 To calculate Z Z 2e 2x Z e 2x sin(5x) dx we use integration by parts again. Annette Pilkington Integration by Parts sin(5x) dx 5 e 2x sin(5x) dx Letting dv = dx Using Integration by parts twice Recurring Integrals Example Example R e 2x cos(5x) dx. I Z e 2x cos(5x) dx = e 2x sin(5x) 2 − 5 5 Annette Pilkington Z Integration by Parts e 2x sin(5x) dx Letting dv = dx Using Integration by parts twice Recurring Integrals Example Example R e 2x cos(5x) dx. I Z e 2x cos(5x) dx = I Z e 2x sin(5x) 2 − 5 5 Z e 2x sin(5x) dx e 2x sin(5x) dx Let u = e 2x and dv = sin(5x)dx. du = 2e 2x and v = − cos(5x) . 5 Z e 2x sin(5x) dx = −e 2x cos(5x) 2 + 5 5 Annette Pilkington Z Integration by Parts e 2x cos(5x) dx Letting dv = dx Using Integration by parts twice Recurring Integrals Example Example R e 2x cos(5x) dx. I Z e 2x cos(5x) dx = I Z e 2x sin(5x) 2 − 5 5 Z e 2x sin(5x) dx e 2x sin(5x) dx Let u = e 2x and dv = sin(5x)dx. du = 2e 2x and v = − cos(5x) . 5 Z e 2x sin(5x) dx = −e 2x cos(5x) 2 + 5 5 Z e 2x cos(5x) dx I Z e 2x cos(5x) dx = e 2x sin(5x) 2 −e 2x cos(5x) 2 − [ + 5 5 5 5 We now have a recurring integral. Annette Pilkington Integration by Parts Z e 2x cos(5x) dx] Letting dv = dx Using Integration by parts twice Recurring Integrals Example Example R e 2x cos(5x) dx. I Z e 2x cos(5x) dx = e 2x sin(5x) 2 (−e 2x cos(5x)) 2 − [ + 5 5 5 5 Annette Pilkington Integration by Parts Z e 2x cos(5x) dx] Letting dv = dx Using Integration by parts twice Recurring Integrals Example Example R e 2x cos(5x) dx. I Z I e 2x cos(5x) dx = Let I = R e 2x sin(5x) 2 (−e 2x cos(5x)) 2 − [ + 5 5 5 5 Z e 2x cos(5x) dx I = e 2x sin(5x) 2 2x 4 + e cos(5x) − I. 5 25 25 Annette Pilkington Integration by Parts e 2x cos(5x) dx] Letting dv = dx Using Integration by parts twice Recurring Integrals Example Example R e 2x cos(5x) dx. I Z I e 2x cos(5x) dx = Let I = R e 2x sin(5x) 2 (−e 2x cos(5x)) 2 − [ + 5 5 5 5 e 2x cos(5x) dx e 2x sin(5x) 2 2x 4 + e cos(5x) − I. 5 25 25 I = I Let I = R Z e 2x cos(5x) dx (1 + e 2x sin(5x) 4 2 2x )I = + e cos(5x) 25 5 25 e 2x sin(5x) 29 2 2x I = + e cos(5x) 25 5 25 Annette Pilkington Integration by Parts e 2x cos(5x) dx] Letting dv = dx Using Integration by parts twice Recurring Integrals Example Example R e 2x cos(5x) dx. I Z I e 2x cos(5x) dx = Let I = R e 2x sin(5x) 2 (−e 2x cos(5x)) 2 − [ + 5 5 5 5 Let I = R e 2x cos(5x) dx] e 2x cos(5x) dx e 2x sin(5x) 2 2x 4 + e cos(5x) − I. 5 25 25 I = I Z e 2x cos(5x) dx (1 + e 2x sin(5x) 4 2 2x )I = + e cos(5x) 25 5 25 e 2x sin(5x) 29 2 2x I = + e cos(5x) 25 5 25 I Z I = e 2x cos(5x) dx = Annette Pilkington i 25 h e 2x sin(5x) 2 2x + e cos(5x) . 29 5 25 Integration by Parts Letting dv = dx Using Integration by parts twice Recurring Integrals Reduction formula for Example R R sin3 x dx. sin3 xdx. Z Z u dv = uv − Annette Pilkington v du. Integration by Parts Letting dv = dx Using Integration by parts twice Recurring Integrals Reduction formula for Example R R sin3 x dx. sin3 xdx. Z Z u dv = uv − I v du. Let u = sin2 x, dv = sin xdx du = 2 sin x cos xdx Annette Pilkington and v = − cos x. Integration by Parts Letting dv = dx Using Integration by parts twice Recurring Integrals Reduction formula for Example R R sin3 x dx. sin3 xdx. Z Z u dv = uv − I Let u = sin2 x, dv = sin xdx du = 2 sin x cos xdx I v du. Z and v = − cos x. Z sin3 xdx = − cos x sin2 x + 2 (cos x)(sin x cos x) dx Z = − cos x sin2 x + 2 cos2 x sin x dx Annette Pilkington Integration by Parts Letting dv = dx Using Integration by parts twice Recurring Integrals Reduction formula for Example R R sin3 x dx. sin3 xdx. Z Z u dv = uv − I Let u = sin2 x, dv = sin xdx du = 2 sin x cos xdx I I v du. Z and v = − cos x. Z sin3 xdx = − cos x sin2 x + 2 (cos x)(sin x cos x) dx Z = − cos x sin2 x + 2 cos2 x sin x dx Z = − cos x sin2 x + 2 (1 − sin2 x) sin x dx Z Z = − cos x sin2 x + 2 sin x dx − 2 sin3 x dx Annette Pilkington Integration by Parts Letting dv = dx Using Integration by parts twice Recurring Integrals Reduction formula for Example R R sin3 x dx. sin3 xdx. Z Z Z sin3 xdx = − cos x sin2 x + 2 sin x dx − 2 sin3 x dx Annette Pilkington Integration by Parts Letting dv = dx Using Integration by parts twice Recurring Integrals Reduction formula for Example I R R sin3 x dx. sin3 xdx. Z Z Z sin3 xdx = − cos x sin2 x + 2 sin x dx − 2 sin3 x dx Letting I = R sin3 x dx, we have I = − cos x sin2 x + 2 Annette Pilkington Z sin x dx − 2I Integration by Parts Letting dv = dx Using Integration by parts twice Recurring Integrals Reduction formula for Example I R R sin3 x dx. sin3 xdx. Z Z Z sin3 xdx = − cos x sin2 x + 2 sin x dx − 2 sin3 x dx Letting I = R sin3 x dx, we have I = − cos x sin2 x + 2 I Z sin x dx − 2I Therefore 3I = − cos x sin2 x − 2 cos x + C Annette Pilkington Integration by Parts Letting dv = dx Using Integration by parts twice Recurring Integrals Reduction formula for Example I R R sin3 x dx. sin3 xdx. Z Z Z sin3 xdx = − cos x sin2 x + 2 sin x dx − 2 sin3 x dx Letting I = R sin3 x dx, we have I = − cos x sin2 x + 2 I Z sin x dx − 2I Therefore 3I = − cos x sin2 x − 2 cos x + C I and Z 1 sin3 x dx = I = − [cos x sin2 x + 2 cos x] + C . 3 Annette Pilkington Integration by Parts
© Copyright 2026 Paperzz