Name
LESSON
4-2
Date
Class
Reteach
Multiplying Matrices
Use the dimensions to decide whether matrices can be multiplied.
To multiply two matrices, the number of columns in A
must equal the number of rows in B.
Matrices:
A
Dimensions: m n
Remember, with matrices,
AB is NOT the same as BA.
AB
B
np
mp
Inner dimensions
are equal: n n.
Outer dimensions give the
dimensions of the product.
To determine which products are defined, check the dimensions.
1 2
3 5
1
1
2
C
B 1 4
A
2 0 1
3 1
0 3
A: 2 3
B: 3 2
C: 2 2
AB: 2 3 and 3 2, so AB is defined and has dimensions 2 2.
Inner dimensions are equal.
AC: 2 3 and 2 2, so AC is not defined.
Inner dimensions are NOT equal.
Use the following matrices for Exercises 13. Tell whether each
product is defined. If so, give its dimensions.
A
1
0
B
2 2
1. AB
3
1
2. BC
C 4 3
3. AC
A: 2 2
B:
2⫻1
A:
2⫻2
B: 2 1
C:
1⫻2
C:
1⫻2
Product defined?
Product defined?
Yes
yes
2⫻1
2⫻2
Copyright © by Holt, Rinehart and Winston.
All rights reserved.
a207c04-2_rt.indd 14
14
Product defined?
no
Holt Algebra 2
12/26/05 6:33:42 AM
Process Black
Name
LESSON
Date
Class
Reteach
4-2 Multiplying Matrices (continued)
To find a matrix product, first make sure the product is defined.
1 2
A
Find AB.
3 5
1
A is 2 3 and B is 3 2.
The product is a 2 2 matrix.
B 1 4
0 3
2 0 1
Step 1: Multiply row 1 entries of A by column 1 entries of B. The sum is the first entry in the
product.
1 2
3 5
1
1 4 2 0 1
0 3
3 1 5 1 1 0 ?
? ?
2 ?
? ?
Step 2: Multiply row 1 entries of A by column 2 entries of B. Add.
1 2
3 5
1
1 4 2 0 1
0 3
2 3 2 5 4 1 3 ?
?
2 29
?
?
Step 3: Multiply row 2 entries of A by column 1 entries of B. Add.
1 2
2 29
2 29
1 4 2
?
2 1 0 1 1 0 ?
2 0 1
0 3
3 5
1
Step 4: Multiply row 2 entries of A by column 2 entries of B. Add.
1 2
2 29
29
2
1 4 2 7
2 2 2 0 4 1 3 2 0 1
0 3
3 5
1
Find each product.
4.
3 4
1
3 3
1
4
3
3
4
1
3
12
9
4
1 2 1 1 0 4 5. 1 0
3 2 4 0
3 1 2 ⫺4 0 4
6. 5 2
0 3 1 2
Copyright © by Holt, Rinehart and Winston.
All rights reserved.
a207c04-2_rt.indd 15
3
1
3
2
2
0
0
2 0
⫺1 ⫺2
11
6
2 16
3 6
15
Holt Algebra 2
12/26/05 6:33:42 AM
Process Black
*À>VÌViÊ
-ULTIPLYING-ATRICES
,%33/.
{Ó
*À>VÌViÊ
-ULTIPLYING-ATRICES
,%33/.
{Ó
4ELLWHETHEREACHPRODUCTISDEFINED)FSOGIVEITSDIMENSIONS
4ELLWHETHEREACHPRODUCTISDEFINED)FSOGIVEITSDIMENSIONS
!AND"!"
0AND101
#
AND$#$
%AND&%&
.O
" !!!
!
SDSD
S
DS
$ S
D
#
S
DS DS D D
"!
0LAYER
2ED
9ELLOW
"LUE
*ULIE
3TEVE
B &INDTHEPRODUCTMATRIX
2ED
9ELLOW
"LUE
* +
*+
(OLT!LGEBRA
.O
{Ó
, "ARRY
3INGLE3
$OUBLE$
4RIPLE4
(OMERUN(2
*AMAL+EN"ARRY
(OLT!LGEBRA
!"
NP
MP
2EMEMBERWITHMATRICES
!"IS./4THESAMEAS"!
