THE EFFECT OF SOIL MOISTURE ON INFILTRATION AS RELATED TO RUNOFF AND RECHARGE by D. M. Gray and D. I. Norum Published in Proceedings of Hydrology Symposium No. 6 Soil Moisture November 1967 National Research Council of Canada Associate Committee on Geodesy and Geophysics Subcommittee on Hydrology THE EFFECT OF SOIL MOISTURE ON INFILTRATION AS RELATED TO RUNOFF AND RECHARGE Don M . Gray and D. I. ~orurnl SYNOPSIS The paper provides a general o u t l i n e o f the mechanics of t h e i n f i l t r a t i o n process. I n t h e discussions, s p e c i f i c a t t e n t i o n i s given t o t h e q u a n t i t a t i v e influence of the i n i t i a l s o i l moisture content a s it a f f e c t s both t h e i n f i l t r a t i o n r a t e and t h e amount of i n f i l t r a t i o n of frozen and unfrozen s o i l s . INTRODUCTION The process of infiltration is by definition the entry of water into the soil, through the soil-atmosphere interface. In most cases, the amount of infiltration which occurs during any given rainfall or snowmelt event represents the major component loss of precipitation to surface runoff or, the potential amount of water which may go to groundwater recharge. As indicated diagrammatically in Figures 1 and 2, depending on the intensity of rainfall or snowmelt rate, relative to the infiltration rate, water may be entirely absorbed by the soil or may accumulate and flow from the area as surface runoff. In Figure 1, the supply intensity, i, is less than the maximum rate at which the soil in its given condition can absorb water, (i = f) and hence the total supply goes to replenishing the soil moisture reservoir and to recharging the groundwater supply (neglecting evaporation and interception losses). In Figure 2 in which i>f some water accumulates on the surface and appears as surface runoff. Because of the importance of the infiltration process in the hydrologic cycle, the phenomenon deserves special attention and study. In these regards, it would be expected that a complete understanding of the process and factors affecting it would assist the hydrologist in quantitatively evaluating infiltration amounts and hence increase his confidence and competence in water balance, hydrologic design and other studies. 1. Don M. Gray and D.I. N o r m are respectively, Associate Professor and Assistant Professor, Department of Agricultural Engineering, University of Saskatchewan, Saskatoon. 134 EFFECT OF SOIL MOISTURE ON INFILTRATION I n t h e i n f i l t r a t i o n p r o c e s s water e n t e r s t h e s o i l s u r f a c e due t o t h e combined i n f l u e n c e of g r a v i t y and c a p i l l a r y f o r c e s . Both f o r c e s a c t i n t h e v e r t i c a l d i r e c t i o n t o cause p e r c o l a t i o n downward. C a p i l l a r y f o r c e s a l s o a c t t o d i v e r t water l a t e r a l l y from l a r g e r pores ( f e e d e r c a n a l s ) t o c a p i l l a r y pore spaces which a r e much s m a l l e r i n dimension, but may be v e r y numerous. A s t h e process c o n t i n u e s , t h e c a p i l l a r y pore spaces become f i l l e d and with p e r c o l a t i o n t o g r e a t e r depths t h e g r a v i t a t i o n a l water normally encounters i n c r e a s e d r e s i s t a n c e t o flow due t o reduced e x t e n t o r dimension of flow channels, i n c r e a s e d length of channels, o r an impermeable b a r r i e r such a s rock o r c l a y . A t t h e same time t h e r e may be i n c r e a s e d r e s i s t a n c e t o inflow of water a t t h e s o i l s u r f a c e due t o t h e s u r f a c e s e a l i n g e f f e c t as a r e s u l t o f t h e mechanical a c t i o n o f r a i n d r o p s i n breaking down t h e s o i l aggregates and subsequent inwash o f t h e f i n e r s o i l p a r t i c l e s . The r e s u l t i s a r a p i d r e d u c t i o n o f i n f i l t r a t i o n r a t e i n t h e f i r s t few hours of a storm, a f t e r which t h e r a t e remains n e a r l y c o n s t a n t f o r t h e r e mainder o f t h e p e r i o d o f storm r a i n f a l l e x c e s s . From t h i s q u a l i t a t i v e d e s c r i p t i o n of t h e i n f i l t r a t i o n p r o c e s s it can be recognized t h a t t h e p r o c e s s involves both t r a n s m i s s i o n and s t o r a g e of water by t h e s o i l and t h a t t h e r a t e of i n f i l t r a t i o n may be governed by s e p a r a t e processes o f : (a) Entry of water through t h e s u r f a c e l a y e r , and (b) Downward movement o r p e r c o l a t i o n of water through t h e s o i l profile. THEORY OF INFILTRATION I n f i l t r a t i o n of water i n t o t h e s o i l , l i k e many o t h e r flow p r o c e s s e s i n porous media, is governed by t h e Richards s o i l moisture d i f f u s i o n equation, i n which €I = t h e volumetric moisture c o n t e n t , k = t h e c a p i l l a r y c o n d u c t i v i t y , and @ = the t o t a l potential. Equation 1, i s t h e c o n t i n u i t y equation f o r flow which h a s t h e f l u x , V , a t any p o i n t d e f i n e d by t h e Darcy e q u a t i o n , I t i s evident from Equation 2 t h a t t h e f l u x a t any p o i n t i n a s o i l EFFECT OF SOIL MOISTURE ON INFILTRATION 135 system, i n c l u d i n g t h e s o i l s u r f a c e , i s p r o p o r t i o n a l t o t h e h y d r a u l i c o r c a p i l l a r y c o n d u c t i v i t y , k, and t h e t o t a l p o t e n t i a l g r a d i e n t , VQ. Therefore, t h e i n f i l t r a t i o n process w i l l b e a f f e c t e d by any f a c t o r which a f f e c t s e i t h e r o f t h e s e two q u a n t i t i e s . A l i s t of t h e most p e r t i n e n t f a c t o r s is shown i n Table 1. A s shown i n t h e t a b l e , t h e moisture content of a s o i l a f f e c t s t h e magnitude of both k and V@. Hydrologists have long recognized t h a t i n f i l t r a t i o n t o a given s o i l decreases with an i n c r e a s e i n t h e s o i l moisture c o n t e n t . Even though e a r l i e r s t u d i e s such a s t h o s e conducted by S c h i f f and D r e i b e l b i s (1949) and T i s d a l l (1951) were undertaken i n s p e c i f i c attempt t o e s t a b l i s h t h i s r e l a t i o n s h i p , it h a s only been i n r e c e n t y e a r s , through t h e o r e t i c a l c o n s i d e r a t i o n of t h e mechanics of t h e i n f i l t r a t i o n p r o c e s s t h a t g e n e r a l s o l u t i o n s