Dr.Faisal Rana C4 1 www.biochemtuition.com [email protected] Answers - Worksheet H INTEGRATION a = = c = 1 × 15 (2x − 3)5 + 2 1 (2x − 3)5 + c 10 1 2 b = −2 cot c e4x − 1 + c d 2( x − 1) x( x + 1) 1 2 ≡ x+c A x B , x +1 + 2(x − 1) ≡ A(x + 1) + Bx x = 0 ⇒ A = −2, x = −1 ⇒ B = 4 2( x − 1) x( x + 1) ∫ dx = ∫ ( 4 x +1 − 2 x ) dx = 4 lnx + 1 − 2 lnx + c e = ∫ 3 sec2 2x dx = 3 2 g = ∫ = 1 4 i k = (sec x tan x)sec3 x dx m = du dx dv dx = 1; = e3x, v = ∫ = 1 3 xe3x − 1 9 = 1 9 e3x(3x − 1) + c 1 3 1 3 e3x × 14 (x2 + 3)4 + c = 1 8 (x2 + 3)4 + c h = 1 2 × 23 (7 + 2 x) 2 + c 1 8( x + 1)2 o u = x, du dx 3 +c sin (4x + 2) + c = 1; dv dx ∫ = − 12 x cos 2x + 1 4 ∫ = l = ∫ = 1 3 5 4 5 4 dx = ∫ lnx − 3 − tan 3x − x + c ∫ −2 x 1 − x2 ∫ ( x + 2) + 2 x+2 2 (1 + x+2 dx dx ) dx = x + 2 lnx + 2 + c sin 2x + c Solomon Press x + 2 ≡ A(x + 1) + B(x − 3) , x = −1 ⇒ B = − 14 = − 32 ln1 − x2 + c = cos 2x dx A B + , x − 3 x +1 (sec2 3x − 1) dx n = − 32 ∫ 1 2 ≡ x+2 2 x − 2x − 3 = sin 2x, v = − 12 cos 2x p = x sin 2x dx = − 12 x cos 2x + x+2 ( x − 3)( x + 1) x=3 ⇒ A= e3x + c [2 + 2 cos (4x + 2)] dx 1 2 j e3x dx × ( − 12 )(x + 1)−2 + c = 2x + ∫ 1 2 3 xe3x − ∫ = 2x(x2 + 3)3 dx = 13 (7 + 2 x) 2 + c 1 3 =− ∫ sec4 x + c xe3x dx = 1 4 1 2 tan 2x + c u = x, ∫ f = ( 5 4 x−3 1 4 − 1 4 x +1 ) dx lnx + 1 + c Dr.Faisal Rana C4 2 www.biochemtuition.com [email protected] Answers - Worksheet H INTEGRATION a c 2 ∫1 6e2x − 3 dx 2 π 3 ∫0 3 2 ∫1 = 3(e − e−1) = −(ln = ln 2 dx d − 0) A 6+ x ≡ (4 − x)(1 + x) 4 − x + B , 1+ x 6 + x ≡ A(1 + x) + B(4 − x) = 0 − 2 ln 5 ∫2 3 6+ x 4 + 3x − x 2 dx = f π 3 ∫0 = 1 2 = −10 = 9 32 9−x dx du π 6 ( 3 4 ) 2 π 6 ∫0 1 3cosu × 3 cos u du 1 ∫0 ∫0 2 sin3 x cos x dx du dx (1 − u), 1 3 1 ∫ −2 = [u] 06 = 1 9 [ 14 u4 − π 6 π 6 = 1 9 [( 14 − du π −0 −2 ∫1 x(1 − 3x)3 dx = 1 9 = dx = −3 x=0 ⇒ u=1 x = 1 ⇒ u = −2 = = 1 ) 1+ x −0 b u = 1 − 3x ∴ x = = 3 cos u dx = ∫0 + π = − 18 (81 − 1) 2 2 4− x ( π 3 sin2 x sin 2x dx = = [ 12 sin4 x] 03 1 3 ∫2 = [−2 ln4 − x + ln1 + x] 32 = (0 + ln 4) − (−2 ln 2 + ln 3) = 4 ln 2 − ln 3 = [ − 12 × 14 (1 − 2x)4] 12 = (1 − u)u3 × ( − 13 ) du 1 3 (u3 − u4) du 1 5 1 5 u5] −12 ) − (4 + 