JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 110, D23302, doi:10.1029/2005JD006078, 2005 Variability of the mesospheric nightglow sodium D2/ D1 ratio T. G. Slanger,1 P. C. Cosby,1 D. L. Huestis,1 A. Saiz-Lopez,2 B. J. Murray,2,3 D. A. O’Sullivan,2 J. M. C. Plane,2 C. Allende Prieto,4 F. J. Martin-Torres,5 and P. Jenniskens6 Received 13 April 2005; revised 26 July 2005; accepted 31 August 2005; published 1 December 2005. [1] Measurements of the intensity ratio of the 589.0/589.6 nm sodium doublet in the terrestrial nightglow over an 8-year period, involving >300 separate determinations, have established that it is variable, the value RD = I(D2)/I(D1) lying between 1.2 and 1.8. Sky spectra from the Keck I telescope with the High-Resolution Échelle Spectrometer (HIRES) échelle spectrograph and the Keck II telescope with the Échellette Spectrograph and Imager (ESI) échelle spectrograph were used in this analysis. The result contrasts with the accepted view, from earlier measurements at midlatitude, that the ratio is 2.0, as expected on statistical grounds. The lack of dependence of the ratio on viewing elevation angle, and hence Na slant column, allows self-absorption to be ruled out as a cause of the variability. The data suggest a semiannual oscillation in the ratio, maximum at the equinoxes and minimum at the solstices. Airborne measurements over the North Atlantic (40–50N) in 2002 show an even larger range in the nightglow ratio and no correlation with the upper mesospheric temperature determined from the OH 6–2 bands. A laboratory study confirms that the ratio does not depend on temperature; however, it is shown to be sensitive to the [O]/[O2] ratio. It is therefore postulated that the variable ratio arises from a competition between O reacting with NaO(A3S+), produced from the reaction of Na with O3, to yield D-line emission with a D2/D1 ratio greater than about 2.0, and quenching by O2 to produce NaO(X2), possibly with vibrational excitation, which then reacts with O to produce emission with a ratio of less than 1.3. Citation: Slanger, T. G., P. C. Cosby, D. L. Huestis, A. Saiz-Lopez, B. J. Murray, D. A. O’Sullivan, J. M. C. Plane, C. Allende Prieto, F. J. Martin-Torres, and P. Jenniskens (2005), Variability of the mesospheric nightglow sodium D2/D1 ratio, J. Geophys. Res., 110, D23302, doi:10.1029/2005JD006078. ðR2bÞ 1. Introduction [2] Radiation in the nightglow spectrum at 589 nm was first reported in 1929 [Slipher, 1929], and 10 years later it was established that this radiation was due to the transition Na(32PJ 32S1/2) and that the source was located within the Earth’s atmosphere [Bernard, 1938]. Chapman [1939] then postulated the following sequence of reactions to account for the Na D-line emission from Na(2PJ) in the nightglow: ðR1Þ ðR2aÞ Na þ O3 ! NaO þ O2 NaO þ O ! Na 2 PJ þ O2 Branching ratio f 1 Molecular Physics Laboratory, SRI International, Menlo Park, California, USA. 2 School of Environmental Sciences, University of East Anglia, Norwich, UK. 3 Now at Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada. 4 McDonald Observatory and Department of Astronomy, University of Texas at Austin, Austin, Texas, USA. 5 AS&M, Inc., NASA/Langley Research Center, Hampton, Virginia, USA. 6 NASA Ames Research Center, Mountain View, California, USA. Copyright 2005 by the American Geophysical Union. 0148-0227/05/2005JD006078$09.00 ðR3Þ NaO þ O ! Na 2 S þ O2 Branching ratio 1 f Na 2 P ! Na 2 S þ hu where the source of sodium atoms is ablation of the approximately 20 tons of interplanetary dust that enters the atmosphere each day [Plane, 2003]. The Na nightglow layer typically peaks around 90 km, and has a full width at halfmaximum of 5 km [Clemesha et al., 1993]. [3] Laboratory measurements have shown that reactions (R1), (R2a), and (R2b) are fast enough to generate the observed D-line emission intensity of 30– 150 R. Reaction (R1) is rate determining because [O3] [O] above 84 km [Plane, 2003]. An estimate of f, the branching ratio for production of Na(2PJ) in reaction (R2a), has been derived from a field experiment in northern Brazil, where a rocket measured the D-line emission profile while a ground-based lidar simultaneously observed the Na atom concentration [Clemesha, 1995]. Analysis of the data using a model of the Na layer showed that f lay in the range 0.05– 0.2, with a best estimate of 0.1 [Clemesha, 1995]. However, a more recent combined rocket and lidar experiment at Arecibo (Puerto Rico) produced a lower estimate, f = 0.02– 0.04, although D23302 1 of 8 D23302 SLANGER ET AL.: SODIUM NIGHTGLOW the mesopause on this night was very cold (165 K) and the Na atom and nightglow layer peaked around 95 km [Hecht et al., 2000]. [4] These estimates of f are