optogalvanic photodetachment spectroscopy

OPTOGALVANIC PHOTODETACHMENT
SPECTROSCOPY
I. Mcdermid, C. Webster
To cite this version:
I. Mcdermid, C. Webster.
OPTOGALVANIC PHOTODETACHMENT SPECTROSCOPY. Journal de Physique Colloques, 1983, 44 (C7), pp.C7-461-C7-466.
<10.1051/jphyscol:1983745>. <jpa-00223302>
HAL Id: jpa-00223302
https://hal.archives-ouvertes.fr/jpa-00223302
Submitted on 1 Jan 1983
HAL is a multi-disciplinary open access
archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.
L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.
JOURNAL DE PHYSIQUE
page C7-461
Colloque C7, suppl6ment au n o l l , Tome 44, novembre 1983
O P T O G A L V A N I C PHOTODETACHMENT SPECTROSCOPY
I.S.
McDermid and C.R. Webster*
J e t PropuZsion Laboratory, CaZifornia I n s t i t u t e o f TechnoZogy,
4800 Oak Grove Drive, Pasadena, Cazifornia 91109, U.S.A.
Resum6 - La s p e c t r o s c o p i e optogalvanique a S t S Stendue 2 une technique nouvell e dans l a q u e l l e des e l e c t r o n s s o n t dEtachEs des i o n s n e g a t i f s formSs dans l a
dScharge e t observes en f o n c t i o n de l a longueur d'onde du l a s e r . La determinat i o n des a f f i n i t e s e l e c t r o n i q u e s des i o n s atomiques I- e t Cl- e s t d S c r i t e . Les
p o s s i b i l i t g s de c e t t e methode pour E t u d i e r l a s p e c t r o s c o p i e des i o n s n g g a t i f s
molEculaires s o n t a u s s i p r e s e n t e e s .
-
Abstract
A new e x t e n s i o n t o o p t o g a l v a n i c spectroscopy, i n which e l e c t r o n s
detached from n e g a t i v e i o n s formed i n t h e d i s c h a r g e a r e observed a s a f u n c t i o n
o f i n c i d e n t l a s e r wavelength, h a s been developed.
The d e t e r m i n a t i o n of t h e
e l e c t r o n a f f i n i t i e s of
and C l - a t o m i c i o n s i s described.
The p o t e n t i a l of
t h e technique f o r s t u d y i n g t h e spectroscopy of molecular n e g a t i v e i o n s i s a l s o
discussed.
r
1.
Introduction
The o p t o g a l v a n i c e f f e c t h a s p r o v e n p a r t i c u l a r l y s u i t a b l e f o r t h e d e t e c t i o n o f
unstable, r a d i c a l and i o n i c , a t o m i c and molecular s p e c i e s /l-3/,
especially since
t h e s e c a n o f t e n be g e n e r a t e d by t h e d i s c h a r g e i t s e l f . I n a new e x t e n s i o n t o t h e
o p t o g a l v a n i c technique /4/ w e have shown t h a t t h e r a d i a t i o n induced detachment of
e l e c t r o n s from n e g a t i v e i o n s i n t h e discharge can be used t o s t u d y t h e spectroscopy
of t h e s e n e g a t i v e ions, I n t h i s paper w e w i l l review t h e technique and i t s f i r s t
a p p l i c a t i o n t o t h e measurement of t h e e l e c t r o n a f f i n i t y of I-. New d a t a concerning
t h e e l e c t r o n a f f i n i t y of Cl' w i l l a l s o be presented a s w i l l a planned a p p l i c a t i o n
t o study t h e s p e c t r a of molecular n e g a t i v e ions.
The dc d i s c h a r g e c e l l and a s s o c i a t e d c i r c u i t r y have been d e s c r i b e d i n a previous
paper i n t h i s e d i t i o n (Webster and Menzies).
I n t h i s study t h e c e l l windows were
o f q u a r t z and a p u l s e d d y e l a s e r pumped by e i t h e r a n i t r o g e n o r a XeCl e x c i m e r
l a s e r was u s e d u s e d a s t h e e x c i t a t i o n s o u r c e . For t h e s t u d i e s o f 'I a n d C l ' t h e
c e l l was o p e r a t e d i n a f l o w i n g mode w i t h t h e c e l l p r e s s u r e and f l o w r a t e c o n t r o l l e d
by n e e d l e v a l v e s on b o t h t h e r e a g e n t i n l e t a n d vacuum pump.