of t h e equations o f flow have been proposed which may b e used t o q u a n t i t a t i v e l y e v a l u a t e t h e e f f e c t of s o i l m o i s t u r e on i n f i l t r a t i o n . Time V a r i a t i o n i n I n f i l t r a t i o n Many equations have been developed o r suggested t o d e f i n e t h e mass o r depth o f water i n f i l t r a t e d , Mf, a f t e r given time, t , i n t o a uniform s o i l a t c o n s t a n t moisture content. Some o f t h e most common of t h e s e expressions a r e t h e following: Kostiakov (1932) and Lewis (1937) Mf = a t n Gardner and Wid,tsoe (1921) and Horton (1940) Mf = f c t + de - K t Kirkham and Feng (1949) ... h o r i z o n t a l 1 Mf = c t ? + g (4) infiltration (5) P h i l i p (1954) Mf = st: + At A s i n d i c a t e d , most of t h e equations t a k e t h e form o f an exponential o r power f u n c t i o n o f time i n which t h e c o n s t a n t s (e.g. a and n of Equation 3) c h a r a c t e r i z e t h e a b i l i t y of s o i l i n i t s given c o n d i t i o n t o absorb water. One of t h e most s i g n i f i c a n t c o n t r i b u t i o n s t o understanding t h e i n f i l t r a t i o n process was given by P h i l i p (1957a) i n which h e p r e s e n t e d t h e s o l u t i o n t o t h e d i f f u s i o n equation (Equation 1) f o r one-dimensional v e r t i c a l i n f i l t r a t i o n i n t o a uniform, s e m i - i n f i n i t e medium, i n i t i a l l y a t a c o n s t a n t moisture c o n t e n t . The r e s u l t i n g equation g i v e s t h e d i s t a n c e from t h e s o i l s u r f a c e t o a p o i n t i n t h e p r o f i l e , a t which t h e moisture c o n t e n t i s 0 a s , Table 1 F a c t o r s A f f e c t i n g t n e I n f i l t r a t i o n Rate i n t o unfrozen S o i l Density Viscosity Properties Moisture Content Hydraulic Conductivity Pore S i z e , Shape, D i s t r i b u t i o n and Continuity Porous Medium 1 Particle Size Distribution Layering (Homogeneity) C o l l o i d Content C o l l o i d Swelling S a l t Content Organic Matter Shrinkage Cracks Root & Animal A c t i v i t y L [ & r f a c e Conditions Rate -. ] S o i l Surface 1 Gradient o f Potential I JPressure at p e s s u r e Gradient Wet Front --I L Gravitational Gradient I Depth t o Tillage Packing 1nwash-of P a r t i c l e s H y d r o s t a t i c Head Barometric P r e s s u r e -[ E o i s t u r e Content S u r f a c e Tension Contact Angle k r e s s u r e o f Confined A i r EFFECT OF SOIL MOISTURE ON INFILTRATION 137 Equation 7 is particularly pertinent to the discussion inasmuch as it provides an insight of the importance of the soil moisture content to the infiltration process because the quantities X(e), X(e) and $(e) are functions of e which can be evaluated from capillary conductivity and capillary diffusivity curves, and therefore reflect the quantitative influence of soil moisture on infiltration rates and amounts. It should be noted however that as time approaches infinity. Equation 7 diverges and is no longer valid. The mass infiltration occurring in time, t, can be expressed in which Bi = initial moisture content, en = moisture content maintained at the soil surface (usually saturation), and ki = capillary conductivity at ei. Thus, according to Equation 8, the mass infiltration is equal to the sum of the water stored in the profile (represented by the integral) plus the depth of water which has flowed through the profile due to the unit gradient under dry conditions. This latter quantity, kit, can usually be neglected when the initial soil conditions are quite dry since in these cases, ki, will be small. Note that substitution of Equation 7 into Equation 8 leads to the expression m where a2 = jBn x(e)de + ki, and 8i This equation, truncated after two terms, is the same as Equation 6. Similarly, for horizontal flow, only the first term of Equation 9 138 EFFECT OF SOIL MOISTURE ON INFILTRATION i s n e c e s s a r y t o d e s c r i b e t h e p r o c e s s and t h u s i s analogous t o Equation 5. A t t h i s p o i n t it i s worthy t o mention t h a t i n 1962 Hanks and Bowers p r e s e n t e d a g e n e r a l i z e d numerical s o l u t i o n o f t h e s o i l m o i s t u r e d i f f u s i o n e q u a t i o n which can be used t o compute i n f i l t r a t i o n i n t o l a y e r e d s o i l s and s o i l s i n which t h e moisture c o n t e n t i s n o t uniform. Green (1963) i n d i c a t e d e x c e l l e n t agreement between i n f i l t r a t i o n r a t e s p r e d i c t e d by t h i s s o l u t i o n and measured field rates. E f f e c t o f S o i l Moisture on Moisture P r o f i l e s A s suggested, t h e s i g n i f i c a n c e of P h i l i p ' s e q u a t i o n s i s t h a t by t h e r e l a t i o n s h i p s h e p r e s e n t e d , t h e q u a n t i t a t i v e e f f e c t of t h e i n i t i a l moisture c o n t e n t o f t h e s o i l can be e v a l u a t e d . To exemplify t h i s f a c t , t h e method was used t o c a l c u l a t e t h e moisture d i s t r i b u t i o n p a t t e r n s f o r a sandy loam s o i l i n i t i a l l y a t two d i f f e r e n t moisture l e v e l s ; 0.03 cm3/cm3 and 0.23 cm3/cm3. The r e s u l t s o f t h e c a l c u l a t i o n s a t two t i m e s , 60 minutes and 240 minutes, a r e shown p l o t t e d i n Figure 3 i n which t h e mass i n f i l t r a t i o n i n d i c a t e d on t h e f i g u r e were c a l c u l a t e d by t h e following equations, The c o e f f i c i e n t s of t h e s e e q u a t i o n s r e f l e c t t h e r e l a t i v e e f f e c t s t h a t t h e c a p i l l a r y and t h e g r a v i t a t i o n a l f o r c e s have on t h e i n f i l t r a t i o n process. That i s , t h e f i r s t term ( t 1 / 2 ) i s used t o d e s c r i b e h o r i z o n t a l flow and t h u s t h e c o e f f i c i e n t a t t a c h e d t o t h i s term e v a l u a t e s t h e e f f e c t of c a p i l l a r y f o r c e s . S i m i l a r l y , t h e c o e f f i c i e n t s assigned t o t h e o t h e r terms of t h e equation show t h e e f f e c t o f g r a v i t y . Thus, it can be observed i n Equations 10 and 11 t h a t t h e n e t e f f e c t on t h e i n f i l t r a t i o n p r o c e s s of i n c r e a s i n g t h e i n i t i a l s o i l moisture content is t o decrease t h e e f f e c t of c a p i l l a r y f o r c e s and i n c r e a s e t h e e f f e c t o f g r a v i t y . T h i s comes about