Nuclear charge radius determination of the halo nucleus Be-11 Monika Žáková, Johannes Gutenberg-Universität Mainz M. Bissell6, K. Blaum7, Ch. Geppert2, M. Kowalska3, J. Krämer1 , A. Krieger1, R. Neugart1, W. Nörtershäuser1,2 , R. Sanchez1, F. Schmidt-Kaler4, D. Tiedemann1, D. Yordanov7, C. Zimmermann5 Johannes Gutenberg-Universität Mainz, Germany Darmstadt, Germany 3 CERN 4 Universität Ulm, Germany 5 Eberhard-Karls Universität Tübingen, Germany 6 Instituut voor Kern- en Stralingsfysica, Leuven 7Max Planck Institut für Kernphysik, Heidelberg 1 2 GSI Laser Spectroscopy of Highly Charged Ions and Exotic Radioactive Nuclei (Helmholtz Young Investigators Group) http://www.kernchemie.uni-mainz.de/laser/ Outline ► Halo Nuclei ► Isotope Shift ► Collinear Laser Spectroscopy ► Results Halo Nuclei 3 Isotope Shift → Nuclear Charge Radius ► Charge radius – proton distribution ► Nuclear model – independent Isotop 1 ΔνIS Absorption spectra Isotop 2 ΔνIS = ΔνMS + ΔνFS 4 Isotope Shift ΔνIS = meausrements ΔνMS + ΔνFS calculations ≈10 GHz charge radius ≈1 MHz ► Calculations up to three e- system Be+ Z.-C. Yan et al., Phys. Rev. Lett., 100, 243002 (2008) M. Puchalski, K. Pachucki Phys. Rev A 78, 052511 (2008) 5 Isotope Shift ΔνIS = meausrements ΔνMS + ΔνFS calculations ≈10 GHz charge radius ≈1 MHz r r 2 V(r) 2 2πZe ΔνFS= Δ|ψ(0)|2 δ 3 field shift coefficient C - calculations Z.-C. Yan et al., Phys. Rev. Lett., 100, 243002 (2008) M. Puchalski, K. Pachucki Phys. Rev A 78, 052511 (2008) 6 6He, 8He ► 6He, 8He – isotope shifts measurements in magneto optical trap, Argonne National Lab, GANIL P. Müller et al., Phys. Rev. Lett., 99, 252501 (2007) L.-B. Wang et al., Phys. Rev. Lett., 93, 142501 (2004): 1.912(18) fm for He-6 7 Beryllium Measurements 8 Where did we measure? RADIOACTIVE LABORATORY 1 GeV PROTONS ROBOT ►1GeV Proton Beam from PSB p S GP ►Uranium-Carbite Target ►GPS Mass Separator Se r to a ar CONTROL ROOM REX-ISOLDE EXPERIMENTAL HALL ►COLLAPS Beam-Line COLLAPS Beam-Line ISOLTRAP 9 Collinear Laser Spectroscopy Ion Beam Ekin~60 keV ► Laser Frequency is Fixed Deflection Deceleration ► Doppler Tuning Collinear Laser Beam ν c = ν 0 ⋅ γ ⋅ (1 + β ) + (Doppler-tuning) + Photomultipliers (Signal Detection) acceleration voltage / kV 0 15 30 45 60 δE = δ(mv 2 / 2) = mv δv = const k 2T 2 δv = eUm 10 Experimental Setup at COLLAPS ► Laser Frequency is Fixed Ion Beam Ekin~60 keV ► Doppler Tuning Collinear Laser Beam Deflection Deceleration ν c = ν 0 ⋅ γ ⋅ (1 + β ) + (Doppler-tuning) + Photomultipliers (Signal Detection) ► Limitation – knowledge of ion velocity 2eU β≈ m0 c 2 ΔU/U ≈ 10-4 ⇒ ΔνIS ≈ 18 MHz IS (Be): 5-15 MHz 11 Two Laser Beams ν c = ν 0 ⋅ γ ⋅ (1 + β ) Ion Beam Ekin~60 keV Deflection Deceleration Collinear Laser Beam + ν c = ν 0 ⋅ γ ⋅ (1 + β ) (Doppler-tuning) + νa = ν0 ⋅ γ ⋅ (1 − β ) ( ) 2 2 2 2 = ν ⋅ γ ⋅ 1 − β = ν ν c ⋅ νa 0 0 Anti-collinear Laser Beam Photomultipliers (Signal Detection) ν a = ν 0 ⋅ γ ⋅ (1 − β ) ► Laser Frequency Measurement Δν/ν < 10-9 ► Dedicated laser system 12 Experimental Setup Anti-collinear Laser Setup Collinear Laser Setup 13 Laser Spectroscopy Setup Anti-collinear Laser Setup BBO Collinear Laser Setup BBO 14 Laser Spectroscopy Setup 15 Laser Spectroscopy Setup 16 Energy Level Scheme 17 2s1/2 – 2p1/2 Transition 4500 7 Be (D1 line) 4000 Fitting … 3500 Counts/ s ► Voigt Profile 3000 2500 2000 1500 1800 1000 10 Be (D1 line) 500 1600 -50 150 11 1200 800 -30 -20 -10 0 10 20 Be (D1 line) 130 600 400 200 0 -100 -40 140 1000 Counts/ s Counts/ s 1400 -96 -92 -88 -84 Voltage [V] -80 -76 120 110 100 90 -200 -175 -150 -125 Voltage [V] -100 -75 -50 Energy Level Scheme 19 2s1/2 – 2p3/2 Transition 20 Nuclear Charge Radius δνIS = δνMS 2 2πZe + Δ|ψ(0)|2 δ rc 2 3 δνFS rc ( A Be) = δ rc2 + rc2 ⎛⎜⎝ 9 Be ⎞⎟⎠ rc (9 Be) = 2.519 (12) fm (Electron Scattering) J. A. Jansen, Nuc. Phys. A, 188, 337-352, (1972). 21 Radius of one Neutron-Halo 11Be Simple frozen core two-body model: ► 11Be consists of the 10Be core and halo-neutron ► Difference in proton distribution attributed to influence of the halo-neutron classical picture: 2 Rcentermass = rc2 (11 Be) − rc2 (10 Be) rhalo− Neutron = Rcentermass ⋅ 10 m( Be) m( Neutron ) center of mass 22 Radius of one Neutron-Halo 11Be ► Pure center-of-mass motion 23 Radius of one Neutron-Halo 11Be ► Pure center-of-mass motion ► Additional contribution: Core polarization (intrinsic structure of 10Be) Suggestion by I. Tanihata: Combine Charge- and Matter-Radii with B(E1) to disentangle core excitation from center-of-mass motion. 24 Conclusion & Outlook Current status: ► Isotope shift of 7,9,10,11Be+ determined with ~ 1 MHz precision ► Determination of charge radii with ~1% uncertainty Near Future: ► Isotope shift measurement of 12Be using collinear laser spectroscopy with an improved detection system 25 Thank You for Attention Beam-time Crew 26 Beryllium ion production • RILIS (ISOLDE laser ion source) Isotope Half life Yield (ions/μC) 7Be 53.12 d 1.4E+10 10Be 1.51E+6 a 6.0E+09 11Be 13.8 s 7.0E+06 12Be 23.6 ms 1.5E+03 14Be 4.35 ms 4.0E+00 auto-ionizing state 2p2 1S0 IP ~ 9 eV 297.3 nm 2s2p 1P1 234.9 nm 2s2 1S0 Efficiency: ~ 7 % 27 Commercial Frequency Comb 28
© Copyright 2026 Paperzz