considerably larger than an early laboratory measurement of less than 0.01 [Plane and Husain, 1986]. This apparent disagreement seems to have been resolved through a series of elegant laboratory experiments. First, it was shown that reaction (R1) produces NaO almost entirely in the low-lying NaO(A2S+) excited electronic state, rather than the 2 ground state [Shi et al., 1993; Wright et al., 1993]. The NaO(A) state has a long radiative lifetime and is not quenched efficiently, so that in the mesosphere reactions (R2a) and (R2b) should involve mostly NaO(A) rather than NaO(X) [Joo et al., 1999]. Second, a recent flow tube experiment showed that f for NaO(A) + O is 0.14 ± 0.04 [Griffin et al., 2001]. This measurement thus reconciled the field observations with the underlying chemical physics, and showed that the earlier laboratory estimate of f was probably so small because it involved the reaction between ground state NaO(X) + O. [5] The ratio between the intensity of the D2 line at 589.0 nm and that of the D1 line at 589.6 nm, hereafter termed RD, should be 2.0 if Na(2P3/2) and Na(2P1/2) are produced according to their spin orbit statistical weights (note that at the pressures below 105 bar in the upper atmosphere, the frequency of collisions with surrounding air molecules is too low to equilibrate the Na(2P) spin orbit states before emission occurs, since the Na(2P) lifetime is only 16 ns). Chamberlain [1995] refers to various early investigations in 1935 –1960, in which RD was estimated to be 2. In a paper by Chamberlain and Negaard [1956], three scattering models were used to conclude that in the nightglow RD should be 2.0 or higher. [6] Rees et al. [1975] carried out a study in 1975, to determine whether auroral excitation could affect the D-line ratio. They concluded that the presence of aurora had no discernible effect on the twilight glow, but they also presented data on RD for solar depression angles as large as 18. This showed that the enhanced intensity that is characteristic of the twilight glow ceases when the solar depression angle (SDA) exceeds 11, and that between 11 and 18 the ratio is very variable. Rees et al. did not comment on this fact, perhaps because the signal-to-noise ratio of their measurements was low. A later study by Sipler and Biondi [1978], made with a Fabry-Perot instrument at Laurel Hill, reported that RD was 1.98 ± 0.1. Following this paper and up until the present study, RD has been assumed to have a constant value of 2.0. [7] The emission intensity of the sodium nightglow is seasonal. Although earlier publications reported that the emission is much more intense in winter than in summer [Chamberlain, 1995], more recent studies show a strong semiannual oscillation (SAO), with peaks at the equinoxes and troughs at the solstices. Observations made at the Cariri site in Brazil in 1998 – 1999 show that the sodium SAO is very strong, with a large high-to-low-amplitude ratio, stronger than that of any of the other species measured (H. Takahashi, private communication, 2004). The data from Brazil in 1976 – 1982 [Kirchhoff, 1986] are in excellent agreement with the 1998– 1999 Cariri data, both showing April and October peaks of 100 – 150 R, with solstice minima of 20– 40 R. D23302 [8] The SAO is also characteristic of other nightglow systems in the upper mesosphere/lower thermosphere. Buriti et al. [2001] have shown that it can be observed in the 557.7 nm oxygen green line, in the O2(b-X) 0 – 1 band, in the OH 6 – 2 band, and also in the OH 6 – 2 rotational temperature. The phase is the same in each case, and observations on the SAO in sodium have been made from a number of sites [Kirchhoff, 1986; Kirchhoff et al., 1979, 1981; Kirchhoff and Takahashi, 1985; McNeil et al., 1995]. The explanation centers on the role of O atoms in these disparate systems, and thus it is perhaps not surprising that all these intensities behave in a similar manner. However, it is not obvious that RD should exhibit the same behavior, which we will show to be the case. [9] The presence of the sodium layer has important applications. Sodium lidar measurements sample the atomic sodium density in the nightglow region by resonance fluorescence, and return information on the absolute concentration, layer thickness, temperature and winds. In recent years, it has been demonstrated that the flash of light associated with laser excitation of mesospheric sodium atoms can be used as a guide star for astronomical purposes [Happer et al., 1994], leading to a cancellation of atmospheric turbulence and greatly improved viewing of stellar objects. Occasionally, incoming meteors leave persistent trains, whose luminosity is fueled by reactions involving O3 and atomic O, efficiently catalyzed by metals from the freshly ablated meteoroid [Jenniskens et al., 2000; Kruschwitz et al., 2001] The most intense emission arises from excited FeO, with possibly a small contribution from the Na D-lines. Another important subject is the presence of ‘‘sudden’’ sodium layers, where very narrow layers of sodium atoms are seen sporadically, such behavior also having been noted for iron emission [Bills and Gardner, 1990; Clemesha, 1995]. 