The Chemistry of Frustrated Lewis Pairs MacMillan Group Meeting Tracy Liu 4 December 2013 RR B R R N R R RR B R R N R R RR B R R N R R R R R B R N R R RR B R N R R R RR R B R N R H2 R R R R B N R R R R R R B R H H N R R RR B R N R R R RR R B R N R H2 R R R R heat B N R R R R R R B R H H N R R Number of Publications Rapid Emergence of FLP Chemistry 100 80 60 40 20 0 2000 2006 2009 2012 ■ 289 total publications in FLP chemistry ■ Leading Academics: Douglas W. Stephan, University of Toronto, Canada Gerhard Erker, Westfälische Wilhelms-Universität Münster, Germany Imre Pápai, Chemical Research Cent. of the Hungarian Acad. of Sciences, Hungary The Advent of FLP Chemistry 1942 - Brown makes an interesting observation Me N Me Me BF 3 BF 3 N BMe 3 No Reaction Me Brown, H. C.; Schlesinger, H. I. JACS, 1942, 64, 325-329. The Advent of FLP Chemistry 1942 - Brown makes an interesting observation Me N Me Me BF 3 BF 3 N BMe 3 No Reaction Me Brown, H. C.; Schlesinger, H. I. JACS, 1942, 64, 325-329. The Advent of FLP Chemistry 1942 - Brown makes an interesting observation 1959 - Wittig finds PPh 3 and BPh 3 does not form an adduct F Mg PPh 3 Br PPh 3 BPh 3 BPh 3 No formation of classical Lewis Acid/Base adduct Wittig, G.; Benz, E. Chem. Ber., 1959, 92, 1999-2013. The Advent of FLP Chemistry 1942 - Brown makes an interesting observation 1966 - Tochtermann reports Ph 3Cand BPh 3 trap across olefins; coining of the term "FLP" 1959 - Wittig finds PPh 3 and BPh 3 does not form an adduct BPh 3 [Ph 3C-]Na+ Ph 3C and BPh 3 Ph 3C BPh 3 no observation of polybutadiene Tochtermann, W. ACIE, 1966, 5, 351-371. The Advent of FLP Chemistry 2006 - Stephan finds FLPs can reversibly split H 2 1942 - Brown makes an interesting observation 1966 - Tochtermann reports Ph 3Cand BPh 3 trap across olefins; coining of the term "FLP" 1959 - Wittig finds PPh 3 and BPh 3 does not form an adduct Me F F F Me PH + B(C 6F 5)3 (Me 3C6H 2)2P B(C 6F 5)2 H Me 2 F F F Me 2SiHCl F H (Me 3C6H 2)2P B(C 6F 5)2 H F F Welch, G. C.; San Juan, R. R.; Masuda, J. D.; Stephan, D. W. Science, 2006, 314, 1124-1126. The Advent of FLP Chemistry 2006 - Stephan finds FLPs can reversibly split H 2 1942 - Brown makes an interesting observation 1966 - Tochtermann reports Ph 3Cand BPh 3 trap across olefins; coining of the term "FLP" 1959 - Wittig finds PPh 3 and BPh 3 does not form an adduct F F F H (Me 3C6H 2)2P heat B(C 6F 5)2 F (Me 3C6H 2)2P B(C 6F 5)2 H2 H F F F F Welch, G. C.; San Juan, R. R.; Masuda, J. D.; Stephan, D. W. Science, 2006, 314, 1124-1126. The Advent of FLP Chemistry 2006 - Stephan finds FLPs can reversibly split H 2 1942 - Brown makes an interesting observation 1966 - Tochtermann reports Ph 3Cand BPh 3 trap across olefins; coining of the term "FLP" 1959 - Wittig finds PPh 3 and BPh 3 does not form an adduct F F F H (Me 3C6H 2)2P heat B(C 6F 5)2 F (Me 3C6H 2)2P B(C 6F 5)2 H2 H F F F F Welch, G. C.; San Juan, R. R.; Masuda, J. D.; Stephan, D. W. Science, 2006, 314, 1124-1126. The Advent of FLP Chemistry 2006 - Stephan finds FLPs can reversibly split H 2 1942 - Brown makes an interesting observation 1966 - Tochtermann reports Ph 3Cand BPh 3 trap across olefins; coining of the term "FLP" 1959 - Wittig finds PPh 3 and BPh 3 does not form an adduct 2007 - FLPs catalytically perform hydrogenations B(C 6F 5)2 (tBu) 2P N tBu (5 mol %) 1 atm H 2 Ph HN tBu Ph 98% (C 6F 5)Ph2P (20 mol %) B(C 6F 5)3 (20 mol %) Ph Ph 5 bar H 2 Me Ph Ph 99% Chase, P.A.; Welch, G. C.; Jurca, T.; Stephan, D. W. ACIE, 2007, 46, 8050-8053. Greb, L.; Ona-Burgos, P.; Schirmer, B.; Grimme, S.; Stephan, D. W.; Paradies, J. ACIE, 2012, 51, 10164-10168. The Advent of FLP Chemistry 2006 - Stephan finds FLPs can reversibly split H 2 1942 - Brown makes an interesting observation 2008 - FLPs reversibly bind CO2 1966 - Tochtermann reports Ph 3Cand BPh 3 trap across olefins; coining of the term "FLP" 1959 - Wittig finds PPh 3 and BPh 3 does not form an adduct tBu 3P + B(C 6F 5)3 2007 - FLPs catalytically perform hydrogenations CO2, 25 ºC (tBu) 3P B(C 6F 5)3 O -CO2, 80 ºC vacuum, 5 hrs O Mömming, C. M.; Otten, E.; Kehr, G.; Frölich, R.; Grimme, S.; Stephan, D. W.; Erker, G. ACIE, 2009, 48, 6643-6646. The Advent of FLP Chemistry 2006 - Stephan finds FLPs can reversibly split H 2 1942 - Brown makes an interesting observation 2008 - FLPs reversibly bind CO2 1966 - Tochtermann reports Ph 3Cand BPh 3 trap across olefins; coining of the term "FLP" 1959 - Wittig finds PPh 3 and BPh 3 does not form an adduct 2007 - FLPs catalytically perform hydrogenations Me Me B(C 6F 5)2 OMe Me N 2010 - Asymmetric hydrogenation of imines with FLPs Ph OMe HN (5 mol %) Me tBu 3P (5 mol %) 25 bar H 2 Me >99% 81% ee Chen, D.; Wang, Y.; Klankermeyer, J. ACIE, 