OPTOGALVANIC PHOTODETACHMENT SPECTROSCOPY I. Mcdermid, C. Webster To cite this version: I. Mcdermid, C. Webster. OPTOGALVANIC PHOTODETACHMENT SPECTROSCOPY. Journal de Physique Colloques, 1983, 44 (C7), pp.C7-461-C7-466. <10.1051/jphyscol:1983745>. <jpa-00223302> HAL Id: jpa-00223302 https://hal.archives-ouvertes.fr/jpa-00223302 Submitted on 1 Jan 1983 HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. JOURNAL DE PHYSIQUE page C7-461 Colloque C7, suppl6ment au n o l l , Tome 44, novembre 1983 O P T O G A L V A N I C PHOTODETACHMENT SPECTROSCOPY I.S. McDermid and C.R. Webster* J e t PropuZsion Laboratory, CaZifornia I n s t i t u t e o f TechnoZogy, 4800 Oak Grove Drive, Pasadena, Cazifornia 91109, U.S.A. Resum6 - La s p e c t r o s c o p i e optogalvanique a S t S Stendue 2 une technique nouvell e dans l a q u e l l e des e l e c t r o n s s o n t dEtachEs des i o n s n e g a t i f s formSs dans l a dScharge e t observes en f o n c t i o n de l a longueur d'onde du l a s e r . La determinat i o n des a f f i n i t e s e l e c t r o n i q u e s des i o n s atomiques I- e t Cl- e s t d S c r i t e . Les p o s s i b i l i t g s de c e t t e methode pour E t u d i e r l a s p e c t r o s c o p i e des i o n s n g g a t i f s molEculaires s o n t a u s s i p r e s e n t e e s . - Abstract A new e x t e n s i o n t o o p t o g a l v a n i c spectroscopy, i n which e l e c t r o n s detached from n e g a t i v e i o n s formed i n t h e d i s c h a r g e a r e observed a s a f u n c t i o n o f i n c i d e n t l a s e r wavelength, h a s been developed. The d e t e r m i n a t i o n of t h e e l e c t r o n a f f i n i t i e s of and C l - a t o m i c i o n s i s described. The p o t e n t i a l of t h e technique f o r s t u d y i n g t h e spectroscopy of molecular n e g a t i v e i o n s i s a l s o discussed. r 1. Introduction The o p t o g a l v a n i c e f f e c t h a s p r o v e n p a r t i c u l a r l y s u i t a b l e f o r t h e d e t e c t i o n o f unstable, r a d i c a l and i o n i c , a t o m i c and molecular s p e c i e s /l-3/, especially since t h e s e c a n o f t e n be g e n e r a t e d by t h e d i s c h a r g e i t s e l f . I n a new e x t e n s i o n t o t h e o p t o g a l v a n i c technique /4/ w e have shown t h a t t h e r a d i a t i o n induced detachment of e l e c t r o n s from n e g a t i v e i o n s i n t h e discharge can be used t o s t u d y t h e spectroscopy of t h e s e n e g a t i v e ions, I n t h i s paper w e w i l l review t h e technique and i t s f i r s t a p p l i c a t i o n t o t h e measurement of t h e e l e c t r o n a f f i n i t y of I-. New d a t a concerning t h e e l e c t r o n a f f i n i t y of Cl' w i l l a l s o be presented a s w i l l a planned a p p l i c a t i o n t o study t h e s p e c t r a of molecular n e g a t i v e ions. The dc d i s c h a r g e c e l l and a s s o c i a t e d c i r c u i t r y have been d e s c r i b e d i n a previous paper i n t h i s e d i t i o n (Webster and Menzies). I n t h i s study t h e c e l l windows were o f q u a r t z and a p u l s e d d y e l a s e r pumped by e i t h e r a n i t r o g e n o r a XeCl e x c i m e r l a s e r was u s e d u s e d a s t h e e x c i t a t i o n s o u r c e . For t h e s t u d i e s o f 'I a n d C l ' t h e c e l l was o p e r a t e d i n a f l o w i n g mode w i t h t h e c e l l p r e s s u r e and f l o w r a t e c o n t r o l l e d by n e e d l e v a l v e s on b o t h t h e r e a g e n t i n l e t a n d vacuum pump. Typical o p e r a t i n g p r e s s u r e was l 0 0 mTorr which, w i t h a d c v o l t a g e o f 400 700 V a c r o s s t h e c e