/UTERDIMENSIONSGIVETHE
DIMENSIONSOFTHEPRODUCT
4ODETERMINEWHICHPRODUCTSAREDEFINEDCHECKTHEDIMENSIONS
!
" #
"
, !
"
#
!"ANDSO!"ISDEFINEDANDHASDIMENSIONS
)NNERDIMENSIONSAREEQUAL
!#ANDSO!#ISNOTDEFINED
-ILK0RICES
3IZE
0RICE
1UART
(ALFGALLON
)NNERDIMENSIONSARE./4EQUAL
$AIRY-ILK3ALES
3IZE
-ON
4UE
7ED
4HU
1UART
(ALFGALLON
'ALLON
B &INDTHEPRODUCTMATRIX
C /RDERTHEDAYSFROMGREATESTTO
LEASTINTOTALSALES
#OPYRIGHT©BY(OLT2INEHARTAND7INSTON
!LLRIGHTSRESERVED
A 4OCOMPAREMILKSALESFOREACH
DAYSHOWTHEDATAASMATRICES
Copyright © by Holt, Rinehart and Winston.
All rights reserved.
AK4up.indd 53
)NNERDIMENSIONS
AREEQUALN N
-
$IMENSIONS MN
.O
!
-ATRICES
4HETABLESSHOWTHEPRICESANDAMOUNTSOFMILKSOLDINADAIRYSTOREDURINGONEWEEK
0OINTS3COREDFOR(ITS
(IT
0OINTS
MUSTEQUALTHENUMBEROFROWSIN"
,*
3OLVE
+EN
(2
4OMULTIPLYTWOMATRICESTHENUMBEROFCOLUMNSIN!
-
*,
-+
'ALLON
5SETHEDIMENSIONSTODECIDEWHETHERMATRICESCANBEMULTIPLIED
+-
+,
,iÌi>V
-ULTIPLYING-ATRICES
,%33/.
+*
4
0LAYER
*AMAL
C (OWMANYPOINTSDIDEACHPLAYERSCORE
5SETHEFOLLOWINGMATRICESFOR%XERCISESn%VALUATEIFPOSSIBLE
#OPYRIGHT©BY(OLT2INEHARTAND7INSTON
!LLRIGHTSRESERVED
*À>VÌViÊ
-ULTIPLYING-ATRICES
*ULIE3TEVE
C (OWMANYPOINTSDIDEACHPLAYERWIN
{Ó
(ITS
$
B &INDTHEPRODUCTMATRIX
#OPYRIGHT©BY(OLT2INEHARTAND7INSTON
!LLRIGHTSRESERVED
,%33/.
3
%
A 7RITEAMATRIXTHATREPRESENTSTHEDATAIN
EACHTABLE
*AMAL+ENAND"ARRYAREPLAYINGABASEBALLVIDEO
GAME4HEFIRSTTABLESHOWSTHENUMBEROFSINGLES
DOUBLESTRIPLESANDHOMERUNSEACHSCORED&IND
THETOTALNUMBEROFPOINTSTHEYEACHSCORED
4ICKET0OINT6ALUES
4ICKET
0OINTS
3OLVE
4ICKETS7ON
A 7RITEAMATRIXTHATREPRESENTSTHEDATAIN
EACHTABLE
3OLVE
*ULIEAND3TEVEAREPLAYINGTHEGAMESATTHE
ARCADE4HEFIRSTTABLESHOWSTHENUMBEROF
EACHTYPEOFTICKETTHEYWON&INDTHETOTAL
NUMBEROFPOINTSTHEYEACHWON
.O
(&
#$
7AND878
%'
&'
#"
2AND332
5SETHEFOLLOWINGMATRICESFOR%XERCISESn%VALUATEIFPOSSIBLE
%
& '
( 5SETHEFOLLOWINGMATRICESFOR%XERCISESn%VALUATEIFPOSSIBLE
5SETHEFOLLOWINGMATRICESFOR%XERCISES4ELLWHETHEREACH
PRODUCTISDEFINED)FSOGIVEITSDIMENSIONS
&RI
!
!"
"
"#
# !#
!
"
!