32 5 )] 23 = − 20 dx du c x = 2 tan u ∴ x=2 ⇒ u= 1 4 + x2 = 2 sec2 u d u2 = x + 1 ∴ x = u2 − 1, π 4 dx = π 3 π 4 = 1 2 ∫ = 1 2 [u] 3π = 1 2 ( π3 − = 1 24 dx du = 2u x = −1 ⇒ u = 0 x= 2 3 ⇒ u= 2 3 1 2 x = 4 ⇒ A = 2, x = −1 ⇒ B = 1 x=0 ⇒ u=0 x = 32 ⇒ u = π6 ∫2 dx = [2 lnx − 3] −22 a x = 3 sin u ∴ ∫0 − sin x cos x 0 π (1 − 2x)3 dx 3 2 π 3 = −[lncos x] 03 = −2 ln 5 e tan x dx = − ∫ = [3e2x − 3] 12 2 x−3 ∫ −2 b page 2 π 3 ∫ x=0 ⇒ u=1 π 3 π 4 1 4sec 2 u × 2 sec2 u du 0 ∫ −1 du π 4 π 4 ) π x 2 x + 1 dx = (u2 − 1)2u × 2u du = ∫0 1 2u2(u4 − 2u2 + 1) du = ∫0 1 (2u6 − 4u4 + 2u2) du = [ 72 u7 − 4 5 u5 + = ( 72 − + 2 3 = Solomon Press 1 ∫0 16 105 4 5 2 3 u3] 10 ) − (0) Dr.Faisal Rana C4 4 www.biochemtuition.com [email protected] Answers - Worksheet H INTEGRATION b = 1 2 ∫ = 1 2 ex dx d = 1 2 ∫ ) dx = 1 2 (− 15 cos 5x − cos x) + c a = − 23 ln5 − 3x + c c = ∫ − 12 (2 x + 1) + = ∫ ( = 3 4 3 2 2x + 1 3 2 2x + 1 − 1 2 ln2x + 1 − du dx e u = 3x, 1 2 ∫ 3x(x − 1)4 dx = 3 5 x(x − 1)5 − ∫ = 3 5 x(x − 1)5 − 1 10 = 1 10 1 10 = = (x − 1)4, v = 1 5 (x − 1)5 f (x − 1)5 dx 3 5 3x 2 + 6 x + 2 x2 + 3x + 2 ∫ + B x+2 dx = ∫ (3 − 1 x +1 − 2 x+2 ) dx (5x + 1)(x − 1) + c − 13 = 15 (2 x 4 = 1 3 ∫ = 1 3 × 2( x 3 − 1) 2 + c = 2 3 5(2 x − 1) dx 1 3 ∫ = 1 3 ln2 + 3 sin x + c dx 2 − 1) 3 + c 3x 2 ( x3 − 1) − 12 ∫ = ∫ dx j = 1 x3 − 1 + c 6x − 5 ( x − 1)(2 x − 1)2 ≡ A x −1 + x = 1 ⇒ A = 1, x = B 2x − 1 + C (2 x − 1)2 1 2 1 x −1 − l ∫ ∫ + cosec2 x − 1) dx du dx = 2x; dv dx = e−x, v = −e−x x2e−x dx = −x2e−x + du dx ∫ = 2; 2xe−x dx dv dx = e−x, v = −e−x x2e−x dx = −x2e−x − 2xe−x + ∫ 2e−x dx = −x2e−x − 2xe−x − 2e−x + c dx 2 2x − 1 − cos x sin x u = 2x, + 4 (2 x − 1)2 ) dx = lnx − 1 − ln2x − 1 − 2(2x − 1)−1 + c x −1 2x − 1 (4 − 4 u = x2, ⇒ C=4 coeffs of x2 ⇒ B = −2 6x − 5 ( x − 1)(2 x − 1)2 (4 − 4 cot x + cot2 x) dx = 3x − 4 lnsin x − cot x + c 6x − 5 ≡ A(2x − 1)2 + B(x − 1)(2x − 1) + C(x − 1) ( 3cos x 2 + 3sin x h = 2 = ln A x +1 = 3x − lnx + 1 − 2 lnx + 2 + c × 152 (2 x − 1) 3 + c ∫ ≡3+ 5 1 2 = +c (sin 5x + sin x) dx 3x2 + 6 x + 2 ( x + 1)( x + 2) (x − 1)5[6x − (x − 1)] + c = ∫ dx x = −1 ⇒ A = −1, x = −2 ⇒ B = −2 (x − 1)6 + c ∫ k + 2x + 2x 3x2 + 6x + 2 ≡ 3(x + 1)(x + 2) + A(x + 2) + B(x + 1) g = i 2 2 = − 101 (cos 5x + 5 cos x) + c x+c dv dx = 3; (2x + 2) e x page 3 2 2x − 1 +c Solomon Press = −e−x(x2 + 2x + 2) + c Dr.Faisal Rana C4 5 www.biochemtuition.com [email protected] Answers - Worksheet H INTEGRATION a 4 ∫2 1 3x − 4 dx b ∫ π 4 π 6 π cosec2 x cot2 x dx = − ∫ π4 (−cosec2 x)cot2 x dx 6 π 4 π 6 = −[ 13 cot3 x] = [ 13 ln3x − 4] 42 c = 1 3 (ln 8 − ln 2) = − 13 [1 − ( 3 )3] = 2 3 ln 2 = 3 − 1 3 du dx = 1; dv dx 7 − x2 (2 − x)2 (3 − x) ≡ A 2− x + B (2 − x)2 + C 3− x d u = x, π 2 ∫0 7 − x2 ≡ A(2 − x)(3 − x) + B(3 − x) + C(2 − x)2 x cos 1 2 1 2 = cos π π 2 ∫0 = [2x sin 1 2 x] 02 − coeffs of x2 ⇒ A = 1 = [2x sin 1 2 x + 4 cos 1 7 − x2 (2 − x)2 (3 − x) = 1 ∫0 ( dx 1 2− x + 1 2 = [π( 3 (2 − x)2 − 2 ) 3− x dx = x, v = 2 sin 1 2 x x dx x = 2 ⇒ B = 3, x = 3 ⇒ C = −2 ∫0 page 4 1 2 ) − 4( 2 sin 1 2 1 2 x dx π x] 02 )] − [0 + 4] 2 (π − 4) − 4 1 2 = [−ln2 − x+ 3(2 − x)−1 + 2 ln3 − x] 10 = (0 + 3 + 2 ln 2) − (−ln 2 + = e 5 ∫1 3 2 3 2 + 2 ln 3) + 3 ln 2 − 2 ln 3 1 4x + 5 dx f π 6 π 6 ∫− 1 = [ 14 × 2(4 x + 5) 2 ] 15 = 1 2 2 cos x cos 3x dx = (5 − 3) = ∫ π 6 − π6 [cos 4x + cos (−2x)] dx ∫ π 6 − π6 (cos 4x + cos 2x) dx = [ 14 sin 4x + =1 = [ 14 ( = g 2 ∫0 2 ∫0 x 2 x 2 + 1 dx = 14 = = 1 4 1 6 4 x 2 x 2 + 1 dx 3 4 x−2 [ 23 (2 x 2 + 1) ] 02 (27 − 1) = 4 13 1 ∫0 x2 + 1 x−2 ) + 12 ( π sin 2x] −6π 6 3 2 3 2 )] − [ 14 (− ) + 12 (− 3 h 3 2 3 2 1 2 x + 2 x2 + 0x + 1 x2 − 2x 2x + 1 2x − 4 5 dx = 1 ∫0 (x + 2 + 5 x−2 ) dx = [ 12 x2 + 2x + 5 lnx − 2] 10 = ( 12 + 2 + 0) − (0 + 0 + 5 ln 2) = Solomon Press 5 2 − 5 ln 2 3 2 )] Dr.Faisal Rana C4 www.biochemtuition.com [email protected] Answers - Worksheet H INTEGRATION u = x − 2, i 1 ∫0 du dx dv dx = 1; = (x + 1)3, v = 1 4 (x + 1)4 1 ∫0 (x − 2)(x + 1)3 dx = [ 14 (x − 2)(x + 1)4] 10 − = [ 14 (x − 2)(x + 1)4 − = (−4 − 8 5 ) − ( − 12 − 1 20 1 20 1 4 (x + 1)4 dx (x + 1)5] 10 ) = −5 201 6 2 x ( x + 2)3 ∫1 a = dx 2 2 2x ( x 2 + 2)3 b = = 1 2 ∫1 = 1 2 [ − 12 (x2 + 2)−2] 12 = − 14 ( 361 − 1 9 ∫2 dx ln x dx du dx u = ln x, = [x ln x] 42 − 1 x = 4 ∫2 dv dx ; = 1, v = x dx = [x ln x − x] 42 ) = (4 