l l , 40 uA. A 0.1 U F c o u p l i n g c a p a c i t o r gave d i s c h a r g e c u r r e n t s i n t h e r a n g e 1 0 allowed laser-induced a c changes i n t h e discharge impedance t o be monitored w i t h a p r e a m p l i f i e r (PARC 113) connected t o a boxcar i n t e g r a t o r (PARC 162/165). - - E l e c t r o n detachment from halogen n e g a t i v e i o n s (X") - i s observed, a c c o r d i n g t o Although t h e c o n c e n t r a t i o n of n e g a t i v e i o n s i n t h e discharge i s g r e a t e r t h a n t h a t o f f r e e e l e c t r o n s / 5 / t h e d i s c h a r g e c u r r e n t i s c a r r i e d a l m o s t e n t i r e l y by t h e s e e l e c t r o n s because of t h e i r much g r e a t e r mobility. S t u d i e s of t i m e and s p a t i a l l y r e s o l v e d o p t o g a l v a n i c s i g n a l s show t h a t i t i s p o s s i b l e t o d i s t i n g u i s h very c l e a r l y * ~ r .Webster was u n f o r t u n a t e l y unable t o come t o t h e Colloquium because of a r e s c h e d u l i n g of a n a i r b a l l o o n experiment b u t h a s s e n t t h e paper h e would have p r e s e n t e d and which i s p u b l i s h e d i n t h e Proceedings. Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1983745 JOURNAL DE PHYSIQUE CATHODE RV (-1 Figure 1. Typical time-resolved p r o f i l e s f o r LOG s i g n a l s generated a t discharge l o c a t i o n s i d e n t i f i e d t o t h e l e f t of t h e figure. S i g n a l s have been n o r m a l i z e d t o t h e same peak height. CATHODE DARK SPACE NEGATIVE GLOW FAPADAY DARK SPACE COLUMN QOSlTlVE ANODE GLOH ANODE Cl o ~ r n m a o m r m TIME AFlER LASER PULSE (CS) the photodetac;unent s i g n a l from o t h e r optogalvanic s i g n a l s a r i s i n g , f o r example, f r o m a b s o r p t i o n by t h e n e u t r a l d i a t o m i c h a l o g e n m o l e c u l e s . F i g u r e 1 shows t h e time-resolved p r o f i l e s of t h e LOG s i g n a l generated by a b s o r p t i o n i n t h e B-X system of I a t d i f f e r e n t l o c a t i o n s i n t h e d i s c h a r g e /6/. It s h o u l d be n o t e d t h a t e v e n By f o r %he f a s t e s t of t h e s e s i g n a l s t h e r i s e t i m e i s o n t h e o r d e r o f 50 VS. c o n t r a s t , f i e r e 2 shows t h e s i g n a l caused by photodetachment of e l e c t r o n s from I-. The pulse corresponds t o a n i n c r e a s e i n discharge c u r r e n t and r i s e s w i t h t h e l a s e r pulse (duration 10 n s ) , t h e o b s e r v e d r i s e and f a l l t i m e of t h e s i g n a l b e i n g l i m i t e d by c i r c u i t response time constants. Therefore, by c a r e f u l adjustment of t h e a p e r t u r e w i d t h and d e l a y a f t e r t h e l a s e r p u l s e i t i s p o s s i b l e t o m o n i t o r uniquely t h e s i g n a l s due t o t h e photodetachment. - PHOTODETACHMENT SIGNAL AT 402 nrn F i g u r e 2. The t i m e - r e s o l v e d optogalvani c signal f o r p h o t o d e t a c h m e n t f r o m 1- a t 4 0 2 nm. The photodetachment s i g n a l showed no s i g n i f i c a n t s p a t i a l v a r i a t i o n , except a s m a l l delay associated with electron mobility. The optogalvanic-electron s i g n a l observed a s t h e l a s e r wavelength was scanned i n t h e r e g i o n 402.50 t o 406.00 nm i s shown i n f i g u r e 3. The p o t a s s i u m L I F s p e c t r u m i n c l u d e d i n t h i s t r a c e w a s used, t o g e t h e r w i t h e t a l o n f r i n g e s , t o c a l i b r a t e t h e a b s o l u t e wavelength scale. LASER WAVELENGTH (nm:Air) Figure 3. The i o d i n e photodetachment optogalvanic spectrum near t h