2. Atmospheric Observations of the Na D-line Ratio 2.1. Data Collection [10] The work to be described has made use of sky spectra generated at the Keck Observatory on Mauna Kea, from the two 10-m telescopes. Keck I is coupled to the High-Resolution Échelle Spectrometer (HIRES) échelle spectrograph, which has been operated at a resolution of 40,000; Keck II is coupled to the Échellette Spectrograph and Imager (ESI) échelle spectrograph, with a resolution of about 7000. In either case, the sodium lines are well resolved [Slanger and Copeland, 2003; Slanger et al., 2000a, 2000b; Slanger and Osterbrock, 2000]. [11] The typical viewing protocol of the astronomers is to collect light from their celestial object for 40– 70 min, the telescope tracking the object so that the star field is stationary. Sometimes there are two or three consecutive data collection periods for the same object, and during a typical night 3 –4 objects are viewed. Thus the telescope wanders across the sky during the night, but at all times nightglow data are collected, then archived after the astronomers have subtracted the so-called sky spectrum from the spectrum of their object. [12] Sky spectra have been obtained from observations made at the Keck Observatory back to 1993. The early data 2 of 8 D23302 SLANGER ET AL.: SODIUM NIGHTGLOW D23302 relevant unless they signify signal saturation, which appears not to be the case. The inset to Figure 1 shows the resolved sodium line pair as measured by the 0.5-m Czerny-Turner spectrometer used on NASA’s 2002 Leonid MAC mission, to be described [Jenniskens, 2002]. [15] Figure 2 shows the line ratios obtained from the entirety of data of both observing systems, regardless of the year; there are more than 300 data points. One sees that the ratios lie between 1.2 and 1.8, with the largest fraction at 1.5– 1.7. The precision of each measurement is high, as can be seen from the signal-to-noise ratio in Figure 1, so that the variations seen in a single vertical group of points are real changes: The spread is not statistical. It appears that there are minima and maxima in the overall distribution: The ratios are higher near the equinoxes, and there is an indication of a summer dip. [16] For any given year there is not enough sampling throughout the year to clarify the entire picture, but in Figure 3 we show HIRES data for 1994 and 1995 alone. In this case, it is evident that there is a substantial difference between the ratios found in June and in October, and the October data for the two years are very consistent. Also shown in Figure 3 are Brazilian data (H. Takahashi, private communication, 2004) of the semiannual oscillation of the sodium D1 + D2 intensity, and it may be seen that the phase is the same, although it is not yet evident how the line ratio and the line intensity are related. These data are shown only Figure 1. UVES/ESI sodium spectra, 588.5 – 590.0 nm; weak lines belong to the OH Meinel 8 – 2 band. Solid line, HIRES; dashed line, ESI; inset, data from NASA’s 2002 Leonid MAC mission. are all from Keck I/HIRES, while since 2000 spectra have become available from Keck II/ESI. We have not calibrated the HIRES data with respect to intensity, but the 2000 – 2001 ESI data have been absolutely calibrated against standard stars. However, absolute calibration is not necessary in obtaining the line ratios, as the lines are separated by only 0.6 nm. It is important to realize that the data were produced with two quite different physical systems, so that experimental artifacts that may arise in one system are unlikely to affect both sets of measurements. [13] There are additional data that we have evaluated from McDonald Observatory and from the UVES échelle spectrograph at the Very Large Telescope (VLT) in Chile [Hanuschik, 2003]. It should be pointed out that whereas the preponderance of data are from an equatorial site, Mauna Kea, it is not evident that the sparser data from higher latitudes (McDonald Observatory, Alaska, the North Atlantic) show systematically different results. 