Name: Answer Key Period: ______ Algebra II Review – Logarithms and Inverse Relations Expand the expression. 1) log 6 3x 2) log 6 3 + log 6 x 4) xy log 4 3 5) log 2 x 5 3) log 2 x − log 2 5 log x + 2log y log5 2 x x2 y log 2 z 6) 1 log 5 2 + log 5 x 2 log 4 x + log 4 y − log 4 3 log xy 2 2log 2 x + log 2 y − log 2 z Condense the expression. 7) log 3 7 − log 3 x log 3 9) 8) 7 x log 5 3x 2 1 log x − log 4 2 log 2log5 x + log5 3 10) x1 2 x or log 4 4 log 3 4 + 2log 3 x − log 3 5 log 3 4x 2 5 Rewrite the following in exponential form. 11) log 3 12 = x 12) 3 x = 12 log 3 x = 4 13) 34 = x log x 2.8 = 5 x 5 = 2.8 Rewrite in logarithmic form. 14) 74 = x log 7 x = 4 15) e x = 45 log e 45 = x or ln 45 = x 16) x14 = 19 log x 19 = 14 Solve. Check for extraneous solutions. 17) 32 x − 3 = 4 18) x=2 x ≈ 0.8856 19) 7 log12 x = 21 20) 53x+1 = 7 2 x−1 2 + log 2 3x = 8 x= x = 1728 21) ( ) 4 2 x = 16 22) x ≈ −3.7964 ( 64 3 ) 1 3x+1 2 −2=5 4 x ≈ 1.2691 Find the Inverse of the following functions 23) f ( x) = f 25) −1 2 x−5 3 24) 2 ( x ) = 32 ( x + 5 ) f ( x ) = 3x+5 f 26) f ( x ) = log 25 ( x − 4 ) f −1 ( x ) = 25 x + 4 −1 ( x ) = ⎛⎜⎝ x 3+ 1 ⎞⎟⎠ − 5 f ( x ) = 5⋅8x + 2 ⎛ x − 2⎞ f −1 ( x ) = log 8 ⎜ ⎝ 5 ⎟⎠ f −1 ( x ) = −5 + log 3 x 27) f ( x) = 3 x + 5 − 1 28) f ( x ) = 3log12 x + 5 f −1 ( x ) = 2( x−5 ) 3
© Copyright 2026 Paperzz