because o f t h e d e c r e a s e i n c a p i l l a r y g r a d i e n t and t h e i n c r e a s e i n c a p i l l a r y c o n d u c t i v i t y o f t h e s o i l with an i n c r e a s e i n moisture content. From F i g u r e 3 it is a l s o a p p a r e n t t h a t , (a) I n c r e a s i n g t h e i n i t i a l s o i l m o i s t u r e c o n t e n t increases t h e v e l o c i t y a t which t h e w e t t i n g f r o n t moves b u t decreases t h e i n f i l t r a t i o n r a t e , and EFFECT OF SOIL MOISTURE ON INFILTRATION (b) 139 The i n i t i a l m o i s t u r e c o n t e n t of t h e s o i l a f f e c t s t h e shape of t h e m o i s t u r e d i s t r i b u t i o n p r o f i l e , e s p e c i a l l y a t s h o r t times a f t e r w e t t i n g . This l a t t e r c h a r a c t e r i s t i c can a l s o be explained by changes i n t h e d i f f u s i v i t y and p o t e n t i a l g r a d i e n t a s s o c i a t e d with t h e d i f f e r e n t i n i t i a l s o i l moisture c o n t e n t s . That i s , s i n c e a t t h e h i g h e r m o i s t u r e c o n t e n t t h e d i f f u s i v i t y i s more n e a r l y c o n s t a n t and t h e m o i s t u r e g r a d i e n t a c r o s s t h e wet f r o n t i s s m a l l e r ; t h e wet f r o n t i s l e s s a b m p t . The m o i s t u r e p r o f i l e s developed by P h i l i p ' s method ( a s shown i n F i g u r e 3) a r e s i m i l a r i n shape t o t h e experimental p r o f i l e s measured on l a b o r a t o r y samples by Bodman and Colaan (1943) ( s e e F i g u r e 4 ) . I n comparing t h e s e c u r v e s , it i s e v i d e n t t h a t t h e y d i f f e r p r i m a r i l y i n t h a t t h e experimental curve shows t h e e x i s t e n c e o f a s a t u r a t i o n and t r a n s i t i o n zone n e a r t h e s o i l s u r f a c e whereas i n t h e t h e o r e t i c a l curves t h e t r a n s m i s s i o n zone extends t o t h e s u r f a c e . The s a t u r a t i o n and t r a n s i t i o n zone i s u s u a l l y p r e s e n t i n s o i l s because n e a r t h e s u r f a c e , a i r may escape from a s o i l and t h u s i s n o t t r a p p e d by t h e downward-moving wet f r o n t . This d i f f e r e n c e between t h e a c t u a l and t h e o r e t i c a l m o i s t u r e p r o f i l e s should n o t , however, i n t r o d u c e s e r i o u s e r r o r t o t h e computation of mass i n f i l t r a t i o n by t h e o r e t i c a l methods p a r t i c u l a r l y on l a r g e samples because (a) t h e depth of t h e s a t u r a t i o n and t r a n s i t i o n zone i s s m a l l and (b) t h e moisture c o n t e n t i n t h e t r a n s m i s s i o n zone i s i n t h e o r d e r o f magnitude of 60-70 p e r cent pore s a t u r a t i o n i n sands and 70-80 p e r c e n t pore s a t u r a t i o n i n c l a y s [Moore (1949), Bodman and Colman (1943), Kirkham and Feng (1949) and Norum and Gray (1964) ] . E f f e c t o f S o i l Moisture on t h e I n f i l t r a t i o n Rate I n t h e example c a l c u l a t i o n , t h e q u a n t i t a t i v e e f f e c t s of changes i n i n i t i a l s o i l m o i s t u r e on mass i n f i l t r a t i o n have been demonstrated. However, t h e s e c a l c u l a t i o n s can only be completed when t h e f u n c t i o n s : X(0), X(0), e t c . o f Equation 7 a r e e x p l i c i t l y known. Evaluation o f t h e s e f u n c t i o n s i s u s u a l l y an arduous and d i f f i c u l t t a s k , hence, a s a n , a l t e r n a t i v e method f o r determining t h e e f f e c t o f t h e i n i t i a l s o i l m o i s t u r e c o n t e n t on t h e i n f i l t r a t i o n r a t e , P h i l i p (195%) suggested t h a t f o r s h o r t times a f t e r i n f i l t r a t i o n h a s s t a r t e d , t h e i n f i l t r a t i o n r a t e of s o i l , f , v a r i e s approximately a s t h e square r o o t o f t h e d i f f e r e n c e between t h e s u r f a c e m o i s t u r e c o n t e n t , 0, and t h e i n i t i a l s o i l m o i s t u r e c o n t e n t , 0 i ( c a p i l l a r y f o r c e s ) . That i s , A f t e r long times, t h e i n f i l t r a t i o n r a t e becomes independent of t h e i n i t i a l m o i s t u r e c o n t e n t because t h e g r a d i e n t i n t h e upper r e g i o n approaches u n i t y and t h e i n f i l t r a t i o n r a t e approaches t h e 140 EFFECT OF SOIL MOISTURE ON INFILTRATION c a p i l l a r y c o n d u c t i v i t y f o r t h e zone. Holtan (1961) r e p o r t e d a s i m i l a r approach t o d e f i n e t h e i n f i l t r a t i o n r a t e of a s o i l a s a f u n c t i o n of t h e exhaustion of s o i l moisture s t o r a g e . The expression used i s i n which S = p o t e n t i a l s o i l moisture s t o r a g e volume o r t h e volumetric d i f f e r e n c e between pore s a t u r a t i o n and t h e 15-bar o r permanent w i l t i n g percentage f o r t h e s o i l zone above t h e control layer. fc = f i n a l c o n s t a n t r a t e of i n f i l t r a t i o n through t h e c o n t r o l horizon, and a , n = c o n s t a n t s f o r a p a r t i c u l a r s o i l i n given c o n d i t i o n (according t o P h i l i p n = 1/2) I n Equation 13, t h e e f f e c t of i n c r e a s i n g t h e mass i n f i l t r a t i o n , M f , i s analogous t o i n c r e a s i n g t h e ( i n i t i a l ) s o i l moisture c o n t e n t which w i l l cause a decrease i n t h e i n f i l t r a t i o n r a t e . A s pointed o u t by Holtan, one important a s p e c t of Equation 13 a s a p p l i e d t o hydrologic a n a l y s e s i s t h a t by subdividing t h e s t o r a g e p o t e n t i a l i n t o t h e f r e e o r g r a v i t a t i o n a l water volume and t h e c a p i l l a r y water volume t h e i n f i l t r a t i o n recovery between r a i n periods can be computed. In t h i s c a l c u l a t i o n it i s u s u a l l y assumed t h a t t h e f r e e water i s removed a t t h e r a t e o f g r a v i t y flow (perhaps f c ) and t h a t t h e a v a i l a b l e water c a p a c i t y i s d e p l e t e d a t a slower r a t e o f e v a p o t r a n s p i r a t i o n . Another f e a t u r e shown i n t h e equation i s t h a t when t h e mass i n f i l t r a t i o n Mf, e q u a l s t h e moisture s t o r a g e , S, t h e i n f i l t r a t i o n r a t e is equal t o t h e transmission r a t e through t h e c o n t r o l l a y e r . Hanks and Bowers (1962) s u b s t a n t i a t e d t h i s r e s u l t . They concluded t h a t i n f i l t r a t i o n was governed by t h e t r a n s mission through t h e l e a s t permeable l a y e r , once t h e w e t t i n g f r o n t extended i n t o t h a t l a y e r . Estimates of t h e s e r a t e s f o r s o i l s having d i f f e r e n t s o i l p r o f i l e c h a r a c t e r i s t i c s and ground cover c o n d i t i o n s can be obtained from t a b u l a t e d v a l u e s such a s t h o s e given by Ayers (1959). E f f e c t of S o i l Moisture Gradient I n t h e preceding d i s c u s s i o n s , c o n s i d e r a t i o n has been given t o t h e e f f e c t of s o i l moisture, which i s uniform throughout t h e p r o f i l e , on t h e i n f i l t r a t i o n p r o c e s s . I n n a t u r e , of course, t h i s c o n d i t i o n r a r e l y p r e v a i l s b u t most o f t e n , p a r t i c u l a r l y i n t h e upper r e g i o n of t h e p r o f i l e , t h e s o i l moisture content i n c r e a s e s with depth. The e f f e c t of t h i s " i n i t i a l " moisture g r a d i e n t cannot be c a l c u l a t e d by t h e P h i l i p ' s method b u t may be accounted f o r by t h e method proposed by Hanks and Bowers (1962). I n manner of summary, it would be expected t h a t f o r a given s o i l t h e e f f e c t of EFFECT OF SOIL MOISTURE ON INFILTRATION 141 a moisture g r a d i e n t would cause t h e i n f i l t r a t i o n r a t e t o dec r e a s e more r a p i d l y than i n a uniformly d r y p r o f i l e (see F i g u r e 5 ) . I n t e r r e l a t i o n s h i p o f S o i l Moisture and Other F a c t o r s Influencing I n f i l t r a t i o n A s p o i n t e d out i n e a r l i e r d i s c u s s i o n s t h e i n f i l t r a t i o n r a t e of a given s o i l is dependent on many f a c t o r s . There is, however, wide d i f f e r e n c e s i n o p i n i o n s among i n v e s t i g a t o r s a s t o t h e r e l a t i v e importance o f t h e d i f f e r e n t f a c t o r s a f f e c t i n g t h e i n f i l t r a t i o n process. For example, Duley and Kelly (1941) i n s p r i n k l e r i r r i g a t i o n t e s t s conducted on s i l t loam and sandy loam s o i l s found t h a t t h e c o n d i t i o n s o f t h e s o i l s u r f a c e had a marked e f f e c t on i n f i l t r a t i o n and t h e y f e l t i t s i n f l u e n c e on t h e i n f i l t r a t i o n r a t e was much g r e a t e r t h m t h e i n f l u e n c e o f t h e i n i t i a l s o i l moisture. On t h e o t h e r hand, Green (1963) r e p o r t e d t h a t t h e antecedent moisture c o n d i t i o n s o f a given s o i l may i n f l u e n c e i n f i l t r a t i o n r a t e s a s much a s t i l l a g e , s u r f a c e s e a l i n g o r p r o f i l e d i f f e r e n c e s . Many o f t h e f a c t o r s a f f e c t i n g t h e i n f i l t r a t i o n process a r e i n t e r d e p e n d e n t . Green found t h a t an " i n i t i a l l y - d r y " s i l t loam was most s t a b l e and r e s i s t e d e r o s i o n whereas a s i l t y c l a y was most s t a b l e i n an i n i t i a l l y - w e t c o n d i t i o n . S i m i l a r l y , t h e amount o f s h r i n k a g e and s w e l l i n g o f a s o i l i s dependent, i n p a r t , on i t s s o i l m o i s t u r e c o n t e n t . The volumetric and s t r u c t u r a l changes which accompany s h r i n k i n g and s w e l l i n g may produce a marked e f f e c t on t h e i n f i l t r a t i o n r a t e e s p e c i a l l y i f t h e s e changes a r e l a r g e such a s t h o s e which may occur i n a heavy c l a y s o i l on d r y i n g . When a c l a y i s i n a severely-cracked c o n d i t i o n , t h e l a r g e c r a c k s s e r v e a s f e e d e r c a n a l s which permit d i r e c t e n t r y of water a t t h e s u r f a c e and i t s d i s t r i b u t i o n downward and l a t e r a l l y under p o s i t i v e p r e s s u r e . Under such c o n d i t i o n s , t h e i n f i l t r a t i o n r a t e w i l l b e much h i g h e r t h a n i f t h e s o i l were n o t cracked. Likewise, t h e d e n s i t y and s t a n d o f v e g e t a t i o n , which a l s o a f f e c t i n f i l t r a t i o n , a r e a l s o dependent on s o i l moisture. To t h e w r i t e r ' s knowledge, t h e interdependence o f a l l f a c t o r s a f f e c t i n g i n f i l t r a t i o n and t h e i r r e l a t i v e importance t o t h e p r o c e s s h a s n o t been e s t a b l i s h e d . In t h e s e r e g a r d s , it should b e recognized t h a t none o f t h e presently-developed t h e o r i e s e x p l a i n i n g t h e mechanics o f i n f i l t r a t i o n account f o r changes i n s o i l structure. INFILTRATION POTENTIAL OF A WATERSHED S e v e r a l techniques have been p r e s e n t e d which may b e used t o e v a l u a t e t h e e f f e c t of t h e i n i t i a l s o i l moisture c o n t e n t on t h e i n f i l t r a t i o n r a t e . In o r d e r t o apply t h e s e methods c e r t a i n microhydrologic and p h y s i c a l c h a r a c t e r i s t i c s o f a s o i l must b e known such a s , (a) t h e c a p i l l a r y c o n d u c t i v i t y - m o i s t u r e c o n t e n t curve, 142 EFFECT OF SOIL MOISTURE ON INFILTRATION (b) t h e m o i s t u r e - t e n s i o n r e l a t i o n s h i p o r ( c ) an e x p e r i m e n t a l r e l a t i o n between t h e s o i l m o i s t u r e c o n t e n t and t h e i n f i l t r a t i o n r a t e ( a s Equation 1 3 ) . I t f o l l o w s t h a t i f t h e s e p r o p e r t i e s f o r a l l s o i l s i n a watershed have been measured t h e n t h e i n f i l t r a t i o n p o t e n t i a l o f t h e watershed a t any t i m e c o u l d b e e v a l u a t e d from s o i l m o i s t u r e measurements. Needless-to-say, t h e work i n v o l v e d i n t h i s computation may b e reduced a p p r e c i a b l y i f s o i l s could be grouped a s t o t h e i r i n f i l t r a t i o n p o t e n t i a l based on t h e i r s o i l m o i s t u r e r e t e n t i o n and t r a n s m i s s i o n c h a r a c t e r i s t i c s . However, a l t h o u g h it h a s been found t h a t s o i l s a r e amenable t o g r o u p i n g i n accordance w i t h t h e i r water i n t a k e c a p a c i t i e s i n t h e wet c o n d i t i o n it h a s n o t y e t been e s t a b l i s h e d whether a system can b e d e r i v e d t o group s o i l s a s t o t h e i r i n f i l t r a t i o n r a t e s t o i n c l u d e t h e e n t i r e range o