2.2. Ratio Measurements, Seasonal [14] In Figure 1 are shown typical sodium D2(589.0 nm) and D1(589.6 nm) line spectra from two telescopes, the VLT 8-m telescope in Chile, using the UVES échelle system, and the Keck II 10-m telescope on Mauna Kea, using the ESI échelle system. Here we see the difference both in resolution and in line shapes. As the line ratios are obtained by integrating the total signal, the line shapes are not directly Figure 2. Sodium D2/D1 ratios, all data. Open circles, HIRES, 1993– 1997; solid circles, HIRES, 1999; open triangles, ESI, 2000; open squares, ESI, 2001; open diamonds, ESI, 2001/2002. 3 of 8 D23302 SLANGER ET AL.: SODIUM NIGHTGLOW D23302 great as on 4 March 2000, suggesting a more dynamic atmosphere. Figure 3. Seasonal dependence of sodium D2/D1 intensity ratios from HIRES 1993 –1994 data; 1993, open circles; 1994, triangles. Additional data from H. Takahashi (solid points) showing the SAO for the total sodium intensity measured at Cariri, Brazil (7.4S, 36.5W). to display the phase; the equinox/solstice intensity ratio is on the order of 5 – 10. [17] In addition to the Keck data, Figure 2 shows the range of ratios measured in an auroral zone [Rees et al., 1975]. The limits shown are for 90% of the 42 points displayed in this paper. We see that in spite of the fact that the data were taken in Alaska, the range of values are in agreement with what was measured for the same season in Hawaii. The range of values obtained from McDonald Observatory in 2004 exhibit a particularly low range of 1.15 – 1.4, and were taken near summer solstice. 2.3. Ratio Measurements, Hourly and Nightly [18] Table 1 shows the nightly averages and the 2-s standard deviations of the line ratios for March and October 2000, along with the number of spectra recorded each night, and the total observed range of the ratios. The estimated error in measuring peak areas is on the order of 1%. Sometimes the ratios are extremely stable, e.g., for the nights of 4 March 2000 and 23 October 2000, the 2-s SD is ±2.5% of the measured ratios. The data for those nights were collected over a 9 – 10 hour period, with the elevation angle variation being 47– 74 degrees in March and 50– 71 degrees in October, with an azimuth variation of 60 – 284 degrees in March and 120 – 246 degrees in October. Thus a large portion of the sky was sampled in a night with little ratio variation. On the other hand, on 3 March 2000 the standard deviation was 3 times as 2.4. Airborne Measurements of RD [19] Figure 2 includes results obtained during the Leonids campaign on 17 November 2002, when the NASA DC8 research aircraft crossed the North Atlantic (40– 50N) while making spectrographic observations of the nightglow. The instrument consisted of a 5 field-of-view telescope pointed at an elevation angle of 23, coupled via a fiberoptic bundle to a 0.5 m Czerny-Turner spectrometer (1200 groove mm1 grating) and cooled CCD detector (1024 256 pixels, maintained at 70C). This combination provided a resolution of 0.2 nm, sufficient to resolve the D-lines (Figure 1). A total of 179 measurements of RD were made on this night, yielding an average RD of 1.79 and a range from 1.55 to 2.01. Two other flights were made with the same spectroscopic system, on 15 and 18 November. These flights produced similar average RD values, 1.81 and 1.78, but greater ranges, 1.43 – 2.41 and 1.33– 2.41, from 156 and 52 measurements on the two nights, respectively. These results are compatible with the Keck data for the same season. [20] Figure 4 shows that RD was varied over horizontal distances of 50– 100 km (corresponding to flight times of 3– 6 min), which are typical of the horizontal wavelengths of atmospheric gravity waves. Note that there is possibly some correlation between RD and the Na D-line intensity in the early segment of the flight, but this was not consistently observed. The airborne spectrometer was also used to measure 20 rotational lines in the Meinel OH 6 –2 band between 826 and 862 nm, from which the temperature could be fitted to within ±7 K. Figure 5 shows that there is no significant correlation between R D and temperature, although it should be noted that the Meinel emission is centered in a layer about 3 km below the Na nightglow layer [Plane, 2003]. 3. Laboratory Study of the Na Nightglow Mechanism [21] In order to interpret the atmospheric observations, a laboratory investigation of the Chapman mechanism was performed using a fast flow tube reactor at the University of East Anglia. The flow tube employs liquid N2 cooling to operate over the temperature range 90– 300 K [Murray and Plane, 2003]. At the upstream end, gas-phase Na atoms were produced in an oven heated to about 620 K, entrained in a flow of N2 and introduced into the cooled Table 1. Nightly Averages of Na Line Ratios: ESI Date 1 March 2000 2 March 2000 3 March 2000 4 March 2000 5 March 2000 21 Oct 2000 22 Oct 2000 23 Oct 2000 24 Oct 2000 25 Oct 2000 4 of 8 RD Average and 2-s SD 1.582 