e 405 nm threshold. The potassium L I F spectrum used f o r wavelength c a l i b r a t i o n i s shown i n t h e l o w e r t r a c e , which i s o f f s e t f r o m z e r o t o s e p a r a t e t h e two s p e c t r a The e t a l o n f r i n g e s have been o m i t t e d from t h i s f i g u r e s i n c e they W e r e t o o c l o s e l y spaced f o r c l e a r r e p r e s e n t a t i o n Near t h e photodetachment t h r e s h o l d t h e optogalvanic s i g n a l was observed t o r i s e i n However, a t s h o r t e r wavelengths t h e i n c r e a s e accordance w i t h t h e Wigner law /7/. i n t h e optogalvanic s i g n a l was s m a l l e r than expected from t h e p r e d i c t e d i n c r e a s e i n t h e detachment c r o s s s e c t i o n I n o r d e r t o i d e n t i f y t h e threshold we used t h e semie m p i r i c a l method of Berry e t a 1 /a/, i.e., the point of i n f l e c t i o n of t h e observed Figure 4. Schematic p l o t of t h e photode tachment s i g n a l near t h e threshold. The t h r e s h o l d behavior r e d i c t e d by t h e Wigner (E-Bthr)f/2 dependence i s shown by t h e c i r c l e s . The b r o k e n l i n e s i l l u s t r a t e t h e method of Berry and co-workers /8/ used t o determine t h e t h r e s h o l d energy Ethr shown by t h e arrow. 404.8 405.0 405.2 LASER WAVELENGTH (nm:Air) 405.4 C7-464 JOURNAL DE PHYSIQUE and t h e tangent t o t h e curve a t t h e point curve was taken a s t h e upper l i m i t (E, of i n f l e c t i o n defined t h e lower l i m i t The threshold energy was then taken as t h e mean of these two l i m i t s a s shown s c h e m a t i c a l l y i n f i g u r e 4. The threshold wavelength was thus determined t o be 405.18 2 0.02 nm corresponding t o a threshold energy f o r photodetachment of 3.0591 2 0.0001 eV. 4. m e C l - Photodetachment Soectrum Preliminary s t u d i e s of t h e photodetachment from Cl' and Br' atoms have been made. The primary mechanism f o r t h e production of t h e atomic halogen negative i o n s i n t h e low p r e s s u r e discharge i s through d i s s o c i a t i v e attachment of t h e diatomic n e u t r a l , The c r o s s s e c t i o n s f o r t h i s process a r e much lower f o r C 1 and Br2 than f o r I /5/ and t h u s t h e X- c o n c e n t r a t i o n s a r e much lower. Figure 5 &ows t h e photodetaciment s p e c t r u m of C l ' r e c o r d e d a s t h e l a s e r w a v e l e n g t h w a s s c a n n e d f r o m 344.0 t o 341.5 nm. Although t h i s s p e c t r u m r e p r e s e n t s p r e l i m i n a r y d a t a i t i s c l e a r t h a t t h e signal-to-noise r a t i o i s much lower than i n t h e i o d i n e spectrum. Nonetheless, t h e s p e c t r u m i n d i c a t e s t h e o n s e t of d e t a c h m e n t a t 342.55 f 0.25 nm. These e r r o r l i m i t s a l s o r e f l e c t some u n c e r t a i n t y i n t h e a b s o l u t e w a v e l e n g t h s i n c e a f u l l c a l i b r a t i o n h a s n o t y e t been made. This corresponds t o a n energy t h r e s h o l d of 3.6184 2 0.0025 eV. 344 0 343.5 343.0 342.5 342.0 341.5 LASER WAVELENGTH (nm) Figure 5. The c h l o r i n e photodetachment optogalvanic spectrum. A t f i r s t i t would seem t h a t o t h e r compounds w i t h l a r g e r e l e c t r o n attachment c r o s s s e c t i o n s , such a s halogenated polyatomic molecules, might provide b e t t e r sources of Cl' i o n s . I t h a s been n o t e d , f o r example, t h a t m u l t i p l e h a l o g e n s u b s t i t u t i o n g r e a t l y i n c r e a s e s t h e d i s s o c i a t i v e attachment c r o s s s e c t i o n and t h u s t h e l a r g e s t However, n e a r t h e c r o s s s e c t i o n s a r e f o u n d f o r m o l e c u l e s s u c h a s CC14 /g/. t h r e s h o l d p h o t o d e t a c h e d e l e c t r o n s h a v e no e x c e s s k i n e t i c e n e r g y and s i n c e t h e m a g n i t u d e of t h e d i s s o c i a t i v e a t t a c h m e n t c r o s s s e c t i o n f o r C C 1 4 f o r e l e c t r o n e n e r g i e s < 1 eV i s very l a r g e , these e l e c t r o n s a r e e f f i c i e n t l y scavenged and t h u s cannot c o n t r i b u t e t o t h e optogalvanic signal. 