2010, 49, 9475-9578. The Advent of FLP Chemistry 2006 - Stephan finds FLPs can reversibly split H 2 1942 - Brown makes an interesting observation 1966 - Tochtermann reports Ph 3Cand BPh 3 trap across olefins; coining of the term "FLP" 1959 - Wittig finds PPh 3 and BPh 3 does not form an adduct 2008 - FLPs reversibly bind CO2 2010 - Asymmetric hydrogenation of imines with FLPs 2007 - FLPs catalytically perform hydrogenations ■ I. Theories on the Mechanism of H 2 Activation ■ II. Applications of FLPs in Hydrogenation Reactions and Storage of Small Molecules The Advent of FLP Chemistry 2006 - Stephan finds FLPs can reversibly split H 2 1942 - Brown makes an interesting observation 1966 - Tochtermann reports Ph 3Cand BPh 3 trap across olefins; coining of the term "FLP" 1959 - Wittig finds PPh 3 and BPh 3 does not form an adduct 2008 - FLPs reversibly bind CO2 2010 - Asymmetric hydrogenation of imines with FLPs 2007 - FLPs catalytically perform hydrogenations ■ I. Theories on the Mechanism of H 2 Activation ■ II. Applications of FLPs in Hydrogenation Reactions and Storage of Small Molecules Two Competing Models on the Mechanism of H 2 Activation R R R H R H A R R D → σ* donation R R H H D R R R σ → A donation Electron Transfer Model R 3P R BR 3 Electric Field Model Initial Hypotheses on the Mechanism of H 2 Activation tBu 3P + B(C 6F 5)3 Mes 3P + B(C 6F 5)3 H2 1 atm H2 1 atm [tBu 3PH][HB(C 6F 5)3] [Mes 3PH][HB(C 6F 5)3] Welch, C.; Stephan, D. W. JACS, 2007, 129 , 1880-1881. Initial Hypotheses on the Mechanism of H 2 Activation tBu 3P + B(C 6F 5)3 Mes 3P + B(C 6F 5)3 H2 [tBu 3PH][HB(C 6F 5)3] 1 atm H2 [Mes 3PH][HB(C 6F 5)3] 1 atm R 3P H BR 3 H σ (H 2) → p (B) PR 3 + BR 3 R 3P H [R 3PH][HBR 3] H BR 3 LP (P) → σ* (H 2) Welch, C.; Stephan, D. W. JACS, 2007, 129 , 1880-1881. First DFT Study on the Mechanism of H 2 Activation tBu 3P ------ B(C 6F 5)3 ■ Multiple H-bonds between C–H---F groups give rise to a preorganized complex ■ Non-directional dispersion forces between tBu and C6F 5 groups render the complex flexible Rokob, T. A.; Hamza, A.; Stirling, A.; Soós, T.; Pápai, I. ACIE, 2008, 120 , 2469-2472. First DFT Study on the Mechanism of H 2 Activation tBu 3P --- H–H --- B(C 6F 5)3 ■ Located T.S. features a nearly linear P–H–H–B axis ■ H 2 bond elongated from 0.74 A to 0.79 A indicative of an early T.S. ■ 10.4 kcal/mol higher than tBu 3P---B(C 6F 5)3 + H 2 Rokob, T. A.; Hamza, A.; Stirling, A.; Soós, T.; Pápai, I. ACIE, 2008, 120 , 2469-2472. First DFT Study on the Mechanism of H 2 Activation tBu 3P --- H–H --- B(C 6F 5)3 ■ Discovered significant H 2 polarization ■ Electron transfer proceeds via simultaneous tBu 3P → σ∗(H 2) and σ(H 2) → B(C 6F 5)3 donation Rokob, T. A.; Hamza, A.; Stirling, A.; Soós, T.; Pápai, I. ACIE, 2008, 120 , 2469-2472. First DFT Study on the Mechanism of H 2 Activation The Electron Transfer Model ■ Non-bonding interactions between bulky substituents lead to a higher E frustrated complex Rokob, T. A.; Hamza, A.; Stirling, A.; Soós, T.; Pápai, I. ACIE, 2008, 120 , 2469-2472. First DFT Study on the Mechanism of H 2 Activation The Electron Transfer Model ■ Non-bonding interactions between bulky substituents lead to a higher E frustrated complex ■ Frustration energy, ΔEt, decreases the activation energy and renders hydrogen splitting facile and highly exothermic via reactant state destabilization Rokob, T. A.; Hamza, A.; Stirling, A.; Soós, T.; Pápai, I. ACIE, 2008, 120 , 2469-2472. First DFT Study on the Mechanism of H 2 Activation The Electron Transfer Model ■ Non-bonding interactions between bulky substituents lead to a higher E frustrated complex ■ Frustration energy, ΔEt, decreases the activation energy and renders hydrogen splitting facile and highly exothermic via reactant state destabilization ■ Non-bonding interactions between bulky substituents stabilizes both the T.S. and product Rokob, T. A.; Hamza, A.; Stirling, A.; Soós, T.; Pápai, I. ACIE, 2008, 120 , 2469-2472. An Alternative Mechanism of H 2 Activation Mes C6F 5 C6F 5 B C6F 5 P Mes H2 P Mes H C6F 5 H Mes Ph Ph Mes Mes B P Mes H2 B Ph Mes P B H Ph H Linear T.S. not possible for certain tethered FLPs Grimme, S.; Kruse, H.; Goerigk, L.; Erker, G. ACIE, 2010, 49, 1402-1405. An Alternative Mechanism of H 2 Activation Calculated T.S. employing a dispersion corrected DFT model: (C 6F 5)3B ---- PtBu 3 + H 2 (C 6F 5)2B PMes 2 + H2 Calculated T.S. do not have a linear relationship along P–H–H–B axis Grimme, S.; Kruse, H.; Goerigk, L.; Erker, G. ACIE, 2010, 49, 1402-1405. An Alternative Mechanism of H 2 Activation incr. E 2 kcal/mol between each line 2-D potential E surface for tBu 3P + B(C 6F 5)3 system Grimme, S.; Kruse, H.; Goerigk, L.; Erker, G. ACIE, 