Question Set for mark 1: Evaluate the following Logarithmic expressions: Please note that when base is not mentioned, it is considered as Natural Logarithms. 13 log2 64 log10(0.001) log32 ÷ log16 3(log94) log2 (1/8) log2+log(1/2) log 9 Ans. 6 Ans . -3 Ans. 5/4 Ans. 2 Ans. -3 Ans. 0 Ans. -2 15 log5+log3 Ans. log15 1 3 5 7 9 11 2 4 6 8 10 12 14 log3(1/27) log32-log16 27(log3 2) 49 log8 2 log5 625 If log =1,then x=? Ans. -3 Ans. log2 Ans. 8 . 2 Ans. 1/3 Ans. 4 Ans. 2 Question Set for mark 3: Simple Examples: 1 2 3 4 Find the value of log(9/14) - log(15/16) + log(35/24) Prove that log(75/16) – 2log(5/9) + log(32/243) = log2 Ans. 0 Simplify : log Ans. 0 5 Prove that 6 7 8 Simplify log 84 log 28 3'()* Solve : 2 3 + # 27 + 9. Solve: log -log -log .. = 1 1 1 1 Prove that + + = 2. log 6 24 log12 24 log 8 24 9 10 + log + log 1 ] +log[x - √ Prove that log[x +√ Prove that: log / ! " + log ! " ! #0 + log 0 1 + log 2 3 = 24 1 ]=0 Ans. 0 Ans. 27 Ans. 512 11 Prove that + '() =1 '()* 12 13 Prove that:log 2 1 + log1 3 + log3 4 = log 2 4 If log5 3 -log 25 = log then find the value of “ x”. 14 If 15 If log 789 +7892 789: Ans. 5 Ans. 3√3 = log27, Then find the value of “ x”. = 2 and log 2 1 =2 ,then find the value of “ y”. Ans. 16 Question Set for mark 4: Examples based on Theorems/Rules: 1 Prove that 2 Prove that 3 If log A '(); " '() ! '()<= > + < '()=; > ! + " '() ! = '();< > # 1. = 2 log > 5?@. = (log 5 + log ?) , prove that a = b. 4 Prove that : log B + log 5 Prove that 6 Prove that 7 Prove that 8 Solve the following equation: log-2 " 1. + log-3 9 x+ y 1 2 2 If log = (log x + log y ) , then prove that x + y = 7 xy 3 2 10 If B + log * B + log C B = 4 log B a−b b−c c−a log x + log x + log x =0. b−c c−a a −b log q '()D /0A '()I JA'()I : . '()I J p 2 ⋅ log r q 2 ⋅ log + '()E 02A p + r 2 = 64 '()F 2/A =1 1. = 0. = log K Then find the value of “x” Ans. x = Ans.x=25
© Copyright 2025 Paperzz