5. . . P o s s i b l e F i e l d and Environmental E f f e c t s o n t h e E l e c t r o n A f f i n l k y De t e r m i n a t i o m I n t h e l a s e r o p t o g a l v a n i c t e c h n i q u e r e p o r t e d h e r e t h e s i m p l e , compact, and i n e x p e n s i v e d i s c h a r g e t u b e r e p l a c e s t h e complex i o n g e n e r a t i o n , h a n d l i n g and d e t e c t i o n apparatus of t h e crossed-beam method. However, t h e energy r e s o l u t i o n i n t h e optogalvanic measurements could be blurred due t o t h e i n f l u e n c e s of t h e complex discharge environment. C o n t r i b u t i o n s t o t h e inhomogeneous l i n e w i d t h i n a d c d i s c h a r g e i n c l u d e b o t h t h e Doppler e f f e c t , due t o t h e m o t i o n o f t h e i o n s i n t h e e l e c t r i c f i e l d , and S t a r k b r o a d e n i n g e f f e c t s due t o t h e p r e s e n c e o f f l u c t u a t i n g microfields. I n a d d i t i o n t o broadening, t h e photodetachment t h r e s h o l d energy may be s h i f t e d by b o t h Doppler a n d f i e l d e f f e c t s . The i n f l u e n c e of t h e s e f a c t o r s i l l determining t h e e l e c t r o n a f f i n i t y of I- i n t h i s work i s now considers,. The e s t i m a t e d p o t e n t i a l g r a d i e n t i n t h e d i s c h a r g e , away f r o m t h e c a t n o d e f a l l r e g i o n , i s 10 V cm'l and t h u s t h e m o b i l i t y o f I' i o n s i n a n e n v i r o n m e n t of 0.1 Torr I2 i s c a l c u l a t e d t o be o n the o r d e r o f 105 cm S-'. While t h i s d r i f t v e l o c i t y i s almost a n o r d e r of magnitude l a r g e r than t h e average molecular v e l o c i t i e s i n t h e discharge, t h e t r a n s v e r s e geometry of t h e l a s e r probe e n s u r e s t h a t t h e component of t h e d r i f t v e l o c i t y i n t h e l a s e r beam d i r e c t i o n i s very s m a l l . The Doppler e f f e c t t h e r e f o r e h a s a n e g l i g i b l e e f f e c t o n t h e p o s i t i o n of t h e t h r e s h o l d , and i t s a p p a r e n t w i d t h , which i s c a l c u l a t e d t o be 0.02 cm", i s much s m a l l e r t h a n t h e I t i s p e r t i n e n t t o compare t h e Doppler s h i f t s l a s e r l i n e w i d t h of 0.6 cm'l. e x p e c t e d i n t h e o p t o g a l v a n i c e x p e r i m e n t w i t h those observed i n t h e crossed-beam e x p e r i m e n t s i n which t h e i o n s a r e a c c e l e r a t e d t o h i g h k i n e t i c e n e r g i e s . While, l i k e t h e t r a n s v e r s e g e o m e t r y of t h e o p t o g a l v a n i c e x p e r i m e n t , t h e crossed-beam geometry minimizes the s h i f t , t h e angular divergence of t h e beams ( i o n and l a s e r ) i s u s u a l l y s u f f i c i e n t t o i n t r o d u c e s i g n i f i c a n t Doppler s h i f t s t o t h e o b s e r v e d photodetachment threshold. .. - I n t h e low p r e s s u r e discharge used i n t h e optogalvanic experiment t h e negative i o n s under study a r e not i n a n i d e a l f i e l d - f r e e environment. Rather, i n a d d i t i o