1.569 1.568 1.651 1.594 1.582 1.604 1.664 1.613 1.563 ± ± ± ± ± ± ± ± ± ± 0.068 0.132 0.118 0.042 0.090 0.098 0.092 0.040 0.068 0.054 Number of Spectra RD Range 8 5 9 13 9 11 5 8 9 11 0.140 0.204 0.185 0.058 0.151 0.160 0.131 0.064 0.121 0.090 D23302 SLANGER ET AL.: SODIUM NIGHTGLOW D23302 4.1. A Temperature-Dependent Mechanism [25] Although it seems unlikely that the propensity for producing Na(2P3/2) and Na(2P1/2) in reactions (R2a) and (R2b) could be temperature dependent, the seasonal variation of RD observed in the Keck data (Figure 2) suggested that temperature might play a role. This could happen, for instance, if the propensity was sensitive to the rotational distribution of NaO(A), which would change with temperature. However, there is no consistent correlation in the Keck data between RD and the Meinel OH 3 – 1 temperature, just as in the 2002 Leonid MAC mission (Figure 5). The laboratory experiments confirm that RD is not temperature dependent over the temperature range appropriate to the upper mesosphere. Figure 4. Sodium D2/D1 ratios and intensities from NASA’s 2002 Leonid MAC mission. section of the flow tube via a movable injector, heated internally but with a cooled outer jacket [Helmer and Plane, 1993]. Flows of O and O3 were then introduced into the flow tube to generate Na chemiluminescence via reactions (R1)(R2b)– (R3). RD was measured through a glass window on a crosspiece at the downstream end of the tube, by using an optic fiber to collect a fraction of the chemiluminescence and dispersing this through an identical spectrometer that was deployed on the NASA aircraft. [22] This apparatus could then be used to test the dependence of RD on temperature, the relative proportions of the reactants (O3 and O), and possible quenching molecules (O2 and N2). To measure the temperature dependence of RD, O was generated by microwave discharge of O2, which also produced a small concentration of O3. This flow was introduced to the flow tube 10 cm upstream of the crosspiece, and the Na atoms through the injector 45 cm further upstream. RD was shown to be essentially independent of temperature between 153 and 295 K. [23] All other experiments were therefore performed at room temperature. For the first set of experiments, O and O3 were generated in an O2 discharge and introduced into the flow upstream of the Na inlet. By varying the flow of O2 through the microwave cavity, it was shown that RD did not depend significantly on the ratios [O]/[M], [O2]/[M], [O3]/ [M] and [O]/[O3] (where M = bath gas, in this case N2). The second set of experiments were designed to test the efficiency of O2 as a quenching gas. O was now generated via the microwave discharge of N2, and the resulting N atoms titrated with NO to produce O free of O3. This flow was introduced 10 cm upstream of the crosspiece. O3 was generated in a separate flow of O2 passing through a commercial ozoniser, and introduced at the upstream end of the flow tube. Figure 6 shows that RD is a function of the ratio of O to O2 in the tube: RD is 1.65 when [O]/[O2] is 1 104, and increases to above 2.0 when [O]/[O2] approaches 1 102. These ratios correspond to atmospheric nighttime ratios at about 83 and 90 km, respectively. 4.2. Self-Absorption in the Na Layer [26] A second possibility is that the density of Na atoms within and below the emitting layer is large enough to cause self-absorption. Since the absorption cross section of the D2 line is twice that of D1, significant self-absorption would reduce RD. We have used the UEA Na model [Plane, 2004] to explore this possibility, for the conditions of midwinter (at 40N) when the Na layer abundance is largest [Plane, 2003]. Assuming that Na(2P3/2) and Na(2P1/2) are produced by reactions (R2a) and (R2b) in the ratio of 2.0, then RD would be 1.93 if measured from the ground with a zenith-pointing instrument, and 1.86 if viewed at an elevation angle of 30 above the horizon. This modest reduction in RD, even at a low elevation angle, indicates that self-absorption is not an important factor in causing the variability in RD. [27] In fact, we can show empirically that there is no evidence for a path length effect. The Keck data encompass a variety of elevation angles and therefore path lengths. Figure 7 presents a plot of line ratio versus air mass, corresponding to a variation in elevation angle of 38– 84 degrees. There is no correlation evident, and the system appears to be optically thin to the radiation for the conditions investigated. 4.3. Other Mechanisms for Producing D-line Emission [28] A third possibility is that D-line emission is produced by a completely different chemistry that competes with the Chapman mechanism. Besides reactions (R2a) and (R2b), 4. Discussion [24] The variability of the Na D-line ratio in the nightglow is a surprising phenomenon, and we now explore a number of possible explanations. Figure 5. Sodium D2/D1 ratios versus OH 6 – 2 temperature from NASA’s 2002 Leonid MAC mission. 