"
#
#
0RODUCTDEFINED
0RODUCTDEFINED
9ES
YES
4UE-ON4HU7ED&RI
(OLT!LGEBRA
#OPYRIGHT©BY(OLT2INEHARTAND7INSTON
!LLRIGHTSRESERVED
53
0RODUCTDEFINED
NO
(OLT!LGEBRA
Holt Algebra 2
12/26/05 6:24:29 AM
,iÌi>V
{Ó -ULTIPLYING-ATRICESCONTINUED
,%33/.
{Ó
-ATRICESCANBEUSEDTOSENDMESSAGESINCODEDFORM
ANDTHENANOTHERMATRIXCANBEUSEDTODECODETHEMESSAGE
5SETHECODESHOWNINTHETABLEFORLETTERSANDCHARACTERS
4OFINDAMATRIXPRODUCTFIRSTMAKESURETHEPRODUCTISDEFINED
&IND!"
!
!ISAND"IS
4HEPRODUCTISAMATRIX
" SDSDSD SDSDSD
SDSDSDSD THEDECODINGMATRIX$ 4HISGIVES
$#- &INDEACHPRODUCT
S
D
S
D
4HISGIVESTHECODEDMESSAGE#79/694636%'4ODECODEMULTIPLYBY
S
D S
D
SDSD
S DS D
S
S
DS
D DSDS
D
WHICHINARITHMETICMODULOIS
ANDTRANSLATESBACKTO
h-ATHISFUNv
.OTETHATINTHEMATRIXFORTHEDECODEDMESSAGECORRESPONDSTO
7HENYOUCODEAMESSAGEBESURETOUSEAMATRIXWITHROWS!DD
SPACESATTHEENDOFTHEMESSAGEIFNECESSARY
6+!1(.4
#!.)(!6%#!2
#ODETHEMESSAGEh./4./7v
$ECODETHEMESSAGEh&%22)10##$/2)v
#OPYRIGHT©BY(OLT2INEHARTAND7INSTON
!LLRIGHTSRESERVED
(OLT!LGEBRA
{Ó
{Ó
#OOKING#LUB-EMBERS3CORES
!PPETIZER
-AIN
$ESSERT
#OURSE
"ETH
*ON
,UPE
!MY
,IKEREALNUMBERSMATRICESCANBEMULTIPLIED"UTUNLIKENUMBERSTHATCANBE
MULTIPLIEDINANYORDERMATRICESMUSTBEMULTIPLIEDINASPECIFICWAY
#ULINARY#HALLENGE
$EGREESOF$IFFICULTY
"ETH *ON ,UPE
!PPETIZER
-AIN
#OURSE
$ESSERT
-ULTIPLICATIONOFREALNUMBERSIS
COMMUTATIVETHATISTHEORDERDOESNOT
MATTER
!MY
BUT"!
!"p"!
ABBA
-ATRIX2
-ATRIX3
3$0
0RODUCT-ATRIX23
0OSSIBLEANSWERBECAUSEMATRIX3HASTHESAMENUMBEROFCOLUMNS
ASMATRIX$HASROWSTHERESULTWILLBEAMATRIX
0 5SEMATRICES$%AND&TOANSWERTHEFOLLOWINGQUESTIONS
%
&
$
#ANYOUMULTIPLYMATRICES$AND%TOGIVE$%OR%$%XPLAIN
$%ISNOTPOSSIBLEBECAUSEMATRIX$HASCOLUMNSANDMATRIX%HASROWS
%$ISPOSSIBLEBECAUSEMATRIX%HASCOLUMNSANDMATRIX$HASROWS
#ANYOUMULTIPLYMATRICES$AND&TOGIVE$&OR&$%XPLAIN
4HENUMBERSALONGTHEMAINDIAGONALOFTHEPRODUCTMATRIXGIVETHEFINALSCORES
,UPE!MY"ETH*ON
$&ISPOSSIBLEBECAUSEMATRIX$HASCOLUMNSANDMATRIX&HASROWS
&$ISNOTPOSSIBLEBECAUSEMATRIX&HASCOLUMNSANDMATRIX$HASROWS
%XPLAINWHYMATRIXMULTIPLICATIONISNOTCOMMUTATIVE'IVEEXAMPLES
,ISTTHECONTESTANTSANDTHEIRFINALSCORESINDESCENDINGORDER
"
4WOMATRICESCANBEMULTIPLIEDIFTHENUMBEROFCOLUMNSINTHEFIRSTMATRIX
ISTHESAMEASTHENUMBEROFROWSINTHESECONDMATRIX)FMATRIX2IS
ANDMATRIX3ISTHEN23ISPOSSIBLEBUT32IS./4POSSIBLE
2OGERISWRITINGASTORYFORTHESCHOOLNEWSPAPERABOUTTHE#ULINARY
#HALLENGE%XPLAINHOWHECANUSE0TOFINDTHEFINALSCORESFORHISSTORY
3OTHEPRODUCTABISTHESAMEASBA
7RITETHEPRODUCTMATRIX0
!"