Typical o p e r a t i n g
p r e s s u r e was
l 0 0 mTorr which, w i t h a d c v o l t a g e o f 400
700 V a c r o s s t h e c e l l ,
40 uA.
A 0.1 U F c o u p l i n g c a p a c i t o r
gave d i s c h a r g e c u r r e n t s i n t h e r a n g e 1 0
allowed laser-induced a c changes i n t h e discharge impedance t o be monitored w i t h a
p r e a m p l i f i e r (PARC 113) connected t o a boxcar i n t e g r a t o r (PARC 162/165).
-
-
E l e c t r o n detachment from halogen n e g a t i v e i o n s (X")
-
i s observed, a c c o r d i n g t o
Although t h e c o n c e n t r a t i o n of n e g a t i v e i o n s i n t h e discharge i s g r e a t e r t h a n t h a t
o f f r e e e l e c t r o n s / 5 / t h e d i s c h a r g e c u r r e n t i s c a r r i e d a l m o s t e n t i r e l y by t h e s e
e l e c t r o n s because of t h e i r much g r e a t e r mobility.
S t u d i e s of t i m e and s p a t i a l l y
r e s o l v e d o p t o g a l v a n i c s i g n a l s show t h a t i t i s p o s s i b l e t o d i s t i n g u i s h very c l e a r l y
* ~ r .Webster was u n f o r t u n a t e l y unable t o come t o t h e Colloquium because of a r e s c h e d u l i n g of a n a i r b a l l o o n experiment b u t h a s s e n t t h e paper h e would have p r e s e n t e d and which i s p u b l i s h e d i n t h e Proceedings.
Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1983745
JOURNAL DE PHYSIQUE
CATHODE
RV (-1
Figure 1. Typical time-resolved
p r o f i l e s f o r LOG s i g n a l s
generated a t discharge l o c a t i o n s
i d e n t i f i e d t o t h e l e f t of t h e
figure.
S i g n a l s have been
n o r m a l i z e d t o t h e same peak
height.
CATHODE
DARK SPACE
NEGATIVE
GLOW
FAPADAY
DARK SPACE
COLUMN
QOSlTlVE
ANODE GLOH
ANODE
Cl
o
~
r
n
m
a
o
m
r
m
TIME AFlER LASER PULSE (CS)
the photodetac;unent s i g n a l from o t h e r optogalvanic s i g n a l s a r i s i n g , f o r example,
f r o m a b s o r p t i o n by t h e n e u t r a l d i a t o m i c h a l o g e n m o l e c u l e s . F i g u r e 1 shows t h e
time-resolved p r o f i l e s of t h e LOG s i g n a l generated by a b s o r p t i o n i n t h e B-X system
of I a t d i f f e r e n t l o c a t i o n s i n t h e d i s c h a r g e /6/. It s h o u l d be n o t e d t h a t e v e n
By
f o r %he f a s t e s t of t h e s e s i g n a l s t h e r i s e t i m e i s o n t h e o r d e r o f 50 VS.
c o n t r a s t , f i e r e 2 shows t h e s i g n a l caused by photodetachment of e l e c t r o n s from I-.
The pulse corresponds t o a n i n c r e a s e i n discharge c u r r e n t and r i s e s w i t h t h e l a s e r
pulse (duration
10 n s ) , t h e o b s e r v e d r i s e and f a l l t i m e of t h e s i g n a l b e i n g
l i m i t e d by c i r c u i t response time constants.
Therefore, by c a r e f u l adjustment of
t h e a p e r t u r e w i d t h and d e l a y a f t e r t h e l a s e r p u l s e i t i s p o s s i b l e t o m o n i t o r
uniquely t h e s i g n a l s due t o t h e photodetachment.
-
PHOTODETACHMENT
SIGNAL AT 402 nrn
F i g u r e 2.
The t i m e - r e s o l v e d
optogalvani c signal f o r
p h o t o d e t a c h m e n t f r o m 1- a t 4 0 2
nm.
The photodetachment s i g n a l
showed no s i g n i f i c a n t s p a t i a l
v a r i a t i o n , except a s m a l l delay
associated with electron
mobility.
The optogalvanic-electron s i g n a l observed a s t h e l a s e r wavelength was scanned i n
t h e r e g i o n 402.50 t o 406.00 nm i s shown i n f i g u r e 3. The p o t a s s i u m L I F s p e c t r u m
i n c l u d e d i n t h i s t r a c e w a s used, t o g e t h e r w i t h e t a l o n f r i n g e s , t o c a l i b r a t e t h e
a b s o l u t e wavelength scale.