5 of 8 D23302 SLANGER ET AL.: SODIUM NIGHTGLOW Figure 6. Sodium D2/D1 laboratory ratios versus [O]/[O2]. the only gas-phase chemical reactions that are sufficiently exothermic to produce Na(2P) in the upper atmosphere are dissociative electron recombination reactions of Na+ cluster ions [Plane, 2003]. However, the rate of cluster ion formation is too slow, even in an intense sporadic E layer, for this mechanism to compete significantly with the Chapman mechanism [Cox and Plane, 1998]. Another possibility is exothermic heterogeneous reactions on the surface of meteoric smoke particles [Kelley et al., 2003]. However, there are two difficulties with this hypothesis: finding a mechanism that will sputter Na(2P) atoms from the particle surface, and the limited volumetric surface area of smoke particles that is predicted by meteor smoke models [Gabrielli et al., 2004]. 4.4. A Modified Chapman Mechanism [29] The most likely explanation for the variable RD is that the NaO(A) produced by reaction (R1) can either react with O by reaction (R4), or be quenched to the NaO(X) state which then reacts with O atoms: ðR4Þ ðR5Þ ðR6Þ NaO A2 Sþ þ O 3 P ! Na 2 PJ þ O2 D23302 [30] The observed value of RD could then be directly translated into a composition ratio at the emitting altitude, with the variability of RD throughout a night showing the effects of dynamics and gravity waves. This hypothesis would also explain the semiannual variability of RD in the Keck data, the high values of RD during the equinoxes corresponding to an increase in the [O]/[O2] ratio due to downward transport of O [Thomas, 1990]. This would imply that RD(A) was greater than 2.0 and RD(X) was less than about 1.3. [31] There is, however, one difficulty with this explanation. It implies that reaction (R4) and reaction (R6) produce D-line emission with roughly equal probabilities, whereas considerations of electronic correlation indicate that reaction (R6) should be unimportant [Herschbach et al., 1992], in accord with earlier laboratory measurements of the efficiency of that reaction [Plane and Husain, 1986]. Nevertheless, if there is only a single channel generating the excited sodium, it is difficult to explain how RD is so variable on the observed timescale and space scale. [32] One possible way of increasing the yield of reaction (R6) is to invoke vibrational excitation in the NaO(X) product of reaction (R5). If the molecule is left in the v00 = 1 level, then reaction (R6) might become atmospherically more probable, whereas under higherdensity laboratory conditions, only reaction of the v00 = 0 level would have been tested. Moreover, reaction (R5) with M = O2 would be energetically quite favorable (106 cm1 endothermic) for X(v00 = 1) production compared to 363 cm1 exothermic for X(v = 0). [33] The measurements of Sipler and Biondi [1978] present an interesting enigma. These data, taken at 40N on 21– 22 October 1974, show a constant ratio throughout the night (RD = 1.98 ± 0.1). A decrease in RD is seen only at evening and morning twilight, as solar illumination of the upper atmosphere changes the emission source from chemical excitation to resonance fluorescence. This is clearly contrary to what is shown in Figure 2, which shows observations from five different locations. There is no obvious RDð AÞ NaO A2 Sþ þ M ! NaO X 2 þ M NaO X 2 þ O 3 P ! Na 2 PJ þ O2 RDð X Þ where M is a quenching molecule (e.g., O2 or N2). Reactions (R4) and (R6) are likely to produce Na(2P1/2) and Na(2P3/2) with different D-line ratios (RD(A) and RD(X), respectively). These reactions will also likely produce Na(2P) and Na(2S) with different branching ratios. The quenching molecule in reaction (R6) is probably O2, following the laboratory experiments described above, which showed that RD varies with the ratio [O]/[O2], but seems to be independent of the [O]/[N2] ratio. This may be because the quenching of NaO(A2S+) to NaO(X2) requires the transfer of 1919 cm1 of electronic energy; the electronic-to-vibrational process is exothermic by 363 cm1 for O2, but endothermic by 411 cm1 for N2 [Joo et al., 1999]. Figure 7. Sodium D2/D1 ratios versus air mass, ESI data of March/October 2000; air mass of unity refers to the zenith. 6 of 8 D23302 SLANGER ET AL.: SODIUM NIGHTGLOW reason for the difference between these earlier results and those in the present study. However, an interesting observation was made in these FPI measurements. The high spectral resolution made it possible to measure the sodium linewidths and thus the kinetic energy of the sodium fragments. These increased significantly between February and May, and again between September and November, from 40 to 50 meV. The authors’ conclusion was that this ‘‘. . .may indicate that more than one process contributes to the sodium nightglow.’’ This is in accord with our hypothesis that the emitting sodium is produced by two separate reactions. 5. Conclusions [34] The sodium D2/D1 line intensity ratio has been investigated in different ways, and recent measurements from astronomical sky spectra at Mauna Kea, measurements over the North Atlantic, and older studies in Alaska have shown that this ratio is quite variable. The values typically range from 1.2 to 2.0, with most determinations in the 1.4– 1.9 range. The ratio shows seasonal oscillations, and is consistent with the SAO behavior of the total sodium nightglow intensity, exhibiting peaks in April and October. There is no apparent correlation with optical depth in the sodium layer. The variability of the ratio suggests that there are competing branching reactions generating the excited sodium, which is not consistent with the current view of the reactivity of the parent species, NaO. Further laboratory work can answer some of the questions raised by these observations. [35] Acknowledgments. We express our appreciation to the NSF Aeronomy Program and the Natural Environment Research Council (UK) for support of this work. We gratefully acknowledge discussions with Hisao Takahashi concerning measurements of nightglow features from Cariri, Brazil, as well as the SAO sodium data. The W. M. Keck telescopes are operated jointly by the California Institute of Technology and the University of California. The 2002 Leonid Multi-Instrument Aircraft Campaign was sponsored by NASA’s Astrobiology and Planetary Astronomy programs. The mission was executed by NASA’s Dryden Flight Research Center and the SETI Institute. Participation of the University of East Anglia team was made possible by the University of East Anglia. We thank Stephen Ashworth (UEA) for assistance with the OH spectral analysis. References Bernard, R. (1938), Das Vorhandensein von Natrium in der Atmosphare auf Grund von interferometrischen Untersuchungen der D-line im Abendund Nachhimmelslicht, Z. Phys., 119, 291 – 302. Bills, R. E., and C. S. Gardner (1990), Lidar observations of mesospheric Fe and sporadic Fe layers at Urbana, Illinois, Geophys. Res. Lett., 17, 143 – 146. Buriti, R. A., H. Takahashi, and D. Gobbi (2001), First results from mesospheric airglow observations at 7.5 degrees south, Braz. J. Geophys., 19(2), 169 – 176. Chamberlain, J. W. (1995), Physics of the Aurora and Airglow, AGU, Washington D. C. Chamberlain, J. W., and B. J. Negaard (1956), Resonance scattering by atmospheric sodium: II. Nightglow theory, J. Atmos. Terr. Phys., 9, 169 – 178. Chapman, S. (1939), Notes on atmospheric sodium, J. Astrophys., 90, 309 – 316. Clemesha, B. R. (1995), Sporadic neutral metal layers in the mesosphere and lower thermosphere, J. Atmos. Terr. Phys., 57, 725 – 736. Clemesha, B. R., D. M. Simonich, H. Takahashi, and S. M. L. Melo (1993), A simultaneous measurement of the vertical profiles of sodium nightglow and atomic sodium density in the upper atmosphere, Geophys. Res. Lett., 20, 1347 – 1350. Cox, R. M., and J. M. C. Plane (1998), An ion-molecule mechanism for the formation of neutral sporadic Na layers, J. Geophys. Res., 103, 6349 – 6359. Gabrielli, P., et al. (2004), Meteoric smoke fallout over the Holocene epoch revealed by iridium and platinum in Greenland ice, Nature, 432, 1011 – 1014. D23302 Griffin, J., D. R. Worsnop, R. C. Brown, C. E. Kolb, and D. R. Herschbach (2001), Chemical kinetics of the NaO(A) + O(3P) reaction, J. Phys. Chem. A, 105(9), 1643 – 1648. Hanuschik, R. W. (2003), A flux-calibrated high-resolution atlas of optical sky emission from UVES, Astron. Astrophys., 407, 1157 – 1164. Happer, W., G. J. MacDonald, C. E. Max, and F. J. Dyson (1994), Atmospheric turbulence compensation by resonant optical backscattering from the sodium layer in the upper atmosphere, J. Opt. Soc. Am. A Opt. Image Sci., 11, 263 – 276. Hecht, J. H., S. Collins, C. Kruschwitz, M. C. Kelley, R. G. Roble, and R. L. Walterscheid (2000), The excitation of the Na airglow from Coqui Dos rocket and ground-based observations, Geophys. Res. Lett., 27, 453 – 456. Helmer, M., and J. M. C. Plane (1993), A study of the reaction NaO2 + O ! NaO + O2 - Implications for the chemistry of sodium in the upper atmosphere, J. Geophys. Res., 98, 23,207 – 23,222. Herschbach, D. R., C. E. Kolb, D. R. Worsnop, and X. Shi (1992), Excitation mechanism of the mesospheric sodium nightglow, Nature, 356, 414 – 416. Jenniskens, P. (2002), The 2002 Leonid