2010, 49, 1402-1405. An Alternative Mechanism of H 2 Activation incr. E peak 2 kcal/mol between each line Grimme, S.; Kruse, H.; Goerigk, L.; Erker, G. ACIE, 2010, 49, 1402-1405. An Alternative Mechanism of H 2 Activation artificial T.S. peak Pápai's non-dispersion corrected DFT model overestimated the P–B bond distance resulting in a T.S. that is otherwise not present Grimme, S.; Kruse, H.; Goerigk, L.; Erker, G. ACIE, 2010, 49, 1402-1405. An Alternative Mechanism of H 2 Activation The Electric Field Model R 3P BR 3 ■ Neglect the FLP as a molecular species and replace it by an electric field ■ Polarization from electric field generated in the interior of the FLP cavity allows for H 2 splitting Grimme, S.; Kruse, H.; Goerigk, L.; Erker, G. ACIE, 2010, 49, 1402-1405. An Alternative Mechanism of H 2 Activation The Electric Field Model R 3P BR 3 ■ Neglect the FLP as a molecular species and replace it by an electric field ■ Polarization from electric field generated in the interior of the FLP cavity allows for H 2 splitting F = Electric field strength (a.u.) (1 a.u. = 5.1422 x 1011 Vm-1) Critical field strength needed for H 2 splitting is 0.05 – 0.06 a.u. Grimme, S.; Kruse, H.; Goerigk, L.; Erker, G. ACIE, 2010, 49, 1402-1405. An Alternative Mechanism of H 2 Activation The Electric Field Model F = Electric field strength (a.u.) (1 a.u. = 5.1422 x 1011 Vm-1) Critical field strength needed for H 2 splitting is 0.05 – 0.06 a.u. tBu C6F 5 P B tBu C6F 5 C6F 5 tBu 0.04 - 0.06 a.u. C6F 5 Mes P B C6F 5 Mes 0.04 - 0.06 a.u. Grimme, S.; Kruse, H.; Goerigk, L.; Erker, G. ACIE, 2010, 49, 1402-1405. An Alternative Mechanism of H 2 Activation The Electric Field Model ■ H-bonding interactions form the FLP while non-directional dispersion forces instill flexibility allowing H 2 entry – termed the "preparation step" Grimme, S.; Kruse, H.; Goerigk, L.; Erker, G. ACIE, 2010, 49, 1402-1405. An Alternative Mechanism of H 2 Activation The Electric Field Model ■ H-bonding interactions form the FLP while non-directional dispersion forces instill flexibility allowing H 2 entry – termed the "preparation step" ■ Activation energy is the "preparation step"; after entrance H 2 splitting is barrierless Grimme, S.; Kruse, H.; Goerigk, L.; Erker, G. ACIE, 2010, 49, 1402-1405. An Alternative Mechanism of H 2 Activation The Electric Field Model ■ H-bonding interactions form the FLP while non-directional dispersion forces instill flexibility allowing H 2 entry – termed the "preparation step" ■ Activation energy is the "preparation step"; after entrance H 2 splitting is barrierless ■ No molecular orbitals arguments invoked; believe this accounts for the similar reactivity of chemically different FLPs Grimme, S.; Kruse, H.; Goerigk, L.; Erker, G. ACIE, 2010, 49, 1402-1405. The Electron Transfer Model Revisited C6F 5 tBu P tBu tBu + tBu B C6F 5 C C6F 5 C6F 5 N N tBu + C6F 4H + B C6F 5 C6F 5 N Mes B C6F 4H Rokob, T. A.; Bakó, I.; Stirling, A.; Hamza, A.; Pápai, I. JACS, 2013, 135 , 4425-4437. The Electron Transfer Model Revisited C6F 5 tBu P tBu tBu + tBu B C6F 5 C C6F 5 C6F 5 N N tBu + C6F 4H + B C6F 5 C6F 5 N Mes B C6F 4H Rokob, T. A.; Bakó, I.; Stirling, A.; Hamza, A.; Pápai, I. JACS, 2013, 135 , 4425-4437. The Electron Transfer Model Revisited F = Electric field strength (a.u.) (1 a.u. = 5.1422 x 1011 Vm-1) ■ At the "critical field" of 0.06 a.u., the activation energy is 75 kcal/mol Grimme, S.; Kruse, H.; Goerigk, L.; Erker, G. ACIE, 2010, 49, 1402-1405. Rokob, T. A.; Bakó, I.; Stirling, A.; Hamza, A.; Pápai, I. JACS, 2013, 135 , 4425-4437. The Electron Transfer Model Revisited F = Electric field strength (a.u.) (1 a.u. = 5.1422 x 1011 Vm-1) ■ At the "critical field" of 0.06 a.u., the activation energy is 75 kcal/mol ■ Only at higher electric fields, 0.09 a.u. and above, does the activation energy lower to a reasonable range (20 kcal/mol or lower) Grimme, S.; Kruse, H.; Goerigk, L.; Erker, G. ACIE, 2010, 49, 1402-1405. Rokob, T. A.; Bakó, I.; Stirling, A.; Hamza, A.; Pápai, I. JACS, 2013, 135 , 4425-4437. The Electron Transfer Model Revisited F = Electric field strength (a.u.) (1 a.u. = 5.1422 x 1011 Vm-1) ■ At the "critical field" of 0.06 a.u., the activation energy is 75 kcal/mol ■ Only at higher electric fields, 0.09 a.u. and above, does the activation energy lower to a reasonable range (20 kcal/mol or lower) ■ Only at field strengths above 0.1 a.u., does H 2 splitting become "barrierless" Grimme, S.; Kruse, H.; Goerigk, L.; Erker, G. ACIE, 2010, 49, 1402-1405. Rokob, T. A.; Bakó, I.; Stirling, A.; Hamza, A.; Pápai, I. JACS, 2013, 135 , 4425-4437. The Electron Transfer Model Revisited C6F 5 tBu P tBu tBu + tBu B C6F 5 C C6F 