n t o t h e discharge f i e l d discussed above, each i o n i s surrounded by an atmosphere of charged The motions of t h e s e s p e c i e s s p e c i e s described by t h e Debye-Hiickel p o t e n t i a l /TO/. cause t h i s p o t e n t i a l t o f l u c t u a t e thereby causing a broadening o f the p h o t o d e t a c h m e n t t h r e s h o l d due t o t h e S t a r k e f f e c t . The c o n t i n u u m l i m i t i s more s e n s i t i v e t o S t a r k e f f e c t s t h a n t h e ground s t a t e . Such b r o a d e n i n g h a s been o b s e r v e d i n a b s o r p t i o n s t u d i e s of shock-produced p l a s m a s / l l / , e v i d e n c e d by t h e o b s e r v a t i o n o f a 1 5 cm" + e d t a i l n t o t h e t h r e s h o l d . The m a g n i t u d e of t h e S t a r k b r o a d e n i n g i n t h e dc d i s c h a r g e employed h e r e c a n be e s t i m a t e d f r o m a c o m p a r i s o n w i t h t h e shook-plasma experiments. The c r i t i c a l f a c t o r governing t h e i n t e n s i t y of Electron d e n s i t i e s of 1o7 and a t h e m i c r o f i e l d s i s t h e i o n number d e n s i t y n. negative i o n t o e l e c t r o n r a t i o of 102 have been measured /12/ i n t h e Faraday dark s p a c e and p o s i t i v e column o f a n i o d i n e glow d i s c h a r g e under c o n d i t i o n s c l o s e 1 s i m i l a r t o those used i n t h i s sork. The negative i o n c o n c e n t r a t i o n of n = l o g cm' i s s i x o r d e r s of magnitude l e s s than t h a t e s t i m a t e d f o r t h e shock-produced plasma. The e f f e c t o f S t a r k b r o a d e n i n g i n t h e o p t o g a l v a n i c d i s c h a r g e i s t h e r e f o r e s m a l l compared t o o t h e r broadening mechanisms. 3 For photodetachment (photoionization) of a n e u t r a l species, f i e l d enhancement can cause l a r g e s h i f t s i n t h e threshold energy. This is because t h e photodetachment continuum i s bounded by Rydberg l e v e l s which c a n be e f f e c t i v e l y f i e l d i o n i z e d . T h i s i s n o t t h e c a s e f o r a n e g a t i v e i o n s i n c e t h e Rydberg s t a t e s a r e a b s e n t . Furthermore, t h e Debye-Hiickel p o t e n t i a l a f f e c t s a l l s t a t e s by t h e same, constant amount and t h e r e f o r e w i l l not change t h e threshold energy. The method of a n a l y s i s employed i n c l u d e s t h e wavelength c a l i b r a t i o n uncertainty, and t h e (semiempirical) procedure used f o r t h e t h r e s h o l d d e t e r m i n a t i o n i n c o r p o r a t e s a l l broadening f a c t o r s . The s h a r p r i s e o b s e r v e d i n t h e p h o t o d e t a c h m e n t c r o s s s e c t i o n (see Figs. 3 & 5) a t t e s t s t o t h e absence of s i g n i f i c a n t broadening effects. The e l e c t r o n a f f i n i t y of i o d i n e was t h e r e f o r e determined t o be, and f o r c h l o r i n e we f i n d JOURNAL D€ PHYSIQUE C7-466 The agreement between t h e s e v a l u e s and those from previous s t u d i e s /9,13/ s u g g e s t s t h a t t h e m a g n i t u d e o f t h e e r r o r s o u r c e s i n t h e o p t o g a l v a n i c method have been a s s e s s e d correctly. 