f moisture c a p a c i t i e s . While t h e e v a l u a t i o n o f t h e i n f i l t r a t i o n p o t e n t i a l o f a watershed based on t h e i n f i l t r a t i o n c h a r a c t e r i s t i c s o f i n d i v i d u a l s o i l s o f t h e b a s i n may be f e a s i b l e f o r s m a l l e x p e r i m e n t a l c a t c h ments on which t h e n e c e s s a r y measurements a r e t a k e n and l a b o r a t o r y and a n a l y t i c f a c i l i t i e s a r e a v a i l a b l e , t h i s approach would b e impractical i n a p p l i c a t i o n t o large watersheds p a r t i c u l a r l y f o r t h e p r a c t i c i n g h y d r o l o g i s t . Thus, r e s o r t i s f r e q u e n t l y made t o t h e u s e o f a n t e c e d e n t p r e c i p i t a t i o n o r groundwater i n d i c e s t o r e f l e c t t h e degree-of-wetness o r t h e i n f i l t r a t i o n p o t e n t i a l o f a b a s i n . The common assumption made i n u s i n g t h e s e i n d i c e s i s t h a t t h e degree-of-wetness p r i o r t o t h e storm i s c l o s e l y r e l a t e d t o t h e s o i l m o i s t u r e which i s t h e c o n t r o l l i n g f a c t o r of r u n o f f . P r o b a b l y , t h e most common form of a n t e c e d e n t p r e c i p i t a t i o n i n d e x (API) i n c u r r e n t u s e i s API = 1 btPt t=1 i n which bt and Pt a r e r e s p e c t i v e l y a c o n s t a n t and t h e amount o f p r e c i p i t a t i o n which o c c u r r e d a t s e l e c t e d t i m e s p r e c e d i n g t h e U s u a l l y , t h e c o n s t a n t bt i s assumed t o b e s t o r m e v e n t (days) some f u n c t i o n of t i m e , t , a s b t = l / t o r b t = k t . According t o t h e l a t t e r e x p r e s s i o n , t h e e f f e c t o f p r e c i p i t a t i o n o f t h e wetness o f t h e b a s i n d e c r e a s e s e x p o n e n t i a l l y w i t h t i m e . Values f o r t h e 0.98, c o n s t a n t k a r e u s u a l l y assumed t o b e i n t h e r a n g e 0.80 however, t h e c h o i c e o f t h e c o n s t a n t i s n o t c r i t i c a l inasmuch a s t h e c a l c u l a t i o n i s used a s an i n d e x o f m o i s t u r e d e f i c i e n c y . The f i n a l computation o f t h e API f o r a g i v e n storm i s o b t a i n e d by c a l c u l a t i n g t h e cumulative e f f e c t o f a l l p r e c i p i t a t i o n amounts i n t h e s e r i e s . For example, . - API = kP1 + k2p2 + k3p3 + where PI, P2, Pg ..... Pn .. .. . knPn (15) a r e t h e amounts o f p r e c i p i t a t i o n a t t h e EFFECT OF SOIL MOISTURE ON INFILTRATION d i f f e r e n t time i n t e r v a l s (days) preceding t h e storm event. where up t o 20 - 60 terms may be used i n t h e s e r i e s . 143 Any- Frequent use i s made of indices of t h e type mentioned above i n m u l t i p l e regression o r graphical o r c o r r e l a t i o n analyses i n which attempts a r e made t o p r e d i c t basin y i e l d from storm and watershed c h a r a c t e r i s t i c s . For i n d i v i d u a l s t u d i e s , these indices may prove extremely valuable, however, t h e i r general a p p l i c a b i l i t y t o watersheds o t h e r than those s t u d i e d i s questionable. Perhaps a b e t t e r index than those which use only p r e c i p i t a t i o n i s t h e basin recharge o r " p r e c i p i t a t i o n minus runoff", s i n c e storm runoff does not add t o t h e r e s i d u a l moisture i n the b a s i n . The United S t a t e s S o i l Conservation Service (1957) has e s t a b l i s h e d type curves f o r estimating runoff from r a i n f a l l based on p o t e n t i a l basin recharge. Other indices may use accumulative evaporation amounts a s an index of f i e l d moisture deficiency o r use base flow discharges a s an index of t h e s o i l moisture s t o r a g e p o t e n t i a l . In t h e use of groundwater flows it i s assumed t h a t a high base flow i s associated with a high runoff p o t e n t i a l . To be e f f e c t i v e , however, t h e groundwater index should be supplemented by a weighted r a i n f a l l f a c t o r t o include t h e e f f e c t of r a i n s occurring s e v e r a l days preceding t h e event s i n c e t h e s e w i l l a f f e c t t h e current moisture s t a t u s of t h e basin. INFILTRATION TO FROZEN SOILS For Canadian conditions, no discussion of t h e i n f i l t r a t i o n process would be complete without giving some consideration t o t h e process of i n f i l t r a t i o n t o frozen s o i l s . A t Saskatoon during 1966-67, G i l l i e s (1968) d i d considerable study of t h e phenomenon under P r a i r i e conditions. His findings indicated t h a t t h e moisture p r o f i l e under frozen conditions, and with excess moisture a v a i l a b l e a t t h e surface, could be divided i n t o two d i s t i n c t zones, (a) a zone of s a t u r a t i o n extending t o t h e s o i l s u r f a c e i n which t h e soil-water matrix was completely thawed and i t s temperature was above 3 2 ' ~ and (b) an unsaturated zone extending a s h o r t d i s t a n c e below t h e thawed l a y e r i n which t h e l i q u i d - i c e - s o i l matrix was below 3 2 ' ~ . Further, he found t h a t a s melting progressed it appeared t h a t t h e elongation of t h e thawed l a y e r was approximately equal t o t h e increase i n depth of p e n e t r a t i o n of t h e unsaturated zone o r wetting f r o n t i n t o t h e frozen s o i l . Unl i k e t h e case of water entry i n t o unfrozen s o i l s i t was observed t h a t t h e advance of t h e wet f r o n t i n t h e frozen s o i l was i n v e r s e l y r e l a t e d t o t h e s o i l moisture content. That i s , t h e lower t h e moisture content, t h e f a s t e r t h e advance. This r e s u l t would be expected inasmuch a s an increase i n moisture content would r e s u l t i n (a) an i n c r e a s e i n t h e number of the s o i l pores blocked with i c e , (b) an increase i n the s p e c i f i c heat of soil-water matrix and EFFECT OF SOIL MOISTURE ON INFILTRATION 144 consequently more h e a t would be needed per u n i t mass t o cause thawing and (c) a decrease i n t h e c a p i l l a r y gradient. Many i n v e s t i g a t o r s have recognized t h a t t h e s o i l moisture content i s an important f a c t o r governing i n f i l t r a t i o n t o frozen s o i l s . For example, s e v e r a l Russian workers (Larkin 1962, Kuznik and Bezmenov, 1964) and o t h e r s (Post and Dreibelbis, 1942) r e p o r t t h a t i f a s o i l i s frozen when i t s moisture content i s g r e a t e r than t h e f i e l d capacity, i t s i n f i l t r a t i o n r a t e w i l l be very low and i f s a t u r a t e d , - t h e i n t a k e r a t e i s v i r t u a l l y zero. s i m i l a r l y , Willis e t aZ. (1961) i n t h e i r s t u d i e s on small p l o t s i n North Dakota r e p o r t t h a t a s much a s 90 p e r cent of t h e snowpack water i s l o s t a s s u r f a c e runoff when t h e p l o t s were frozen a t high moisture l e v e l s . In t h i s study of i n f i l t r a t i o n t o frozen g l a c i a l t i l l s during t h e "major" thaw period, G i l l i e s (1968) found t h a t t h e volumetric r a t i o of t h e amount of water e n t e r i n g t h e frozen s o i l and contained i n t h e upper 18-inch depth of t h e p r o f i l e t o t h e depth of a v a i l a b l e s u r f a c e water of t h e snowpack could be r e l a t e d t o t h e i n i t i a l s o i l moisture content of t h e 2-inch s u r f a c e layer. This r e l a t i o n s h i p , shown i n Figure 6, i n d i c a t e s t h a t t h e volumetric i n f i l t r a t i o n t o frozen s o i l s decreases exponentially with t h e moisture content of t h e s u r f a c e l a y e r . 1n-these experiments a t t h e time of melt, t h e moisture i n - t h e s u r f a c e l a y e r was frozen and thus it would be expected t h a t i n f i l t r a t i o n would decrease with increasing moisture because of t h e i n c r e a s e i n number of i c e - f i l l e d pores. Recognition of t h e dependence of t h e i n f i l t r a t i o n process under frozen conditions on t h e s t a t e and amount of moisture i n t h e s u r f a c e l a y e r i s extremely important t o accurate p r e d i c t i o n of snowrnelt runoff. I t p o i n t s out t h e need t o t a k e t h e s e measurements a t t h e time o f / o r immediately preceding melt and t h a t t h e s o i l moisture s t a t u s evaluated a considerable time i n advance o f t h e melting period may not n e c e s s a r i l y r e f l e c t t h e runoff p o t e n t i a l of a watershed. Even though t h e e a r l i e r measurements may i n d i c a t e t h e runoff p o t e n t i a l of a watershed t o be very low, t h e s e condit i o n s may be completely changed by r e f r e e z i n g of small amounts o f meltwater which o r i g i n a t e from minor thawing of t h e snowpack p r i o r t o t h e major melt sequence i n t.he s u r f a c e of t h e s o i l . In manner of summary, it would appear t h a t t h e shape of t h e i n f i l t r a t i o n - r a t e curves of a frozen s o i l may adopt s e v e r a l d i s t i n c t forms dependent on conditions which p r e v a i l a t t h e time of f r e e z i n g o r thawing. 1. An i n t a k e r a t e which i s reasonably constant with time a t a very low value a condition which would p r e v a i l i f frozen while a t a high moisture content o r an impervious l a y e r develops a t t h e s u r f a c e due t o r e f r e e z i n g of t h e meltwater a t t h e time of thaw. - EFFECT OF SOIL MOISTURE ON INFILTRATION 145 2. An i n t a k e r a t e which d e c r e a s e s v e r y r a p i d l y with time from a reasonably-high i n i t i a l v a l u e t o n e a r z e r o - a c o n d i t i o n which may p r e v a i l when a s o i l is f r o z e n a t a low m o i s t u r e c o n t e n t b u t t h e s o i l temperature i s below f r e e z i n g . Meltwater e n t e r i n g t h e s o i l i s f r o z e n i n t h e pores and movement i s i n h i b i t e d . 3. An i n c r e a s e i n i n f i l t r a t i o n r a t e with time - a c o n d i t i o n which may e x i s t when t h e s o i l is f r o z e n a t a h i g h m o i s t u r e c o n t e n t (70-80 p e r c e n t f i e l d c a p a c i t y ) . For t h i s c a s e , some o f t h e meltwater i s a b l e t o p e n e t r a t e t h e s o i l and t h u s t r a n s f e r h e a t which i s used t o melt t h e i c e - f i l l e d p o r e s . P r o g r e s s i v e l y , a s t h e s o i l warms and more p o r e s m e l t , t h e i n f i l t r a t i o n r a t e i n c r e a s e s . Zavodchikov (1962) c i t e s examples i n which t h e i n f i l t r a t i o n r a t e o f a s o i l i n c r e a s e d 6 - 8 times i t s i n i t i a l r a t e during t h e m e l t i n g p e r i o d . REFERENCES Ayers, H.D. 1959. I n f l u e n c e o f s o i l m o i s t u r e p r o f i l e and v e g e t a t i o n c h a r a c t e r i s t i c s on n e t supply t o r u n o f f . Proc. of Symposium No. 1 Spillway Design Floods. Queen's P r i n t e r and C o n t r o l l e r o f S t a t i o n a r y . Ottawa. pp. 198-205. - Bodman, G.B., and E . A . Colman. 1943. Moisture and energy condit i o n s during downward e n t r y o f water i n t o s o i l s . S o i l S c i . Soc. Amer. Proc. 8: 116-122. Duley, F.L., and L . L . Kelly. 1941. S u r f a c e c o n d i t i o n s o f s o i l and time o f a p p l i c a t i o n a s r e l a t e d t o i n t a k e o f water. USDA C i r c u l a r 608. Gardner, W., and J . A . Widtsoe. 1921. The movement o f s o i l moisture. S o i l S c i . 11: 215-232. G i l l i e s , J. 1968. I n f i l t r a t i o n t o f r o z e n p r a i r i e s o i l s . Unp u b l i s h e d M. Sc. Thesis. U n i v e r s i t y o f Saskatchewan, Saskatoon. , Green, R.E. 1963. I n f i l t r a t i o n o f water i n t o s o i l s a s i n f l u e n c e d by antecedent m o i s t u r e . D i s s e r t a t i o n Abs. 23: 2270-2271. Hanks, R.J., and S.A. Bowers. 1962. Numerical s o l u t i o n of t h e m o i s t u r e flow e q u a t i o n f o r i n f i l t r a t i o n i n t o l a y e r e d s o i l s . S o i l S c i . Soc. Amer. Proc. 26: 530-534. 1961. A concept f o r i n f i l t r a t i o n e s t i m a t e s i n Holtan, H.N. watershed e n g i n e e r i n g . USDA ARS 41 51, Washington, D.C. - - 146 EFFECT OF SOIL MOISTURE ON INFILTRATION Horton, R.E. 1940. An approach toward a p h y s i c a l i n t e r p r e t a t i o n of i n f i l t r a t i o n c a p a c i t y . S o i l S c i . Soc. Amer. Proc. 5: 399-417. Kirkham, D., and C . L . Feng. 1949. Some t e s t s of t h e d i f f u s i o n t h e o r y , and laws of c a p i l l a r y flow, i n s o i l s . S o i l S c i . 67: 29-40. 1932. On t h e dynamics o f t h e c o e f f i c i e n t o f Kostiakov, A.N. w a t e r p e r c o l a t i o n i n s o i l s and t h e n e c e s s i t y of s t u d y i n g i t from dynamic p o i n t o f view f o r p u r p o s e s o f a m e l i o r a t i o n . Trans. 