LASER WAVELENGTH (nm:Air)
Figure 3. The i o d i n e photodetachment optogalvanic spectrum near t h e 405 nm
threshold.
The potassium L I F spectrum used f o r wavelength c a l i b r a t i o n i s
shown i n t h e l o w e r t r a c e , which i s o f f s e t f r o m z e r o t o s e p a r a t e t h e two
s p e c t r a The e t a l o n f r i n g e s have been o m i t t e d from t h i s f i g u r e s i n c e they
W e r e t o o c l o s e l y spaced f o r c l e a r r e p r e s e n t a t i o n
Near t h e photodetachment t h r e s h o l d t h e optogalvanic s i g n a l was observed t o r i s e i n
However, a t s h o r t e r wavelengths t h e i n c r e a s e
accordance w i t h t h e Wigner law /7/.
i n t h e optogalvanic s i g n a l was s m a l l e r than expected from t h e p r e d i c t e d i n c r e a s e i n
t h e detachment c r o s s s e c t i o n I n o r d e r t o i d e n t i f y t h e threshold we used t h e semie m p i r i c a l method of Berry e t a 1 /a/, i.e., the point of i n f l e c t i o n of t h e observed
Figure 4. Schematic p l o t of t h e
photode tachment s i g n a l near t h e
threshold.
The t h r e s h o l d
behavior r e d i c t e d by t h e Wigner
(E-Bthr)f/2 dependence i s shown
by t h e c i r c l e s .
The b r o k e n
l i n e s i l l u s t r a t e t h e method of
Berry and co-workers /8/ used t o
determine t h e t h r e s h o l d energy
Ethr shown by t h e arrow.
404.8
405.0
405.2
LASER WAVELENGTH (nm:Air)
405.4
C7-464
JOURNAL DE PHYSIQUE
and t h e tangent t o t h e curve a t t h e point
curve was taken a s t h e upper l i m i t (E,
of i n f l e c t i o n defined t h e lower l i m i t
The threshold energy was then taken
as t h e mean of these two l i m i t s a s shown s c h e m a t i c a l l y i n f i g u r e 4. The threshold
wavelength was thus determined t o be 405.18 2 0.02 nm corresponding t o a threshold
energy f o r photodetachment of 3.0591 2 0.0001 eV.
4.
m e C l - Photodetachment Soectrum
Preliminary s t u d i e s of t h e photodetachment from Cl' and Br' atoms have been made.
The primary mechanism f o r t h e production of t h e atomic halogen negative i o n s i n t h e
low p r e s s u r e discharge i s through d i s s o c i a t i v e attachment of t h e diatomic n e u t r a l ,
The c r o s s s e c t i o n s f o r t h i s process a r e much lower f o r C 1 and Br2 than f o r I /5/
and t h u s t h e X- c o n c e n t r a t i o n s a r e much lower.
Figure 5 &ows t h e photodetaciment
s p e c t r u m of C l ' r e c o r d e d a s t h e l a s e r w a v e l e n g t h w a s s c a n n e d f r o m 344.0 t o 341.5
nm.
Although t h i s s p e c t r u m r e p r e s e n t s p r e l i m i n a r y d a t a i t i s c l e a r t h a t t h e
signal-to-noise r a t i o i s much lower than i n t h e i o d i n e spectrum.
Nonetheless, t h e
s p e c t r u m i n d i c a t e s t h e o n s e t of d e t a c h m e n t a t 342.55 f 0.25 nm.
These e r r o r
l i m i t s a l s o r e f l e c t some u n c e r t a i n t y i n t h e a b s o l u t e w a v e l e n g t h s i n c e a f u l l
c a l i b r a t i o n h a s n o t y e t been made.
This corresponds t o a n energy t h r e s h o l d of
3.6184 2 0.0025 eV.
344 0 343.5
343.0
342.5
342.0
341.5
LASER WAVELENGTH (nm)
Figure 5.
The c h l o r i n e photodetachment optogalvanic spectrum.
A t f i r s t i t would seem t h a t o t h e r compounds w i t h l a r g e r e l e c t r o n attachment c r o s s
s e c t i o n s , such a s halogenated polyatomic molecules, might provide b e t t e r sources of
Cl' i o n s .
