more 8.3 November 12, 2015 8.3 Trigonometric Integrals ∫sin2x dx=? recall that cos 2x = (1 + cos 2x )/ 2 why? sin 2x = (1 - cos 2x )/ 2 why? more 8.3 how about ∫cos2 2x dx or ∫ 2sin x cos x dx November 12, 2015 more 8.3 November 12, 2015 d/dx tan x = sec 2 x, d/dx sec sx = sec x tan x and tan 2 x + 1 = sec 2x so applying these identities and derivatives, ∫tan 2x dx= ∫( sec2x - 1 )dx ⇒∫ sec2x dx - ∫dx = tan x - x + c more 8.3 November 12, 2015 ∫cos3 x sin4 x dx ⇒∫ cos x (cos 2x ) sin4 x dx ⇒∫ cos x (1 - sin 2 x) sin4 x dx ⇒∫ cos x sin4x dx - ∫cos x sin6 x dx more 8.3 ∫cos3 (x / 3) dx November 12, 2015 more 8.3 November 12, 2015 ∫ (sin5x) dx / (cos x) .5 ⇒∫ (1- cos 2x) ( 1- cos2x) cos-.5 sin x dx more 8.3 November 12, 2015 ∫sin 4 2θ dθ ⇒∫ sin2 2θ sin2 2θ dθ ⇒∫ ( 1 - cos 2(2 θ)) ( 1- cos 2(2 θ)) / 4 d θ expand ∫ 1/4 d θ - ∫1/2cos4 θdθ + ∫(1/8 + 1/8 cos 8 θ)dθ more 8.3 ∫tan 5 (x / 4) dx answer sec4 (x /4)-4sec 2 (x / 4) - 4 ln(cos (x /4)) + c November 12, 2015 more 8.3 ∫x2 sin2 x dx November 12, 2015 more 8.3 November 12, 2015
© Copyright 2026 Paperzz