ln 4 − 4) − (2 ln 2 − 2) 1 48 = 4 = 6 ln 2 − 2 7 ax 2 + b x 6 ∫3 6 ∫3 dx = (ax + b x ) dx 8 a 6 − 2ex = 0 = [ 12 ax2 + b ln | x |] 36 x = ln 3 ∴ (ln 3, 0) = (18a + b ln 6) − ( 92 a + b ln 3) ∴ 27 2 b = = (6 ln 3 − 6) − (0 − 2) = 6 ln 3 − 4 a, b rational ∴ b = 5, 272 a = 18 9 4 3 , b=5 u = cot x ∴ du dx x= π 6 ⇒ u= x= π 4 ⇒ u=1 = −cosec2 x 10 a y = 0 ⇒ 4 − t2 = 0 t=±2 3 x=t+1 ∴ cosec2 x = 1 + cot2 x = 1 + u2 ∴ ∫ π 4 π 6 (6 − 2ex) dx = [6x − 2ex] ln0 3 a + b ln 2 = 18 + 5 ln 2 a= ln 3 ∫0 1 ∫ = ∫1 3 3 u2(1 + u2) × (−1) du ∫ −2 = ∫ −2 = [ 13 u3 + 1 5 =( 3 + 9 5 = 14 5 = 2 15 b = [4t − (u2 + u4) du 3 − u5] = (8 − 3 1 3 ) − ( 13 + = 10 23 1 5 ) 8 15 ( 21 3 − 4) Solomon Press 2 ∴ area = cot2 x cosec4 x dx = dx dt 2 =1 y × 1 dt (4 − t2) dt 1 3 2 t ] −2 3 8 3 ) − (−8 + 8 3 ) page 5 Dr.Faisal Rana C4 11 www.biochemtuition.com [email protected] Answers - Worksheet H INTEGRATION a d dx (x2 sin 2x + 2kx cos 2x − k sin 2x) 12 area = −4kx sin 2x − 2k cos 2x 1 2 (x2 sin 2x + x cos 2x − 1 2 ∫ x cos 2x dx = 1 2 1 4 = 13 2 (x2 sin 2x + x cos 2x − 1 2 sin 2x) + c (2x2 sin 2x + 2x cos 2x − sin 2x) + c a f(1) = 18, f(2) = 80, f(−1) = −4, f(−2) = 0 ∴ (x + 2) is a factor 3x2 + 5x x + 2 3x3 + 11x2 3x3 + 6x2 5x2 5x2 − 2 + 8x − 4 + 8x + 10x − 2x − 4 − 2x − 4 ∴ 3x3 + 11x2 + 8x − 4 = (x + 2)(3x2 + 5x − 2) = (3x − 1)(x + 2)2 b x + 16 3 x3 + 11x 2 + 8 x − 4 ≡ A 3x − 1 + B x+2 C ( x + 2)2 + x + 16 ≡ A(x + 2)2 + B(3x − 1)(x + 2) + C(3x − 1) 49 ⇒ = 499 A ⇒ A=3 x = 13 3 x = −2 ⇒ coeffs of x2 ⇒ ∴ f(x) ≡ c = 0 ∫ −1 ( 3 3x − 1 3 3x − 1 − ⇒ ⇒ 14 = −7C 0 = A + 3B − 1 x+2 1 x+2 − − 2 ( x + 2)2 2 ( x + 2)2 2 ∫1 = ( − 12 ln 2 − sin 2x) = 2x2 cos 2x ∴ =0 ∴x=1 ∫ = 2x2 cos 2x + (2 − 4k)x sin 2x d dx ln x x2 ln x dx x2 du 1 dv u = ln x, = ; = x−2, dx x dx 2 ln x 2 area = [− ]1 + x−2 dx 1 x ln x = [− − x−1] 12 x = 2x sin 2x + 2x2 cos 2x + 2k cos 2x b let k = curve meets x-axis when C = −2 B = −1 ) dx = [ln3x − 1 − lnx + 2 + 2(x + 2)−1] −01 = (0 − ln 2 + 1) − (ln 4 − 0 + 2) = −1 − ln 2 − ln 22 = −1 − 3 ln 2 = −(1 + 3 ln 2) Solomon Press page 6 = 1 2 = 1 2 − 1 2 ln 2 (1 − ln 2) 1 2 ) − (0 − 1) v = −x−1
© Copyright 2026 Paperzz