I t h a s been n o t e d , f o r example, t h a t m u l t i p l e h a l o g e n s u b s t i t u t i o n
g r e a t l y i n c r e a s e s t h e d i s s o c i a t i v e attachment c r o s s s e c t i o n and t h u s t h e l a r g e s t
However, n e a r t h e
c r o s s s e c t i o n s a r e f o u n d f o r m o l e c u l e s s u c h a s CC14 /g/.
t h r e s h o l d p h o t o d e t a c h e d e l e c t r o n s h a v e no e x c e s s k i n e t i c e n e r g y and s i n c e t h e
m a g n i t u d e of t h e d i s s o c i a t i v e a t t a c h m e n t c r o s s s e c t i o n f o r C C 1 4 f o r e l e c t r o n
e n e r g i e s < 1 eV i s very l a r g e , these e l e c t r o n s a r e e f f i c i e n t l y scavenged and t h u s
cannot c o n t r i b u t e t o t h e optogalvanic signal.
5.
.
.
P o s s i b l e F i e l d and Environmental E f f e c t s o n t h e E l e c t r o n A f f i n l k y
De t e r m i n a t i o m
I n t h e l a s e r o p t o g a l v a n i c t e c h n i q u e r e p o r t e d h e r e t h e s i m p l e , compact, and
i n e x p e n s i v e d i s c h a r g e t u b e r e p l a c e s t h e complex i o n g e n e r a t i o n , h a n d l i n g and
d e t e c t i o n apparatus of t h e crossed-beam method. However, t h e energy r e s o l u t i o n i n
t h e optogalvanic measurements could be blurred due t o t h e i n f l u e n c e s of t h e complex
discharge environment.
C o n t r i b u t i o n s t o t h e inhomogeneous l i n e w i d t h i n a d c
d i s c h a r g e i n c l u d e b o t h t h e Doppler e f f e c t , due t o t h e m o t i o n o f t h e i o n s i n t h e
e l e c t r i c f i e l d , and S t a r k b r o a d e n i n g e f f e c t s due t o t h e p r e s e n c e o f f l u c t u a t i n g
microfields.
I n a d d i t i o n t o broadening, t h e photodetachment t h r e s h o l d energy may
be s h i f t e d by b o t h Doppler a n d f i e l d e f f e c t s . The i n f l u e n c e of t h e s e f a c t o r s i l l
determining t h e e l e c t r o n a f f i n i t y of I- i n t h i s work i s now considers,.
The e s t i m a t e d p o t e n t i a l g r a d i e n t i n t h e d i s c h a r g e , away f r o m t h e c a t n o d e f a l l
r e g i o n , i s 10 V cm'l and t h u s t h e m o b i l i t y o f I' i o n s i n a n e n v i r o n m e n t of 0.1
Torr I2 i s c a l c u l a t e d t o be o n the o r d e r o f 105 cm S-'.
While t h i s d r i f t v e l o c i t y
i s almost a n o r d e r of magnitude l a r g e r than t h e average molecular v e l o c i t i e s i n t h e
discharge, t h e t r a n s v e r s e geometry of t h e l a s e r probe e n s u r e s t h a t t h e component of
t h e d r i f t v e l o c i t y i n t h e l a s e r beam d i r e c t i o n i s very s m a l l .
The Doppler e f f e c t
t h e r e f o r e h a s a n e g l i g i b l e e f f e c t o n t h e p o s i t i o n of t h e t h r e s h o l d , and i t s
a p p a r e n t w i d t h , which i s c a l c u l a t e d t o be 0.02 cm",
i s much s m a l l e r t h a n t h e
I t i s p e r t i n e n t t o compare t h e Doppler s h i f t s
l a s e r l i n e w i d t h of 0.6 cm'l.
e x p e c t e d i n t h e o p t o g a l v a n i c e x p e r i m e n t w i t h those observed i n t h e crossed-beam
e x p e r i m e n t s i n which t h e i o n s a r e a c c e l e r a t e d t o h i g h k i n e t i c e n e r g i e s . While,
l i k e t h e t r a n s v e r s e g e o m e t r y of t h e o p t o g a l v a n i c e x p e r i m e n t , t h e crossed-beam
geometry minimizes the s h i f t , t h e angular divergence of t h e beams ( i o n and l a s e r )
i s u s u a l l y s u f f i c i e n t t o i n t r o d u c e s i g n i f i c a n t Doppler s h i f t s t o t h e o b s e r v e d
photodetachment threshold.
..