5 C6F 5 N N tBu + C6F 4H + B C6F 5 C6F 5 N Mes B C6F 4H Rokob, T. A.; Bakó, I.; Stirling, A.; Hamza, A.; Pápai, I. JACS, 2013, 135 , 4425-4437. The Electron Transfer Model Revisited C6F 5 tBu P tBu tBu + tBu B C6F 5 C C6F 5 C6F 5 N N tBu + C6F 4H + B C6F 5 C6F 5 N Mes B C6F 4H Rokob, T. A.; Bakó, I.; Stirling, A.; Hamza, A.; Pápai, I. JACS, 2013, 135 , 4425-4437. The Electron Transfer Model Revisited C6F 5 tBu P tBu tBu + tBu B C6F 5 C C6F 5 C6F 5 N N tBu + C6F 4H + B C6F 5 C6F 5 N Mes B C6F 4H EFs within FLP cavities are not homogeneous and are not always strong enough to effect H 2 splitting Rokob, T. A.; Bakó, I.; Stirling, A.; Hamza, A.; Pápai, I. JACS, 2013, 135 , 4425-4437. The Electron Transfer Model Revisited Me tBu P tBu tBu tBu C N N tBu Mes N + B(C 6F 5)3 + B(C 6F 5)3 + B(C 6F 5)3 1 2 3 Mes B B C6F 5 tBu C6F 5 Me 4 C6F 5 N C6F 5 P Me Me tBu 5 Ph P B Ph 6 Rokob, T. A.; Bakó, I.; Stirling, A.; Hamza, A.; Pápai, I. JACS, 2013, 135 , 4425-4437. The Electron Transfer Model Revisited 0.09 a.u. For none of the FLPs studied is the EF along the H 2 axis high enough to permit H 2 splitting Me tBu P tBu tBu tBu C N N tBu Mes N + B(C 6F 5)3 + B(C 6F 5)3 + B(C 6F 5)3 1 2 3 Mes B B C6F 5 tBu C6F 5 Me 4 C6F 5 N C6F 5 P Me Me tBu 5 Ph P B Ph 6 Rokob, T. A.; Bakó, I.; Stirling, A.; Hamza, A.; Pápai, I. JACS, 2013, 135 , 4425-4437. The Electron Transfer Model Revisited H H H R R H A R R R R D → σ* donation H H R R H H D R R R R σ → A donation ■ Use of dispersion corrected DFT basis set results in a generally bent D–H–H–A geometry explained by frontier orbitals aligning themselves for optimal orbital overlap ■ Deviation from ideal 180º D---H 2 angle and 90º H 2---A angle due to polarization of the σ / σ* orbitals of H 2 Rokob, T. A.; Bakó, I.; Stirling, A.; Hamza, A.; Pápai, I. JACS, 2013, 135 , 4425-4437. The Advent of FLP Chemistry 2006 - Stephan finds FLPs can reversibly split H 2 1942 - Brown makes an interesting observation 1966 - Tochtermann reports Ph 3Cand BPh 3 trap across olefins; coining of the term "FLP" 1959 - Wittig finds PPh 3 and BPh 3 does not form an adduct 2008 - FLPs reversibly bind CO2 2010 - Asymmetric hydrogenation of imines with FLPs 2007 - FLPs catalytically perform hydrogenations ■ I. Theories on the Mechanism of H 2 Activation ■ II. Applications of FLPs in Hydrogenation Reactions and Storage of Small Molecules The First Example of Catalytic Hydrogenations with FLPs Hydrogenation of Imines, Nitriles, and Aziridines F F PR 2 (C 6F 5)2B F F 1 R = Mes 2 R = tBu N Ph tBu 5 mol % cat. 1 atm H 2 80 ºC HN tBu Ph 79% (1) 98% (2) Chase, P. A.; Welch, C.; Jurca, T.; Stephan, D. W. ACIE, 2007, 46, 8050-8053. The First Example of Catalytic Hydrogenations with FLPs Hydrogenation of Imines, Nitriles, and Aziridines F F PR 2 (C 6F 5)2B F N 1 R = Mes 2 R = tBu tBu 5 mol % cat. 1 atm H 2 80 ºC Ph F HN tBu Ph 79% (1) 98% (2) Ph N Ph SO2Ph Ph 97% (1) 87% (2) N Ph Ph N Ph 88% (1) Ph 98% (1) Chase, P. A.; Welch, C.; Jurca, T.; Stephan, D. W. ACIE, 2007, 46, 8050-8053. The First Example of Catalytic Hydrogenations with FLPs Hydrogenation of Imines, Nitriles, and Aziridines ■ Catalytic hydrogenation only possible for sterically hindered imines F F Mes 2P B(C 6F 5)2 F N Ph Ph F HN 5 mol % 5 atm H 2 120 ºC Ph Ph 5% Chase, P. A.; Welch, C.; Jurca, T.; Stephan, D. W. ACIE, 2007, 46, 8050-8053. The First Example of Catalytic Hydrogenations with FLPs Hydrogenation of Imines, Nitriles, and Aziridines ■ Catalytic hydrogenation only possible for sterically hindered imines F F Mes 2P B(C 6F 5)2 F N Ph Ph F HN 5 mol % 5 atm H 2 120 ºC Ph Ph 5% F F Bn H N Mes 2P Bn B(C 6F 5)2 F F adduct formation between Lewis Basic product and FLP shuts down catalytic activity Chase, P. A.; Welch, C.; Jurca, T.; Stephan, D. W. ACIE, 2007, 46, 8050-8053. The First Example of Catalytic Hydrogenations with FLPs Hydrogenation of Imines, Nitriles, and Aziridines ■ Catalytic hydrogenation only possible for sterically hindered imines F F Mes 2P B(C 6F 5)2 F N Ph F HN 5 mol % 5 atm H 2 120 ºC Ph Ph Ph 5% ■ Protecting Imine with B(C 6F 5)3 recovers catalytic activity F F Mes 2P (C 6F 5)3B Ph B(C 6F 5)2 F N Ph F 5 mol % 5 atm H 2 120 ºC (C 6F 5)3B N Ph Ph 57% Chase, P. A.; Welch, C.; Jurca, T.; Stephan, D. W. ACIE, 2007, 46, 8050-8053. The First Example of Catalytic Hydrogenations with FLPs Hydrogenation of Imines, Nitriles, and Aziridines ■ Catalytic hydrogenation only possible for B(C 6F 5)3 protected nitriles F F Mes 2P B(C 6F 5)2 B(C 6F 5)3 F N 5 mol % R 5 atm H 2 120 ºC F HN B(C 6F 5)3 R R = Me, 75% R = Ph, 84% Only the amine is isolated (cannot isolate imine) Chase, P. A.; Welch, C.; Jurca, T.; Stephan, D. W. ACIE, 2007, 46, 8050-8053. The First