6 t h Comm. I n t . Soc. S o i l S c i . Russian P t . A15-21. Kuznik, I.A., and A.I. Bezmenov. 1964. I n f i l t r a t i o n o f m e l t w a t e r i n t o f r o z e n s o i l s . S o v i e t S o i l S c i . No. 7, pp. 665-671. ( T r a n s . S c r i p t a Technica, I n c . ) L a r k i n , P.A. 1962. P e r m e a b i l i t y o f f r o z e n s o i l s a s a f u n c t i o n o f t h e i r m o i s t u r e c o n t e n t and f a l l t i l l a g e . S o v i e t Hydrology: S e l e c t e d P a p e r s . No. 4, pp. 445-460. (Amer. Geophys. Un. Publishers). 1937. The r a t e o f i n f i l t r a t i o n o f w a t e r i n i r r i g a t i o n Lewis, M.R. p r a c t i c e . T r a n s . h e r . Geophys. Union. 2: 361-368. Moore, R.E. 1949. Water c o n d u c t i o n from s h a l l o w water t a b l e . H i l g a r d i a 12: 383-401. Norum, D . I . , and Don M. Gray. 1964. Unlined mole l i n e s f o r i r r i g a t i o n . Unpublished p a p e r p r e s e n t e d t o Amer. Soc. A g r i c . Engr. Mtg., F o r t C o l l i n s , Colo. Philip, J.R. 1954. An i n f i l t r a t i o n e q u a t i o n w i t h p h y s i c a l s i g n i f i c a n c e . S o i l S c i . 77: 153-157. P h i l i p , J.R. 1957a. Numerical s o l u t i o n o f e q u a t i o n s of t h e d i f f u s i o n type with d i f f u s i v i t y concentration-dependent. 11. A u s t r a l i a n J o u r . Phys. 10: 29-42. 1957b. The t h e o r y o f i n f i l t r a t i o n : 5. I n f l u e n c e Philip, J.R. o f i n i t i a l m o i s t u r e c o n t e n t . S o i l S c i . 84: 329-339. P o s t , F.A., and F.R. D r e i b e l b i s . 1942. Some i n f l u e n c e s o f f r o s t p e n e t r a t i o n and m i c r o c l i m a t e on t h e w a t e r r e l a t i o n s h i p s of woodland, p a s t u r e and c u l t i v a t e d s o i l s . Proc. S o i l S c i . Soc. h e r . 7: 95-104. S c h i f f , L . , and F.R. D r e i b e l b i s . 1949. P r e l i m i n a r y s t u d i e s on s o i l p e r m e a b i l i t y and i t s a p p l i c a t i o n . T r a n s . Amer. Geophys. Un. 30: 759-766. EFFECT OF SOIL MOISTURE ON INFILTRATION 147 1951. Antecedent s o i l m o i s t u r e and i t s r e l a t i o n t o T i s d a l l , A.L. i n f i l t r a t i o n . Aust. J o u r . Agr. Res. 2: 342-348. Willis, W.O., C.W. Carlson, J . A l e s s i , and H . J . Haas. 1961. Depth of f r e e z i n g and s p r i n g r u n o f f a s r e l a t e d t o f a l l s o i l - m o i s t u r e l e v e l . Can. J o u r . S o i l S c i . 41: 115-124. United S t a t e s Department o f A g r i c u l t u r e , S o i l Conservation S e r v i c e . 1957. Hydrology. Engineering Handbook, Supplement, S e c t i o n 4, ( I n s e r v i c e u s e ) . 1962. Snowmelt l o s s e s t o i n f i l t r a t i o n and Zavodchikov, A.B. r e t e n t i o n on d r a i n a g e b a s i n s d u r i n g snow m e l t i n g p e r i o d i n Northern Kazakhstan. S o v i e t Hydrology: S e l e c t e d Papers No. 1 pp. 37-42. (Amer. Geophys. Un. P u b l i s h e r s ) . 148 EFFECT OF SOIL MOISTURE ON INFILTRATION I I - Supply Intensity, i 1111111111 I Percolation to Groundwater Infiltration Rate, i Potential Soil Moisture Storage Lw Groundwater Discharge Fig. I Conceptual Soil Moisture Model ( i ( f ) 1 1 l 1 1 1 1=1 ?1 1--- 1-1 lnf iltration Rate, f I --- I --- I Percolation I Supply Intensity ,i Surface Runoff to Groundwater , Potential Soil Moisture S torage I L ;:pger Fig. 2 Conceptual Soil Moisture Model ( i ) f ) EFFECT O F SOIL MOISTURE ON INFILTRATION 149 Volumetric Moisture Content (cm3/ cm.3 ) 0.20 0.10 t 0.30 0.40 = 60min., M f =3.0 Y C 8 0 1 Fig. 3 Theoretical Moisture Profiles for Infiltration to a Sandy Loam Volumetric Moisture Content - Saturation and Transition Zone t Transmission Zone 0, 0 1 wetting zone f Wet Front Fig. 4 Experimental Moisture Profiles of ter Bodman and Colman ( 1943) EFFECT OF SOIL MOISTURE ON INFILTRATION 150 t Q) C 0 Initially Dry to Wet K C .0 - C Q, C iz C Time - Fig. 5 Schematic Representation of the E f f e c t of Soil Moisture on Infiltration Rates '800° 1 0+ 1 20 40 60 80 100 Initial Soil Surface Moisture Con tent 0 - 2 inch Depth ( % by wt.) Fig. 6 The E f f e c t of Surface Soil Moisture on Volumet ric Infiltration to Frozen Soi Is under Prairie Conditions DISCUSSION ON THE EFFECT OF SOIL MOISTURE ON INFILTRATION AS RELATED TO RUNOFF AND RECHARGE D r . McDONALD r e f e r r e d t o Equations 7, 10 and 11 o f t h e paper and s t a t e d t h a t t h e i n f i n i t e s e r i e s r e p r e s e n t e d by Equation 7 i s n o t convergent f o r t > l . I n t h e example, u s e i s made o f Equations 10 and 11 which c o n s i d e r o n l y t h e f i r s t t h r e e terms o f Equation 7 t o c a l c u l a t e i n f i l t r a t i o n t o a time o f 4 hours. D r . McDonald asked A) What a r e t h e u n i t s o f time, t , i n Equations 10 and l l ? B) I f t > l , what i s t h e accuracy o f t h e s e equations f o r t h e time used? and C) What i s t h e upper t i m e l i m i t f o r which Equations 10 and 11 a r e v a l i d and how is t h i s determined? D r . NORUM r e p l i e d t h a t t h e u n i t s o f t and t h e c o e f f i c i e n t s must be c o n s i s t e n t w i t h t h e u n i t s used f o r t h e c a p i l l a r y conducti v i t y and d i f f u s i v i t y . I n t h i s c a s e it i s c e n t i m e t e r s and minutes. I t i s t r u e t h a t t h e s e r i e s w i l l d i v e r g e a f t e r t has approached some v a l u e . Equating t h e second d e r i v a t i v e of t h e mass i n f i l t r a t i o n equation, f o r example Equation 10, t o zero and s o l v i n g f o r t w i l l g i v e t h e time when it would appear t h a t t h e i n f i l t r a t i o n r a t e s t a r t e d t o increase. A s t h i s is not physically true, as f a r as t h e t h e o r y i s concerned, we would know t h a t t h e equation could n o t be v a l i d beyond t h i s time. However, i t i s p o s s i b l e t h a t even b e f o r e t h i s time t h e e q u a t i o n d e v i a t e s from t h e t r u e i n f i l t r a t i o n . In t h e p r e s e n t case t h e time a t which t h e i n f i l t r a t i o n r a t e appears t o s t a r t i n c r e a s i n g i s approximately 8 h o u r s . D r . DAVAR commented on t h e a p p a r e n t i s o t r o p i c n a t u r e o f k, i n t h e Richards s o i l m o i s t u r e d i f f u s i o n equation (Equation 1 ) . He thought t h a t under f i e l d c o n d i t i o n s 'k' would probably be noni s o t r o p i c and t h u s t a k e on t e n s o r p r o p e r t i e s r a t h e r than s c a l a r , a s t h e equation i n d i c a t e s . Under t h e l a t t e r c o n d i t i o n s , h e asked, A) Would t h e equation s t i l l b e v a l i d ? and B) What m o d i f i c a t i o n s would b e n e c e s s a r y i n t h e i n t e r p r e t a t i o n o f t h i s equation? D r . NORUM i n r e p l y s a i d t h a t when k t a k e s on t e n s o r p r o p e r t i e s Equation 1 i s s t i l l v a l i d a s i t s t a n d s . I t i s s t i l l mathematically c o r r e c t , a s a t e n s o r times a v e c t o r i s s t i l l a v e c t o r . However, he d i d n o t know o f any work i n u n s a t u r a t e d flow where k h a s been considered a s anything b u t a s c a l a r . D r . FREEZE added t h a t Liakopoulos and o t h e r s have published works showing t h a t k i s a symmetric t e n s o r f o r s a t u r a t e d flow. D r . BACHMAT s a i d t h a t i n t h e c a s e o f an a n i s o t r o p i c s o i l and homogeneous l i q u i d phase and assuming t h a t t h e Darcy law i s s t i l l 151 152 DISCUSSION ON EFFECT OF SOIL MOISTURE ON INFILTRATION v a l i d , Equation 1 on page 134 would read: ae at d i v (k grad a) o r , i n a c a r t e s i a n co-ordinate system: where, k, i s a symmetric second order t e n s o r , t h e p r i n c i p a l values and, consequently, t h e p r i n c i p a l d i r e c t i o n s of which a r e functions of t h e degree of s a t u r a t i o n , e/n, of t h e l i q u i d phase (here n i s t h e s o - c a l l e d e f f e c t i v e p o r o s i t y of t h e s o i l ) and of t h e density and v i s c o s i t y of t h a t phase. D r . DAVAR asked why only, t h e c a p i l l a r y conductivity was used i n Equation 1 when V a contains both a c a p i l l a r y and g r a v i t a t i o n a l component. D r . NORUM r e p l i e d t h a t t h e term c a p i l l a r y conductivity r e f e r s t o t h e hydraulic conductivity when t h e porous medium is unsaturated. I t does not mean t h a t i t is only a s s o c i a t e d with t h e flow due t o c a p i l l a r y forces. D r . ELRICK pointed out t h e one-dimensional nature of t h e i n f i l t r a t i o n equations prescribed i n t h e paper i . e . flow i n e i t h e r a h o r i z o n t a l o r v e r t i c a l d i r e c t i o n . A s i n watershed s t u d i e s , t h e r e i s a g r e a t v a r i a b i l i t y i n s o i l s , and hence i n f i l t r a t i o n p r o p e r t i e s , he wished t o know how t h e s e equations could be s a t i s f a c t o r i l y applied t o p r e d i c t i n f i l t r a t i o n . D r . NORUM explained t h a t i f t h e r e appears t o be a s i g n i f i c a n t d i f f e r e n c e i n t h e i n f i l t r a t i o n c h a r a c t e r i s t i c s of t h e s o i l over t h e watershed, then, t h i s watershed w i l l have t o be sub-divided i n t o smaller basins which have more uniform i n f i l t r a t i o n characteristics. D r . GRAY emphasized t h e p e r t i n e n t n a t u r e of D r . E l r i c k ' s statement and added t h a t whereas we may assume t h a t some of t h e i n f i l t r a t i o n equations a r e t h e o r e t i c a l l y c o r r e c t , t h e problem of t h e i r a p p l i c a t i o n t o a watershed u n i t i s very complicated. On a watershed basin not only do we need t o consider t h e v a r i a b i l i t y of i n f i l t r a t i o n but we must a l s o consider t h e s p a c i a l and temporal v a r i a b i l i t y of p r e c i p i t a t i o n . In many r e s p e c t s , he b e l i e v e s t h a t t h e c l a s s i f i c a t i o n of a watershed a s t o i t s runoff-producing c h a r a c t e r i s t i c s must be c o n s i s t e n t with t h e o b j e c t i v e o f our i n v e s t i g a t i o n . That i s , f o r example, i n engineering design i n determining flood peaks on l a r g e DISCUSSION ON EFFECT OF SOIL MOISTURE ON INFILTRATION 153 watersheds, because we a r e d e a l i n g with storms o f long d u r a t i o n o f r e a s o n a b l y uniform d i s t r i b u t i o n and t h e s t o r a g e elements o f t h e watershed a r e s i g n i f i c a n t , it may w e l l b e t h a t we can u s e a s i n g l e i n f i l t r a t i o n curve which r e p r e s e n t s t h e i n t e g r a t e d e f f e c t o f a l l s o i l c o n d i t i o n s with r e a s o n a b l e s u c c e s s . Conversely, on s m a l l watersheds, on which t h e major p o r t i o n o f t h e r u n o f f may be produced from a s m a l l a r e a w i t h i n t h e b a s i n , we must employ a s o u r c e - a r e a concept i n determining t h e peak flow. Obviously, f o r t h i s l a t t e r c a s e we r e q u i r e a much more d e t a i l e d s u b - d i v i s i o n o f a b a s i n a s t o i t s i n f i l t r a t i o n p r o p e r t i e s i n a d d i t i o n t o a dense p r e c i p i t a t i o n network. M r . VERMA asked i f Equation 8 could be a p p l i e d t o t h e d e t e r mination o f i n f i l t r a t i o n t o s o l o n e t z i c s o i l s which a r e h i g h l y cracked a t t h e s u r f a c e ? If n o t , then what e q u a t i o n ( i f any) would be a p p l i c a b l e f o r t h e s e s i t u a t i o n s ? D r . NORUM r e p l i e d i n t h e n e g a t i v e s t a t i n g t h a t t h e e q u a t i o n s t h a t a r e p r e s e n t e d a r e f o r uniform s o i l . I f t h e s o i l is h i g h l y cracked a t t h e s u r f a c e t h e i n i t i a l a p p a r e n t i n f i l t r a t i o n r a t e w i l l be v e r y h i g h and a s soon a s t h e c r a c k s have f i l l e d i t w i l l decrease very rapidly. D r . McDONALD a l s o q u e s t i o n e d Equation 8 and thought t h a t i n s t e a d o f t h e mass i n f i l t r a t i o n b e i n g r e p r e s e n t e d by xde i t should b e Ae = en - ei. 8i D r . NORUM e x p l a i n e d t h a t i n Equation 7, x is a f u n c t i o n o f t h e m o i s t u r e c o n t e n t 0 . That i s t o s a y f o r a given 0 we can c a l c u l a t e t h e depth x a t which t h i s moisture c o n t e n t o c c u r s . We a r e not assuming t h a t t h e s o i l i s s a t u r a t e d above some p o i n t x. Consequently, we w r i t e t h e i n t e g r a l a s p r e s e n t e d i n Equation 8 because we have x a s a f u n c t i o n of 0 from Equation 7.
© Copyright 2025 Paperzz