%XPLAINHOWYOUKNOWTHATMATRIX3CANBEMULTIPLIEDBYMATRIX$
!
AND
3 $ 7RITEANEQUATIONUSING3$ANDPRODUCTMATRIX0YOU
COULDUSETOEVALUATETHEFINALSCORES
-ATRIXMULTIPLICATIONIS./4COMMUTATIVE
$ISPLAYEACHTABLEASAMATRIX-ATRIX3SHOULDSHOWTHESCORESAND
MATRIX$SHOULDSHOWTHEDEGREESOFDIFFICULTY
(OLT!LGEBRA
,i>`}Ê-ÌÀ>Ìi}iÃ
#OMPAREAND#ONTRAST
,%33/.
-EMBERSOFTHE#OOKING#LUBENTEREDTHE#ULINARY#HALLENGE)NTHIS
CONTESTTHESCOREFOREACHENTRYISMULTIPLIEDBYANASSIGNEDDEGREE
OFDIFFICULTY
#OPYRIGHT©BY(OLT2INEHARTAND7INSTON
!LLRIGHTSRESERVED
*ÀLiÊ-Û}
-ULTIPLYING-ATRICES
,%33/.
#-MODULO MODULO SDSD SDSD
3PACE
3INCEMANYOFTHENUMBERSAREGREATERTHANTHEGREATESTNUMBERIN
THECODEDIVIDEEACHNUMBERBYANDRECORDONLYTHEREMAINDER4HISIS
CALLEDARITHMETICMODULO
3TEP-ULTIPLYROWENTRIESOF!BYCOLUMNENTRIESOF"!DD
0ERIOD
# #- 3TEP-ULTIPLYROWENTRIESOF!BYCOLUMNENTRIESOF"!DD
n
#OMMA
.OTICEHOWTHENUMBERSINTHEMESSAGEREADFROMLEFT
TORIGHT-ULTIPLYMATRIX-BYTHECODINGMATRIX#
!n:
3TEP-ULTIPLYROWENTRIESOF!BYCOLUMNENTRIESOF"!DD
4HEMESSAGEINCODECANBEREPRESENTEDBYMATRIX- #ODE
4AKEAMESSAGESUCHASh-ATHISFUNv#ODEITINTONUMBERSAND
THEMESSAGEBECOMES
3TEP-ULTIPLYROWENTRIESOF!BYCOLUMNENTRIESOF"4HESUMISTHEFIRSTENTRYINTHE
PRODUCT
>i}i
-ATRIX#ODES
,%33/.
0OSSIBLEANSWER-ATRIXMULTIPLICATIONISNOTCOMMUTATIVEBECAUSETHE
PRODUCTSARENOTTHESAMEWHENTHEORDEROFMULTIPLICATIONISREVERSED
-ATRIX$&ISNOTTHESAMEASMATRIX&$
#ANYOUMULTIPLYMATRICES%AND&$ESCRIBEALLPOSSIBILITIES'IVETHEDIMENSIONSOFANY
RESULTINGMATRICES
#OPYRIGHT©BY(OLT2INEHARTAND7INSTON
!LLRIGHTSRESERVED
Copyright © by Holt, Rinehart and Winston.
All rights reserved.
AK4up.indd 54
(OLT!LGEBRA
9ESBOTH%&AND&%AREPOSSIBLE-ATRIX%&ISANDMATRIX&%IS
#OPYRIGHT©BY(OLT2INEHARTAND7INSTON
!LLRIGHTSRESERVED
54
(OLT!LGEBRA
Holt Algebra 2
12/26/05 6:24:43 AM
© Copyright 2026 Paperzz