6. Photodetac&ncnt SDectroscoDv f o r t h e Studv of Molecular Negative Ion9 I n a r e c e n t p a p e r /14/ S c h u l z e t a 1 have d e s c r i b e d t h e a p p l i c a t i o n o f t h r e s h o l d We suggest t h a t t h e i o n photodetachment spectroscopy t o t h e study of ON- and OD-. beam s o u r c e i n t h i s t y p e o f e x p e r i m e n t c o u l d be r e p l a c e d by a n o p t o g a l v a n i c d i s c h a r g e c e l l . I n t h e s t u d i e s of OH' t h e p h o t o d e t a c h m e n t w a s a s i n g l e p h o t o n p r o c e s s . The s p e c t r u m a p p e a r s a s a s e r i e s o f a b r u p t r i s e s o n t o p o f a g e n e r a l l y r i s i n g s i g n a l and r e f l e c t s t h e i n c r e a s e s i n t h e photodetachment c r o s s s e c t i o n w i t h both i n c r e a s i n g photon energy and t h e opening of new detachment channels. Apart from the c o n s t a n t l y r i s i n g background, t h e d i f f e r e n t i a l of t h e observed spectrum c o r r e s p o n d s t o t h e a b s o r p t i o n s p e c t r u m o f t h e n e g a t i v e i o n and i n f o r m a t i o n r e g a r d i n g t h e r o t a t i o n a l and v i b r a t i o n a l s t r u c t u r e can be e x t r a c t e d i n t h e normal way. ~~c- Many molecular negative i o n s have s t a b l e and a c c e s s i b l e e l e c t r o n i c s t a t e s below t h e x2z+ t r a n s i t i o n photodetachment threshold. For example t h e 0-0 band of t h e of C: l i e s n e a r 18450 cm". A second photon w i t h t h i s energy i s s u $ f i c i e n t t o p h o t o d e t a c h t h e e l e c t r o n f r o m t h e B s t a t e a n d t h u s t h e B-X t r a n s i t i o n c a n be s t u d i e d by means of two-photon resonant detachment /15/. I n t h i s case t h e spectrum w i l l appear a s a normal s e r i e s of peaks r a t h e r than s t e p s a s i n t h e s i n g l e photon process. Also, i n a n a n a l o g o u s t e c h n i q u e t o m u l t i - c o l o u r r e s o n a n t i o n i z a t i o n spectroscopy two o r more photons of d i f f e r e n t e n e r g i e s can be used. S i n c e p h o t o d e t a c h e d e l e c t r o n s c a n be m o n i t o r e d unambiguously i n a n optogalvanic e x p e r i m e n t , a n d s i n c e t h e l o w p r e s s u r e d c d i s c h a r g e can produce s i g n i f i c a n t c o n c e n t r a t i o n s of n e g a t i v e i o n s , o p t o g a l v a n i c photodetachment spectroscopy holds g r e a t p r o m i s e f o r t h e s p e c t r o s c o p i c s t u d y o f both a t o m i c and m o l e c u l a r n e g a t i v e ions. The r e s e a r c h d e s c r i b e d i n t h i s p a p e r w a s p e r f o r m e d a t t h e J e t P r o p u l s i o n Laboratory, C a l i f o r n i a I n s t i t u t e of Technology, under c o n t r a c t w i t h t h e National Aeronautics and Space Administration. 7. References GREEN R. B,. KELLER R. A., LUTHER G. G., SCHENCK P. K. and TRAVIS J. C., IEEE J. Quantum E l e c t r o n . W, ( 1 977) 63. GOLDSMITH J. E. M. and LAWLER J. E., Contemp. Phys. (1981) 235, and references therein. 9(2)( 1 983) 41, and r e f e r e n c e s WEBSTER C. R. and RETTNER C. T., L a s e r Focus 1 therein. WEBSTER C. R., M C D E R M I D I. S. and RETTNER C. T., J. Chem. Phys. D, (1983) 646. MASSEY H., m a t i v e 3 r d Ed., Cambridge University Press, 1976. HANER D. A., WEBSTER C. R., FLAMANT P. H. and MCDERMID I. S., Chem. Phys. (1983) 302. Lett. WIGNER E. P,, Phys. Rev. 11 (1948) 1002. BERRY R. S., REIMANN C. W. and SPOKES G. N. J. Chem. Phys. 31 (1962) 2278. CHRISTOPHOROU L. G., A t o m i c and M o l e c u l a r R a d i a t i o n P h v s i c s , WileyI n t e r science, 197 1. DEBYE P. and HUCKEL E., Phys. 2. 24 (1923) 185. BERRY R. S. and REIMANN C. W., J. Chem. Phys. 38 (1963) 1540. SPENCER-SMITH J. L., P h i l o s Mag. (1935) 806. STEINER 9., SEMAN M. L. and BRANSCOMB L. M., J. Chem. Phys. XL (1962) 1200. SCHULZ P. A., MEAD R. D., JONES P. L. and LINEBERGER W. C., J. Chem. Phys. 13_ (1982) 1153. LmEBERGER W. C. and PATTERSON T. A., Chem. Phys. Lett. (1972) 40. a, m,
© Copyright 2026 Paperzz