Example of Catalytic Hydrogenations with FLPs Hydrogenation of Imines, Nitriles, and Aziridines F F Mes 2P B(C 6F 5)2 F F H2 F F H Mes 2P B(C 6F 5)2 H F F Chase, P. A.; Welch, C.; Jurca, T.; Stephan, D. W. ACIE, 2007, 46, 8050-8053. The First Example of Catalytic Hydrogenations with FLPs Hydrogenation of Imines, Nitriles, and Aziridines F F Mes 2P B(C 6F 5)2 F F H N F H2 F F R F H Mes 2P H Mes 2P B(C 6F 5)2 B(C 6F 5)2 H Ph F F F F proton transfer N R Ph Chase, P. A.; Welch, C.; Jurca, T.; Stephan, D. W. ACIE, 2007, 46, 8050-8053. The First Example of Catalytic Hydrogenations with FLPs Hydrogenation of Imines, Nitriles, and Aziridines F HN Mes 2P R F N B(C 6F 5)2 F Ph H F F H2 F F R F H Mes 2P H Mes 2P B(C 6F 5)2 B(C 6F 5)2 H Ph F F F F proton transfer N R Ph Chase, P. A.; Welch, C.; Jurca, T.; Stephan, D. W. ACIE, 2007, 46, 8050-8053. The First Example of Catalytic Hydrogenations with FLPs Hydrogenation of Imines, Nitriles, and Aziridines F HN Mes 2P R F N B(C 6F 5)2 F Ph H F F H2 F F R F H Mes 2P H Mes 2P B(C 6F 5)2 B(C 6F 5)2 H Ph F F F F proton transfer N R Ph Proton transfer precedes hydride delivery Increased rates with electron rich imines (R = tBu, 1 hr vs. R = SO2Ph, >10 hrs) Chase, P. A.; Welch, C.; Jurca, T.; Stephan, D. W. ACIE, 2007, 46, 8050-8053. The First Example of Catalytic Hydrogenations with FLPs Hydrogenation of Imines, Nitriles, and Aziridines F F Mes 2P B(C 6F 5)2 F F H2 F F H Mes 2P B(C 6F 5)2 H F F Chase, P. A.; Welch, C.; Jurca, T.; Stephan, D. W. ACIE, 2007, 46, 8050-8053. The First Example of Catalytic Hydrogenations with FLPs Hydrogenation of Imines, Nitriles, and Aziridines F F Mes 2P B(C 6F 5)2 F F (C 6F 5)3B Ph N F H2 F F F R H Mes 2P H Mes 2P B(C 6F 5)2 H B(C 6F 5)2 H F F F F hydride delivery (C 6F 5)3B N R Ph Chase, P. A.; Welch, C.; Jurca, T.; Stephan, D. W. ACIE, 2007, 46, 8050-8053. The First Example of Catalytic Hydrogenations with FLPs Hydrogenation of Imines, Nitriles, and Aziridines F (C 6F 5)3B H N Mes 2P R F Ph N B(C 6F 5)2 F Ph (C 6F 5)3B F F H2 F F F R H Mes 2P H Mes 2P B(C 6F 5)2 H B(C 6F 5)2 H F F F F hydride delivery (C 6F 5)3B N R Ph Chase, P. A.; Welch, C.; Jurca, T.; Stephan, D. W. ACIE, 2007, 46, 8050-8053. The First Example of Catalytic Hydrogenations with FLPs Hydrogenation of Imines, Nitriles, and Aziridines F (C 6F 5)3B H N Mes 2P R F Ph N B(C 6F 5)2 F Ph (C 6F 5)3B F F H2 F F F R H Mes 2P H Mes 2P B(C 6F 5)2 H B(C 6F 5)2 H F F F F hydride delivery (C 6F 5)3B N R Ph Hydride delivery precedes proton transfer Chase, P. A.; Welch, C.; Jurca, T.; Stephan, D. W. ACIE, 2007, 46, 8050-8053. An Improved FLP Hydrogenation of Ketimines and Enamines H H2 Mes 2P B(C 6F 5)2 B(C 6F 5)3 Mes 2P H N Ph tBu Mes 2P B(C 6F 5)2 HN 20 mol % 2.5 bar H 2 r.t. tBu Ph 87% Spies, P.; Schwendemann, S.; Lange, S.; Kehr, G.; Fröhlich, R.; Erker, G. ACIE, 2008, 47, 7543-7546. An Improved FLP Hydrogenation of Ketimines and Enamines H H2 Mes 2P B(C 6F 5)2 B(C 6F 5)3 Mes 2P H N Mes 2P tBu B(C 6F 5)2 HN 20 mol % 2.5 bar H 2 r.t. Ph tBu Ph 87% O N N Ph tBu N N 70% (5 mol %) 70% (3 mol %) Me 70% (5 mol %) 70% (10 mol %) Spies, P.; Schwendemann, S.; Lange, S.; Kehr, G.; Fröhlich, R.; Erker, G. ACIE, 2008, 47, 7543-7546. Catalytic Hydrogenations Using only B(C6F 5 )3 Hydrogenation of Imines N Ph tBu B(C 6F 5)3 (cat.) 4 atm H 2 toluene, 25 ºC (C 6F 5)3B Ph N tBu H 2N 4 atm H 2 toluene, 80 ºC tBu HB(C 6F 5)3 Ph Chase, P. A.; Jurca, T.; Stephan, D. W. Chem. Comm., 2008, 1701-1703. Catalytic Hydrogenations Using only B(C6F 5 )3 Hydrogenation of Imines N Ph tBu B(C 6F 5)3 (cat.) 4 atm H 2 toluene, 25 ºC (C 6F 5)3B Ph N tBu H 2N 4 atm H 2 toluene, 80 ºC tBu HB(C 6F 5)3 Ph Isolation of zwitterion suggests adduct formation with the product is reversible and that the B(C 6F 5)3 catalyst can be recycled Chase, P. A.; Jurca, T.; Stephan, D. W. Chem. Comm., 2008, 1701-1703. Catalytic Hydrogenations Using only B(C6F 5 )3 Hydrogenation of Imines N Ph tBu B(C 6F 5)3 (cat.) 4 atm H 2 toluene, 25 ºC (C 6F 5)3B N tBu H 2N 4 atm H 2 toluene, 80 ºC Ph tBu HB(C 6F 5)3 Ph Isolation of zwitterion suggests adduct formation with the product is reversible and that the B(C 6F 5)3 catalyst can be recycled N Ph tBu 5 mol % B(C 6F 5)3 5 atm H 2 120 ºC HN tBu Ph 89% Chase, P. A.; Jurca, T.; Stephan, D. W. Chem. Comm., 2008, 1701-1703. Catalytic Hydrogenations Using only B(C6F 5 )3 Hydrogenation of Imines N Ph tBu B(C 6F 5)3 (cat.) 4 atm H 2 toluene, 25 ºC (C 6F 5)3B N tBu H 2N 4 atm H 2 toluene, 80 ºC Ph tBu HB(C 6F 5)3 Ph Isolation of zwitterion suggests adduct formation with the product is reversible and that the B(C 6F 5)3 catalyst can be recycled B(C 6F 5)3 R H2 + N R' R N H HB(C 6F 5)3 R' Chase, P. A.; Jurca, T.; Stephan, D. W. Chem. Comm., 