MATH221 Problem set 1: Review of integration by parts and by substitution (Solutions) Do the following exercises from Calculus, 5th ed. by Hughes-Hallett–Gleason–McCallum–et al.: 7.1 (pg. 338) 3, 13, 24, 29, 30. 7.2 (pg. 346) 9, 4, 20. Ch. 7 review (pg. 385) 33, 41, 22, 25, 26. Just for fun If the preceding are too easy, the following integral should be more fun: Z Find sec x dx. (Trick: Multiply the integrand by sec x+tan x sec x+tan x and make a substitution). 7.1 3 Z 2 tet dt. Take u = t2 , so that du = 2t dt. We have Z Z 2 1 1 2 tet dt = eu du = et + C. 2 2 13 Z t2 (t3 − 3)10 dt. Take u = (t3 − 3), so that du = 3t2 dt. We have Z Z 1 1 3 t2 (t3 − 3)10 dt = u10 du = (t − 3)11 + C. 3 33 24 Z √ cos 3t sin 3t dt. Take u = cos 3t, so that du = −3 sin 3t dt. Then Z √ Z 1 √ 2 cos 3t sin 3t dt = − u du = − (cos 3t)3/2 + C. 3 9 29 Z Take u = ln z, so that du = Z (ln z)2 dz. z dz z . We have Z (ln z)2 1 dz = u2 du = (ln z)3 + C. z 3 1 30 Z et + 1 dt. et + t Take u = et + t, so that du = (et + 1) dt. Then Z Z t du e +1 dt = = ln et + t + C. t e +t u 7.2 9 Z y ln y dy. Let u(y) = ln y, v 0 (y) = y, so that u0 (y) = y1 , v(y) = Z y 2 ln y y ln y dy = − 2 4 Z Z y2 2 . Integrating by parts, y y 2 ln y y 2 dy = − + C. 2 2 4 t2 sin t dt. Integrate by parts twice. First, let u(t) = t2 , v 0 (t) = sin t. Then u(t) = 2t, v(t) = − cos t and we have Z Z t2 sin t dt = −t2 cos t + 2 t cos t dt. Now, to find the last integral, take u(t) = t, v 0 (t) = cos t, so that u0 (t) = 1, v(t) = sin t and integrate by parts to get Z Z t cos t dt = t sin t − sin t dt = t sin t + cos t + C. Combining the above, Z 20 t2 sin t dt = −t2 cos t + 2t sin t + 2 cos t + C. Z ln x dx. x2 Integrate by parts. Take u(x) = ln x, v 0 (x) = x12 , so that u0 (x) = x1 , v(x) = − x1 . We have Z Z ln x dx ln x + 1 ln x ln x 1 + − +C =− + C. = − =− 2 2 x x x x x x 2 7 Review 33 Z cos2 θ dθ. , we have Using the standard identity cos2 θ = cos 2θ+1 2 Z Z Z Z cos 2θ + 1 sin 2θ θ cos 2θ 1 cos2 θ dθ = dθ = dθ + dθ = + + C. 2 2 2 4 2 41 Z tan θ dθ. We have tan θ = sin θ cos θ , so that, making the substitution u = cos θ, du = − sin θ dθ, Z Z du tan θ dθ = − = − ln | cos θ| + C. u 22 Z √ x 1 − x dx. √ Let u(x) = x, v 0 (x) = 1 − x, so that u0 (x) = 1, v(x) = − 23 (1 − x)3/2 . Integrating by parts, we have Z Z √ 2 2 (1 − x)3/2 dx. x 1 − x dx = − x(1 − x)3/2 + 3 3 2 4 = − x(1 − x)3/2 − (1 − x)5/2 + C. 3 15 25 Z (ln x)2 dx. Do the following somewhat tricky integration by parts: take u(x) = (ln x)2 , v 0 (x) = 1, so x that u0 (x) = 2 ln x , v(x) = x. We have Z Z 2 2 (ln x) dx = x(ln x) − 2 ln x dx. To find the last integral, let u(x) = ln x, v 0 (x) = 1, so that u(x) = x1 , v 0 (x) = x. Then Z Z ln x dx = x ln x − dx = x ln x − x + C. Combining the above, Z 26 (ln x)2 dx = x(ln x)2 − 2x ln x + 2x + C. Z ln(x2 ) dx. 2 Take u(x) = ln(x2 ), v 0 (x) = 1, so that u0 (x) = 2x x2 = x , v(x) = x. We have Z Z ln(x2 ) dx = x ln(x2 ) − 2 dx = x ln(x2 ) − 2x + C. 3 Just for fun Using the hint, we the integrand becomes Z sec x + tan x sec x dx. sec x + tan x Let u(x) = sec x + tan x. Then u0 (x) = (sec x tan x + sec2 x) (check!), so that Z Z Z sec x + tan x sec2 x + sec x tan x du sec x dx = dx = = ln | sec x + tan x| + C. sec x + tan x sec x + tan x u 4
© Copyright 2026 Paperzz