-
I n t h e low p r e s s u r e discharge used i n t h e optogalvanic experiment t h e negative i o n s
under study a r e not i n a n i d e a l f i e l d - f r e e environment. Rather, i n a d d i t i o n t o t h e
discharge f i e l d discussed above, each i o n i s surrounded by an atmosphere of charged
The motions of t h e s e s p e c i e s
s p e c i e s described by t h e Debye-Hiickel p o t e n t i a l /TO/.
cause t h i s p o t e n t i a l t o f l u c t u a t e thereby causing a broadening o f the
p h o t o d e t a c h m e n t t h r e s h o l d due t o t h e S t a r k e f f e c t . The c o n t i n u u m l i m i t i s more
s e n s i t i v e t o S t a r k e f f e c t s t h a n t h e ground s t a t e .
Such b r o a d e n i n g h a s been
o b s e r v e d i n a b s o r p t i o n s t u d i e s of shock-produced p l a s m a s / l l / , e v i d e n c e d by t h e
o b s e r v a t i o n o f a 1 5 cm" + e d t a i l n t o t h e t h r e s h o l d . The m a g n i t u d e of t h e S t a r k
b r o a d e n i n g i n t h e dc d i s c h a r g e employed h e r e c a n be e s t i m a t e d f r o m a c o m p a r i s o n
w i t h t h e shook-plasma experiments.
The c r i t i c a l f a c t o r governing t h e i n t e n s i t y of
Electron d e n s i t i e s of 1o7
and a
t h e m i c r o f i e l d s i s t h e i o n number d e n s i t y n.
negative i o n t o e l e c t r o n r a t i o of 102 have been measured /12/ i n t h e Faraday dark
s p a c e and p o s i t i v e column o f a n i o d i n e glow d i s c h a r g e under c o n d i t i o n s c l o s e 1
s i m i l a r t o those used i n t h i s sork. The negative i o n c o n c e n t r a t i o n of n = l o g cm'
i s s i x o r d e r s of magnitude l e s s than t h a t e s t i m a t e d f o r t h e shock-produced plasma.
The e f f e c t o f S t a r k b r o a d e n i n g i n t h e o p t o g a l v a n i c d i s c h a r g e i s t h e r e f o r e s m a l l
compared t o o t h e r broadening mechanisms.
3
For photodetachment (photoionization) of a n e u t r a l species, f i e l d enhancement can
cause l a r g e s h i f t s i n t h e threshold energy.
This is because t h e photodetachment
continuum i s bounded by Rydberg l e v e l s which c a n be e f f e c t i v e l y f i e l d i o n i z e d .
T h i s i s n o t t h e c a s e f o r a n e g a t i v e i o n s i n c e t h e Rydberg s t a t e s a r e a b s e n t .
Furthermore, t h e Debye-Hiickel p o t e n t i a l a f f e c t s a l l s t a t e s by t h e same, constant
amount and t h e r e f o r e w i l l not change t h e threshold energy.
The method of a n a l y s i s employed i n c l u d e s t h e wavelength c a l i b r a t i o n uncertainty,
and t h e (semiempirical) procedure used f o r t h e t h r e s h o l d d e t e r m i n a t i o n i n c o r p o r a t e s
a l l broadening f a c t o r s .
The s h a r p r i s e o b s e r v e d i n t h e p h o t o d e t a c h m e n t c r o s s
s e c t i o n (see Figs. 3 & 5) a t t e s t s t o t h e absence of s i g n i f i c a n t broadening effects.
The e l e c t r o n a f f i n i t y of i o d i n e was t h e r e f o r e determined t o be,
and f o r c h l o r i n e we f i n d
JOURNAL D€ PHYSIQUE
C7-466
The agreement between t h e s e v a l u e s and those from previous s t u d i e s /9,13/ s u g g e s t s
t h a t t h e m a g n i t u d e o f t h e e r r o r s o u r c e s i n t h e o p t o g a l v a n i c method have been
a s s e s s e d correctly.
6.
Photodetac&ncnt SDectroscoDv f o r t h e Studv of Molecular Negative Ion9
I n a r e c e n t p a p e r /14/ S c h u l z e t a 1 have d e s c r i b e d t h e a p p l i c a t i o n o f t h r e s h o l d
We suggest t h a t t h e i o n
photodetachment spectroscopy t o t h e study of ON- and OD-.
beam s o u r c e i n t h i s t y p e o f e x p e r i m e n t c o u l d be r e p l a c e d by a n o p t o g a l v a n i c
d i s c h a r g e c e l l . I n t h e s t u d i e s of OH' t h e p h o t o d e t a c h m e n t w a s a s i n g l e p h o t o n
p r o c e s s . The s p e c t r u m a p p e a r s a s a s e r i e s o f a b r u p t r i s e s o n t o p o f a g e n e r a l l y
r i s i n g s i g n a l and r e f l e c t s t h e i n c r e a s e s i n t h e photodetachment c r o s s s e c t i o n w i t h
both i n c r e a s i n g photon energy and t h e opening of new detachment channels.