MAC airborne mission: First results, WGN, J. Int. Meteor Organ., 30(6), 218 – 224. Jenniskens, P., M. Lacey, B. J. Allan, D. E. Self, and J. M. C. Plane (2000), FeO ‘‘orange arc’’ emission detected in optical spectrum of Leonid persistent train, Earth Moon Planets, 82/83, 429 – 438. Joo, S., D. R. Worsnop, C. E. Kolb, S. K. Kim, and D. R. Herschbach (1999), Observation of the A-X electronic transition of NaO, J. Phys. Chem. A, 103, 3193 – 3199. Kelley, M. C., C. Kruschwitz, J. Drummond, C. Gardner, L. Gelinas, J. Hecht, E. Murad, and S. Collins (2003), A new explanation of persistent double meteor trains, Geophys. Res. Lett., 30(23), 2202, doi:10.1029/2003GL018312. Kirchhoff, V. W. J. H. (1986), Theory of the atmospheric sodium layer: A review, Can. J. Phys., 64, 1664 – 1672. Kirchhoff, V. W. J. H., and H. Takahashi (1985), First sodium nightglow results from Natal, Planet. Space Sci., 33, 757 – 760. Kirchhoff, V. W. J. H., B. R. Clemesha, and D. M. Simonich (1979), Sodium nightglow measurements and implications on the sodium photochemistry, J. Geophys. Res., 84, 1323 – 1327. Kirchhoff, V. W. J. H., B. R. Clemesha, and D. M. Simonich (1981), Average nocturnal and seasonal variations of sodium nightglow at 23S, 46W, Planet. Space Sci., 29, 765 – 766. Kruschwitz, C. A., M. C. Kelley, G. Swenson, A. Z. Liu, X. Chu, J. D. Drummond, B. W. Grime, W. T. Armstrong, J. M. C. Plane, and P. Jenniskens (2001), Observations of persistent Leonid meteor trails: 2. Photometry and numerical modeling, J. Geophys. Res., 106, 21,525 – 21,541. McNeil, W. J., E. Murad, and S. T. Lai (1995), Comprehensive model for the atmospheric sodium layer, J. Geophys. Res., 100, 16,847 – 16,855. Murray, B. J., and J. M. C. Plane (2003), The uptake of atomic oxygen on ice films, Phys. Chem. Chem. Phys., 5, 4129 – 4138. Plane, J. M. C. (2003), Atmospheric chemistry of meteoric metals, Chem. Rev., 103(12), 4963 – 4984. Plane, J. M. C. (2004), A time-resolved model of the mesospheric Na layer: Constraints on the meteor input function, Atmos. Chem. Phys., 4, 627 – 638. Plane, J. M. C., and D. Husain (1986), Determination of the absolute rate constant for the reaction O + NaO ! Na + O2 by time-resolved atomic chemiluminescence at l = 589 nm (Na(32PJ) ! Na(32S1/2) + hn), J. Chem. Soc. Faraday Trans. 2, 82, 2047 – 2052. Rees, M. H., G. J. Romick, and A. E. Belon (1975), The intensity of the sodium D lines in the auroral zone, Ann. Geophys., 31(2), 311 – 320. Shi, X., D. R. Herschbach, D. R. Worsnop, and C. E. Kolb (1993), Molecular beam chemistry: Magnetic deflection analysis of monoxide electronic states from alkali-metal atom plus ozone reactions, J. Phys. Chem., 97(10), 2113 – 2122. Sipler, D. P., and M. A. Biondi (1978), Interferometric studies of the twilight and nightglow sodium D-line profiles, Planet. Space Sci., 26, 65 – 73. Slanger, T. G., and R. A. Copeland (2003), Energetic oxygen in the upper atmosphere and the laboratory, Chem. Rev., 103(12), 4731 – 4765. Slanger, T. G., and D. E. Osterbrock (2000), Investigation of potassium, lithium, and sodium emissions in the nightglow, and OH cross-calibration, J. Geophys. Res., 105, 1425 – 1429. Slanger, T. G., D. L. Huestis, and P. C. Cosby (2000a), Sodium D2/D1 ratio in the terrestrial nightglow, from Keck/HIRES sky spectra, Bull. Am. Astron. Soc., 33, 1599. Slanger, T. G., D. L. Huestis, P. C. Cosby, and D. E. Osterbrock (2000b), Accurate atomic line wavelengths from astronomical sky spectra, J. Chem. Phys., 113, 8514 – 8520. Slipher, V. M. (1929), Emissions in the spectrum of the light of the night sky, Publ. Astron. Soc. Pac., 41, 262 – 264. 7 of 8 D23302 SLANGER ET AL.: SODIUM NIGHTGLOW Thomas, R. J. (1990), Atomic hydrogen and atomic oxygen density in the mesopause region: Global and seasonal variations deduced from Solar Mesosphere Explorer near-infrared emissions, J. Geophys. Res., 95, 16,457 – 16,470. Wright, T. G., A. M. Ellis, and J. M. Dyke (1993), A study of the products of the gas-phase reaction M + N2O and M + O3, with ultraviolet photoelectron spectroscopy, J. Chem. Phys., 98, 2891 – 2907. C. Allende Prieto, McDonald Observatory, University of Texas at Austin, Austin, TX 78712-1083, USA. D23302 P. C. Cosby, D. L. Huestis, and T. G. Slanger, Molecular Physics Laboratory, SRI International, Menlo Park, CA 94025, USA. (tom.slanger@ sri.com) P. Jenniskens, NASA Ames Research Center, Mountain View, CA 94043, USA. F. J. Martin-Torres, AS&M, Inc., NASA/Langley Research Center, Hampton, VA 23666, USA. B. J. Murray, Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, Canada V6T 1Z1. D. A. O’Sullivan, J. M. C. Plane, and A. Saiz-Lopez, School of Environmental Sciences, University of East Anglia, Norwich NR4 7TJ, UK. 8 of 8
© Copyright 2026 Paperzz