2008, 1701-1703. Catalytic Hydrogenations Using only B(C6F 5 )3 Hydrogenation of Imines N Ph tBu B(C 6F 5)3 (cat.) (C 6F 5)3B 4 atm H 2 toluene, 25 ºC N tBu H 2N 4 atm H 2 toluene, 80 ºC Ph tBu HB(C 6F 5)3 Ph Isolation of zwitterion suggests adduct formation with the product is reversible and that the B(C 6F 5)3 catalyst can be recycled B(C 6F 5)3 R H2 + N R' H R N B(C 6F 5)3 H R' R N H HB(C 6F 5)3 R' Chase, P. A.; Jurca, T.; Stephan, D. W. Chem. Comm., 2008, 1701-1703. Catalytic Hydrogenations Using only B(C6F 5 )3 Hydrogenation of Imines N Ph tBu B(C 6F 5)3 (cat.) (C 6F 5)3B 4 atm H 2 toluene, 25 ºC N tBu H 2N 4 atm H 2 toluene, 80 ºC Ph tBu HB(C 6F 5)3 Ph Isolation of zwitterion suggests adduct formation with the product is reversible and that the B(C 6F 5)3 catalyst can be recycled R NH B(C 6F 5)3 R H2 + R' N R' H R N B(C 6F 5)3 H R' R N H HB(C 6F 5)3 R' Chase, P. A.; Jurca, T.; Stephan, D. W. Chem. Comm., 2008, 1701-1703. Expanding the Scope to Oxygenated Substrates Hydrogenation of Silyl Enol Ethers PPh 2 PPh 2 H H 2, r.t. PPh 2 PPh 2 HB(C 6F 5)3 –H 2, 60 ºC Wang, H.; Fröhlich, R.; Kehr, G.; Erker, G. Chem. Comm., 2008, 5966-5968. Expanding the Scope to Oxygenated Substrates Hydrogenation of Silyl Enol Ethers PPh 2 PPh 2 H H 2, r.t. PPh 2 PPh 2 HB(C 6F 5)3 –H 2, 60 ºC OTMS R OTMS 20 mol % cat. 2 bar H 2, r.t. R R' Wang, H.; Fröhlich, R.; Kehr, G.; Erker, G. Chem. Comm., 2008, 5966-5968. Expanding the Scope to Oxygenated Substrates Hydrogenation of Silyl Enol Ethers H B(C 6F 5)3 H 2, r.t. PPh 2 PPh 2 PPh 2 PPh 2 HB(C 6F 5)3 –H2, 60 ºC OTMS R R 2 bar H 2, r.t. OTMS OTMS OTMS OTMS 20 mol % cat. R OTMS 93% OTMS Me tBu Ph R' 89% 86% 85% >99% Wang, H.; Fröhlich, R.; Kehr, G.; Erker, G. Chem. Comm., 2008, 5966-5968. Studies of Hantzsch Ester with B(C6F 5 )3 Unveils New Substrates Hydrogenation of N-heterocycles O O EtO O OEt Me N H Me B(C 6F 5)3 -40 ºC O O EtO OEt Me N H Me 60% EtO HB(C 6F 5)3 -20 ºC O OEt H Me B(C 6F 5)3 N H Me 55% (70% at r.t.) Webb, J. D.; Laberge, V. S.; Geier, S. J.; Stephan, D. W.; Crudden, C. M. Chem. Eur. J., 2010, 16 , 4895-4902. Geier, S. J.; Chase, P. A.; Stephan, D. W. Chem. Comm., 2010, 46, 4884-4886. Studies of Hantzsch Ester with B(C6F 5 )3 Unveils New Substrates Hydrogenation of N-heterocycles O O EtO O OEt Me N H Me B(C 6F 5)3 -40 ºC O O EtO OEt Me N H Me EtO HB(C 6F 5)3 -20 ºC 60% O OEt H Me B(C 6F 5)3 N H Me 55% (70% at r.t.) Observation of hydride delivery into pyridinium inspired experimentation with N-heterocycle substrates Webb, J. D.; Laberge, V. S.; Geier, S. J.; Stephan, D. W.; Crudden, C. M. Chem. Eur. J., 2010, 16 , 4895-4902. Geier, S. J.; Chase, P. A.; Stephan, D. W. Chem. Comm., 2010, 46, 4884-4886. Studies of Hantzsch Ester with B(C6F 5 )3 Unveils New Substrates Hydrogenation of N-heterocycles O O EtO O OEt Me N H Me B(C 6F 5)3 -40 ºC O O EtO OEt Me N H EtO HB(C 6F 5)3 -20 ºC Me 60% O OEt H Me B(C 6F 5)3 N H Me 55% (70% at r.t.) Observation of hydride delivery into pyridinium inspired experimentation with N-heterocycle substrates 5 mol % B(C 6F 5)3 N 4 atm H 2, 2 hrs, r.t. 80% N H HB(C 6F 5)3 N H Webb, J. D.; Laberge, V. S.; Geier, S. J.; Stephan, D. W.; Crudden, C. M. Chem. Eur. J., 2010, 16 , 4895-4902. Geier, S. J.; Chase, P. A.; Stephan, D. W. Chem. Comm., 2010, 46, 4884-4886. Studies of Hantzsch Ester with B(C6F 5 )3 Unveils New Substrates Hydrogenation of N-heterocycles O O O EtO OEt Me N H B(C 6F 5)3 -40 ºC Me O O EtO OEt Me N H EtO HB(C 6F 5)3 -20 ºC Me O OEt H Me 60% B(C 6F 5)3 N H Me 55% Observation of hydride delivery into pyridinium inspired experimentation with N-heterocycle substrates 5 mol % B(C 6F 5)3 2 hrs, r.t. N N H 80% N H 80% Ph N H 74% Me Me N H 88% N N H 84% Webb, J. D.; Laberge, V. S.; Geier, S. J.; Stephan, D. W.; Crudden, C. M. Chem. Eur. J., 2010, 16 , 4895-4902. Geier, S. J.; Chase, P. A.; Stephan, D. W. Chem. Comm., 2010, 46, 4884-4886. Aromatic Hydrogenation Hydrogenation of Anilines to Cyclohexylamines tBu tBu NH Ph B(C 6F 5)3 H 2, 25 ºC tBu NH 2 Ph HB(C 6F 5)3 H2 NH 2 HB(C 6F 5)3 110 ºC 93% Mahdi, T.; Heiden, Z. M.; Grimme, S.; Stephan, D. W. JACS, 2012, 134 , 4088-4091. Aromatic Hydrogenation Hydrogenation of Anilines to Cyclohexylamines tBu tBu NH Ph B(C 6F 5)3 tBu H 2, 25 ºC NH 2 NH 2 H2 HB(C 6F 5)3 HB(C 6F 5)3 110 ºC Ph 93% iPr NH 2 iPr NH 2 iPr NH 2 NH 2 Me OMe Me Me HB(C 6F 5)3 HB(C 6F 5)3 HB(C 6F 5)3 HB(C 6F 5)3 65%, 96 hrs 77%, 36 hrs 61%, 36 hrs 48%, 72 hrs Mahdi, T.; Heiden, Z. M.; Grimme, S.; Stephan, D. W. JACS, 2012, 134 , 4088-4091. Aromatic Hydrogenation Hydrogenation of Anilines to Cyclohexylamines tBu tBu NH Ph B(C 6F 5)3 tBu H 2, 25 ºC NH 2 NH 2 H2 HB(C 6F 5)3 HB(C 6F 5)3 110 ºC Ph 93% iPr iPr NH 2 NH 2 