Test 3 Handout Math 1B Work (Sec. 6.4) Calculus of Parametric Equations (10.2) General Formula: dy dt dy dx = dx dt Work = Force x Distance Hooke’s Law (springs): d dy dt dx d2y dx dx2 = dt f(x) = kx, where k is the spring constant and x is the number of feet the spring is stretched beyond its natural length Area, A = Arc Length (8.1 & 10.2) Arc Length, L = Where ds = ! or or ds = ds = " b ds " b y a dx dt dt Polar Equations (10.3 & 10.4) a ! Rectangular relationships: dy2 1 + dx dx x = r cosθ dx2 1 + dy dy y = r sinθ y tanθ = x x2 + y2 = r2 dx2 dy2 dt + dt dt Slope of Tangent Line dr dθ · sinθ + r · cosθ dy dx = dr dθ · cosθ – r · sinθ Surface Area (Sec. 8.2) Surface Area, A = # b 2"r ds a Area of a Polar Region Where r is the radius of revolution. ds for surface area is the same as for arc length. ! y ! 2 Area, A = 1 2 r d" 2 a y y y = tan -1x y = ln x ! y = ex 1 x -! 2 # b x 1 x Trigonometry Some Trigonometric Identities: 1. cos2x + sin2x = 1 2. tan2x + 1 = sec2x 3. sin(2x) = 2sinx cosx 4. cos(2x) = cos2x – sin2x 5. cos2x = 2 [1 + cos(2x)] 6. sin2x = 2 [1 – cos(2x)] 1 1 Some Trigonometric Integrals: 1. ⌠ ⌡ tanu du = ln | secu | + C 2. ⌠ ⌡ cotu du = ln | sinu | + C 3. ⌠ ⌡ secu du = ln | secu + tanu | + C 4. ⌠ ⌡ cscu du = ln | cscu – cotu | + C 5. u 1 1 ⌠ ⌡ u2 + a2 du = a tan-1 a + C 6. ⌠ ⌡ u2 + a2 du = u 7. ⌠ ⌡ u a2 u2 + a2 du = 2 u2 + a2 – 2 ln (a + u2 + a2 ) + C a + u2 + a2 u2 + a2 – a ln +C u Quadrant I Trig Values Degrees 0° 30° 45° 60° 90° Radians 0 π 6 π 4 π 3 π 2 sinθ 0 1 2 2 2 3 2 1 cosθ 1 3 2 2 2 1 2 0 tan θ 0 3 3 1 3 undefined
© Copyright 2026 Paperzz