Apart
from the c o n s t a n t l y r i s i n g background, t h e d i f f e r e n t i a l of t h e observed spectrum
c o r r e s p o n d s t o t h e a b s o r p t i o n s p e c t r u m o f t h e n e g a t i v e i o n and i n f o r m a t i o n
r e g a r d i n g t h e r o t a t i o n a l and v i b r a t i o n a l s t r u c t u r e can be e x t r a c t e d i n t h e normal
way.
~~c-
Many molecular negative i o n s have s t a b l e and a c c e s s i b l e e l e c t r o n i c s t a t e s below t h e
x2z+ t r a n s i t i o n
photodetachment threshold. For example t h e 0-0 band of t h e
of C: l i e s n e a r 18450 cm".
A second photon w i t h t h i s energy i s s u $ f i c i e n t t o
p h o t o d e t a c h t h e e l e c t r o n f r o m t h e B s t a t e a n d t h u s t h e B-X t r a n s i t i o n c a n be
s t u d i e d by means of two-photon resonant detachment /15/.
I n t h i s case t h e spectrum
w i l l appear a s a normal s e r i e s of peaks r a t h e r than s t e p s a s i n t h e s i n g l e photon
process.
Also, i n a n a n a l o g o u s t e c h n i q u e t o m u l t i - c o l o u r r e s o n a n t i o n i z a t i o n
spectroscopy two o r more photons of d i f f e r e n t e n e r g i e s can be used.
S i n c e p h o t o d e t a c h e d e l e c t r o n s c a n be m o n i t o r e d unambiguously i n a n optogalvanic
e x p e r i m e n t , a n d s i n c e t h e l o w p r e s s u r e d c d i s c h a r g e can produce s i g n i f i c a n t
c o n c e n t r a t i o n s of n e g a t i v e i o n s , o p t o g a l v a n i c photodetachment spectroscopy holds
g r e a t p r o m i s e f o r t h e s p e c t r o s c o p i c s t u d y o f both a t o m i c and m o l e c u l a r n e g a t i v e
ions.
The r e s e a r c h d e s c r i b e d i n t h i s p a p e r w a s p e r f o r m e d a t t h e J e t P r o p u l s i o n
Laboratory, C a l i f o r n i a I n s t i t u t e of Technology, under c o n t r a c t w i t h t h e National
Aeronautics and Space Administration.
7.
References
GREEN R. B,. KELLER R. A., LUTHER G. G., SCHENCK P. K. and TRAVIS J. C., IEEE
J. Quantum E l e c t r o n . W, ( 1 977) 63.
GOLDSMITH J. E. M. and LAWLER J. E., Contemp. Phys.
(1981) 235, and
references therein.
9(2)( 1 983) 41, and r e f e r e n c e s
WEBSTER C. R. and RETTNER C. T., L a s e r Focus 1
therein.
WEBSTER C. R., M C D E R M I D I. S. and RETTNER C. T., J. Chem. Phys. D, (1983)
646.
MASSEY H., m a t i v e
3 r d Ed., Cambridge University Press, 1976.
HANER D. A., WEBSTER C. R.,
FLAMANT P. H. and MCDERMID I. S., Chem. Phys.
(1983) 302.
Lett.
WIGNER E. P,, Phys. Rev. 11 (1948) 1002.
BERRY R. S., REIMANN C. W. and SPOKES G. N. J. Chem. Phys. 31 (1962) 2278.
CHRISTOPHOROU L. G.,
A t o m i c and M o l e c u l a r R a d i a t i o n P h v s i c s , WileyI n t e r science, 197 1.
DEBYE P. and HUCKEL E., Phys. 2. 24 (1923) 185.
BERRY R. S. and REIMANN C. W., J. Chem. Phys. 38 (1963) 1540.
SPENCER-SMITH J. L., P h i l o s Mag.
(1935) 806.
STEINER 9., SEMAN M. L. and BRANSCOMB L. M., J. Chem. Phys. XL (1962) 1200.
SCHULZ P. A., MEAD R. D., JONES P. L. and LINEBERGER W. C., J. Chem. Phys. 13_
(1982) 1153.
LmEBERGER W. C. and PATTERSON T. A., Chem. Phys. Lett.
(1972) 40.
a,
m,