iPr NH 2 NH 2 Me Me OMe Me HB(C 6F 5)3 HB(C 6F 5)3 HB(C 6F 5)3 HB(C 6F 5)3 65%, 96 hrs 77%, 36 hrs 61%, 36 hrs 48%, 72 hrs Ph 5 mol % B(C 6F 5)3 N Ph Ph H 2, 110 ºC H 2N Ph HB(C 6F 5)3 Ph 50%, 96 hrs Mahdi, T.; Heiden, Z. M.; Grimme, S.; Stephan, D. W. JACS, 2012, 134 , 4088-4091. Hydrogenation of Non-Polar Substrates Hydrogenation of Olefins (C 6F 5)Ph2P + B(C 6F 5)3 H2 [(C 6F 5)Ph2PH] [HB(C 6F 5)3] cation posseses much greater bronsted acidity Greb, L.; Ona-Burgos, P.; Schirmer, B.; Grimme, S.; Stephan, D. W.; Paradies, J. ACIE, 2012, 51, 10164-10168. Hydrogenation of Non-Polar Substrates Hydrogenation of Olefins + (C 6F 5)Ph2P B(C 6F 5)3 H2 [(C 6F 5)Ph2PH] [HB(C 6F 5)3] cation posseses much greater bronsted acidity Ph 20 mol % (C 6F 5)Ph2P 20 mol % B(C 6F 5)3 Ph Me Ph 5 bar H 2, r.t. Ph 99% Greb, L.; Ona-Burgos, P.; Schirmer, B.; Grimme, S.; Stephan, D. W.; Paradies, J. ACIE, 2012, 51, 10164-10168. Hydrogenation of Non-Polar Substrates Hydrogenation of Olefins + (C 6F 5)Ph2P H2 B(C 6F 5)3 [(C 6F 5)Ph2PH] [HB(C 6F 5)3] cation posseses much greater bronsted acidity Ph 20 mol % (C 6F 5)Ph2P 20 mol % B(C 6F 5)3 Ph Me 5 bar H 2, r.t. Ph Ph 99% Ph HB(C 6F 5)3 Me Ph Ph N Ph Me Ph hydride delivery H HB(C 6F 5)3 69% Ph Me Ph Ph NMePh Ph 2NMe Friedel Crafts Ph Ph Me 31% Greb, L.; Ona-Burgos, P.; Schirmer, B.; Grimme, S.; Stephan, D. W.; Paradies, J. ACIE, 2012, 51, 10164-10168. Hydrogenation of Non-Polar Substrates Hydrogenation of Olefins R R [(C 6F 5)Ph2PH] [HB(C 6F 5)3] proton transfer R R Me R HB(C 6F 5)3 hydride delivery Me R Greb, L.; Ona-Burgos, P.; Schirmer, B.; Grimme, S.; Stephan, D. W.; Paradies, J. ACIE, 2012, 51, 10164-10168. Hydrogenation of Non-Polar Substrates Hydrogenation of Olefins R [(C 6F 5)Ph2PH] [HB(C 6F 5)3] proton transfer R Me R R Me R HB(C 6F 5)3 hydride delivery Me R Me Me 96% 85% Greb, L.; Ona-Burgos, P.; Schirmer, B.; Grimme, S.; Stephan, D. W.; Paradies, J. ACIE, 2012, 51, 10164-10168. Hydrogenation of Non-Polar Substrates Hydrogenation of Olefins R [(C 6F 5)Ph2PH] [HB(C 6F 5)3] proton transfer R Me R Me HB(C 6F 5)3 R Me Me 96% R hydride delivery Me R Me MeO 85% 30% Greb, L.; Ona-Burgos, P.; Schirmer, B.; Grimme, S.; Stephan, D. W.; Paradies, J. ACIE, 2012, 51, 10164-10168. Hydrogenation of Non-Polar Substrates Hydrogenation of Olefins R [(C 6F 5)Ph2PH] [HB(C 6F 5)3] proton transfer R Me R Me HB(C 6F 5)3 R Me Me 96% R Me MeO 85% hydride delivery Me R Me Cl 30% 10% Greb, L.; Ona-Burgos, P.; Schirmer, B.; Grimme, S.; Stephan, D. W.; Paradies, J. ACIE, 2012, 51, 10164-10168. Hydrogenation of Non-Polar Substrates Hydrogenation of Olefins R [(C 6F 5)Ph2PH] [HB(C 6F 5)3] proton transfer R Me R R Me HB(C 6F 5)3 R Me Me hydride delivery Me R Me Me TMS Me 96% MeO 85% Cl 30% 10% 95% Greb, L.; Ona-Burgos, P.; Schirmer, B.; Grimme, S.; Stephan, D. W.; Paradies, J. ACIE, 2012, 51, 10164-10168. Hydrogenation of Non-Polar Substrates Hydrogenation of Olefins R R [(C 6F 5)Ph2PH] [HB(C 6F 5)3] Me proton transfer R Me R HB(C 6F 5)3 R Me Me hydride delivery Me R Me Me TMS Me 96% MeO 85% Cl 30% 10% 95% 99% Me Me Me Me Me 99% Greb, L.; Ona-Burgos, P.; Schirmer, B.; Grimme, S.; Stephan, D. W.; Paradies, J. ACIE, 2012, 51, 10164-10168. Hydrogenation of Non-Polar Substrates Hydrogenation of Alkynes to Cis-Alkenes R NMe 2 B H C6F 5 R' NMe 2 H R' B C6F 5 R Chernichenko, K.; Madarász, A.; Pápai, I.; Nieger, M.; Leskela, M.; Repo, T. Nat. Chem., 2013, 5, 718-723. Hydrogenation of Non-Polar Substrates Hydrogenation of Alkynes to Cis-Alkenes R R' NMe 2 NMe 2 B H H R' B C6F 5 C6F 5 Me Me R H2 N H H R' B C6F 5 H R Chernichenko, K.; Madarász, A.; Pápai, I.; Nieger, M.; Leskela, M.; Repo, T. Nat. Chem., 2013, 5, 718-723. Hydrogenation of Non-Polar Substrates Hydrogenation of Alkynes to Cis-Alkenes R R' NMe 2 NMe 2 B H C6F 5 Me Me H H R' R R H2 N H R' B C6F 5 H H R' B C6F 5 H R Chernichenko, K.; Madarász, A.; Pápai, I.; Nieger, M.; Leskela, M.; Repo, T. Nat. Chem., 2013, 5, 718-723. Hydrogenation of Non-Polar Substrates Hydrogenation of Alkynes to Cis-Alkenes NMe 2 C6F 5 B C6F 5 R R' H2 Me N Me H F B C6F 5 H F NMe 2 NMe 2 80 ºC F B F H H R' B C6F 5 C6F 5 R F Me H Me H2 N H H H R' R R' B C6F 5 H R Chernichenko, K.; Madarász, A.; Pápai, I.; Nieger, M.; Leskela, M.; Repo, T. Nat. Chem., 2013, 5, 718-723. Hydrogenation of Non-Polar Substrates Hydrogenation of Alkynes to Cis-Alkenes NMe 2 C6F 5 B C6F 5 R R' H2 Me N Me H F B C6F 5 H F NMe 2 NMe 2 80 ºC F B F H R' B C6F 5 C6F 5 NMe 2 D2 H B D C6F 5 R + F H D Me H Me H2 N H R H H R' R R' R' B C6F 5 H R Chernichenko, K.; Madarász, A.; Pápai, I.; Nieger, M.; Leskela, M.; Repo, T. Nat. Chem., 2013, 5, 718-723. Asymmetric Catalytic Hydrogenation Hydrogenation of Imines Me Me B(C 6F 5)2 OMe Me OMe Ph N HN (5 mol %) Me Me tBu 3P (5 mol %) 25 bar H 2 >99% 81% ee Me Me C6F 5F B Me H F N Ph Me favored approach F Me F F F Me F F F F C6F 5 B OMe H Me Me N disfavored approach Chen, D.; Wang, Y.; Klankermeyer, J. ACIE, 2010, 49, 9475-9578. Applications in Green Chemistry Reversible CO 2 Binding tBu 3P + B(C 6F 5)3 CO2, 25 ºC (tBu) 3P B(C 6F 5)3 O 80 ºC vacuum, 5 hrs -CO2 O 87% B(C 6F 5)3 Mes 2P CO2, 25 ºC Mes 2P B(C 6F 5)3 O CH2Cl2, > -20 ºC -CO2 Mes 2P B(C 6F 5)3 O 79% Mömming, C. M.; Otten, E.; Kehr, G.; Fröhlich, R.; Grimme, S.; Stephan, D. W.; Erker, G. ACIE, 2009, 48, 6643-6646. Applications in Green Chemistry SO 2 and N 2O Binding ■ SO2 is a major air pollutant, precursor to acid rain tBu 3P + B(C 6F 5)3 SO2, 25 ºC (tBu) 3P B(C 6F 5)3 S O O 80% B(C 6F 5)3 Mes 2P SO2, -75 ºC Mes 2P S* O B(C 6F 5)3 O Mes 2P B(C 6F 5)3 83% Sajid, M. et. al. Chem. Sci., 2013, 4, 213-219. Applications in Green Chemistry SO 2 and N 2O Binding ■ SO2 is a major air pollutant, precursor to acid rain tBu 3P + B(C 6F 5)3 SO2, 25 ºC (tBu) 3P B(C 6F 5)3 S O O 80% B(C 6F 5)3 Mes 2P SO2, -75 ºC Mes 2P S* O B(C 6F 5)3 O Mes 2P 83% B(C 6F 5)3 ■ N 2O is a minor constituent in the atmosphere, but ~300x more potent as a greenhouse gas tBu 3P + B(C 6F 5)3 N 2O, 25 ºC (tBu) 3P N N O B(C 6F 5)3 76% Sajid, M. et. al. Chem. Sci., 2013, 4, 213-219. Otten, E.; Neu, R. C.; Stephan, D. W. JACS, 2009, 131 , 9918-9919. Applications in Green Chemistry Converting CO 2 to Fuels ■ Addition of Et 3SiH to CO2 in the presence of an FLP efficiently reduces CO2 to CH4 Me Me NH 2 Me HB(C 6F 5)3 Me Berkefeld, A.; Piers, W. E.; Parvez, M. JACS, 2010, 132 , 10660-10661. Applications in Green Chemistry Converting CO 2 to Fuels ■ Addition of Et 3SiH to CO2 in the presence of an FLP efficiently reduces CO2 to CH4 O B(C 6F 5)3 TMPH O H CO2 Me Me NH 2 Me HB(C 6F 5)3 Me Berkefeld, A.; Piers, W. E.; Parvez, M. JACS, 2010, 132 , 10660-10661. Applications in Green Chemistry Converting CO 2 to Fuels ■ Addition of Et 3SiH to CO2 in the presence of an FLP efficiently reduces CO2 to CH4 Et 3SiH + B(C 6F 5)3 O B(C 6F 5)3 TMPH O Et 3Si H H B(C 6F 5)3 CO2 O O H SiEt 3 Me Me NH 2 Me HB(C 6F 5)3 Me Berkefeld, A.; Piers, W. E.; Parvez, M. JACS, 2010, 132 , 10660-10661. Applications in Green Chemistry Converting CO 2 to Fuels ■ Addition of Et 3SiH to CO2 in the presence of an FLP efficiently reduces CO2 to CH4 Et 3SiH + B(C 6F 5)3 O B(C 6F 5)3 TMPH O H Et 3Si H B(C 6F 5)3 CO2 O SiEt 3 O H Me Me NH 2 Me Et 3Si H –B(C 6F 5)3 B(C 6F 5)3 O O Et 3Si HB(C 6F 5)3 Me SiEt 3 H H Berkefeld, A.; Piers, W. E.; Parvez, M. JACS, 2010, 132 , 10660-10661. Applications in Green Chemistry Converting CO 2 to Fuels ■ Addition of Et 3SiH to CO2 in the presence of an FLP efficiently reduces CO2 to CH4 Et 3SiH + B(C 6F 5)3 O B(C 6F 5)3 TMPH O H Et 3Si H B(C 6F 5)3 CO2 O SiEt 3 Me O Me H NH 2 Me Et 3Si H O O Et 3Si Me –B(C 6F 5)3 B(C 6F 5)3 SiEt 3 HB(C 6F 5)3 Et 3Si H H B(C 6F 5)3 O H Et 3Si H H H (Et 3Si)2O + B(C 6F 5)3 Berkefeld, A.; Piers, W. E.; Parvez, M. JACS, 2010, 132 , 10660-10661. Applications in Green Chemistry Converting CO 2 to Fuels ■ Addition of Et 3SiH to CO2 in the presence of an FLP efficiently reduces CO2 to CH4 Et 3SiH + B(C 6F 5)3 O B(C 6F 5)3 TMPH O H Et 3Si H B(C 6F 5)3 CO2 O SiEt 3 Me O Me H NH 2 Me Et 3Si H O O Et 3Si Me –B(C 6F 5)3 B(C 6F 5)3 SiEt 3 HB(C 6F 5)3 Et 3Si H H B(C 6F 5)3 O H Et 3Si H (Et 3Si)2O + B(C 6F 5)3 Et 3Si H B(C 6F 5)3 H HCH 3 H (Et 3Si)2O + B(C 6F 5)3 Berkefeld, A.; Piers, W. E.; Parvez, M. JACS, 2010, 132 , 10660-10661. Limitations and Future Directions ■ Currently cannot hydrogenate aldehydes or ketones catalytically O H Me Me N H2 Me Me HB(C 6F 5)3 Me 20 ºC, 1hr Me N H2 O Me B(C 6F 5)3 Me 95% ■ Discovery of better FLP catalysts for asymmetric induction; expanding the scope to olefin hydrogenations ■ Hydrogen gas storage - currently FLPs can achieve 0.25 wt % H 2; whereas to be practical need 6 - 9 wt % H 2 (i.e. ammonia-borane) Sumerin, V.; Schulz, F.; Nieger, M.; Leskelä, M.; Repo, T.; Rieger, B. ACIE, 2008, 47, 6001-6003. Summary ■ I. Theories on the Mechanism of H 2 Activation ■ Electron Transfer Model that Invokes Frontier Molecular Orbitals ■ Electric Field Model that disregards Frontier Molecular Orbitals ■ Secondary non-covalent interactions play key role in lowering H 2 activation barrier ■ II. Applications of FLPs in Hydrogenation Reactions and Storage of Small Molecules ■ Catalytic hydrogenation of imines, enamines, nitriles, aziridines, silyl enol ethers, cyclic ethers, alkenes, alkynes, ynones ■ Stoichiometric hydrogenations of aldehydes, ketones ■ Asymmetric imine hydrogenations ■ Advances in area of green chemistry
© Copyright 2026 Paperzz