Utah State University DigitalCommons@USU Reports Utah Water Research Laboratory 1-1-1965 Design, Calibration, and Evaluation of a Trapezoidal Measuring Flume by Model Study M. Leon Hyatt Follow this and additional works at: http://digitalcommons.usu.edu/water_rep Part of the Civil and Environmental Engineering Commons, and the Water Resource Management Commons Recommended Citation Hyatt, M. Leon, "Design, Calibration, and Evaluation of a Trapezoidal Measuring Flume by Model Study" (1965). Reports. Paper 386. http://digitalcommons.usu.edu/water_rep/386 This Report is brought to you for free and open access by the Utah Water Research Laboratory at DigitalCommons@USU. It has been accepted for inclusion in Reports by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. DESIGN, CALIBRATION, AND EVALUATION O F A TRAPEZOIDAL MEASURING F L U M E BY MODEL STUDY bY Milton L e o n Hyatt A thesis submitted in partial fulfillment of t h e r e q u i r e m e n t s f o r the d e g r e e of of MASTER O F SCIENCE in Civil Engineering Approved: UTAH S T A T E UNIVERSITY L o g a n , Utah ACKNOWLEDGEMENTS T h e r e i s no l i m i t to the thanks and a p p r e c a t i o n that m u s t b e given to Gaylord Skogerboe f o r the guidance, aid, and s o u r c e of i d e a s which have been invaluable throughout this investigation. Gratitude i s e x p r e s s e d to D r . Calvin Clyde f o r the counsel and i n s t r u c t i o n r e c e i v e d f r o m him. A l s o , the suggestions offered by D r . B r u c e A n d e r s o n , the e d i t o r a l a s s i s t a n c e of M r s . C. W. L a u r i t z e n , and the typing of the t h e s i s by M i s s B a r b a r a South a r e v e r y m u c h appreciated. Thanks a r e a l s o given t o t h e Utah W a t e r R e s e a r c h L a b o r a t o r y and its staff f o r s e r v i c e s r e n d e r e d . Appreciation would not be c o m p l e t e with- out recognizing the help, devotion, and love given by m y wonderful wife, J e r r o l y n . Milton Leon Hyatt T A B L F O F CONTENTS Page . . , . . . . 1 . . . . 4 DESIGN O F P R O T O T Y P E T R A P E Z O I D A L MEASURING F L U M E 1I . 16 S C O P E A N D P U R P O S E O F INVSSTIGATION L I T E R A T U R E REVIEW . . . . . . . , DESIGN O F M O D E L T R A P E Z Q I D A L MEASURING F L U M E . . . . . . . . . . CHANGES RESULTING F R O M MODEL STUDY . . . EXPERIMENTAL FACILITIES 22 DESIGN 27 . ANALYSIS O F DATA F R O M F I N A L DESIGN S u p e r - c r i t i c a l flow a n a l y s i s S u b m e r g e d flow a n a l y s i s . . . . . . . 39 . 43 . . . . . . . . . . . 59 65 . . . . . . . . . . . 68 . . . . . . . . . . . . . 70 S E L E C T G D BIBLIOGRAPHY APPENDIXES . . ENERGY LOSSES IN MEASURING F L U M E S SUMMARY AND CONCLUSIONS 39 Appendlx A . D a t a and C o m p u t a t i o n s . . . . . . . Appendix B. S u b m e r g e d F l o w C o m p u t e r P r o g r a m a n d Data . . . . . . . . . . . . . . iii 71 80 LIST O F FIGURES Page - Figure 1 Canal "B" tailwater--discharge c u r v e a t s i t e of . , proposed t r a p e z o i d a l m e a s u r i n g flume . . . 12 2 Initial prototype trapezoidal m e a s u r i n g flume design . 14 3 Initial model trapezoidal m e a s u r i n g flume design . . 20 Constructed m o d e l trapezoidal m e a s u r i n g flume composed of sections 1 through 5 . . . . . 23 Model flume placed i n 5-foot by 5-foot flume . . . 23 . . 23 . . Side view of Skction 3 showing stilling wells , Schematic view of laboratory facility Top view of flume looking u p s t r e a m . . . . . . . . . . . . 24 25 U p s t r e a m view of flume showing end of copper tubing and point g a g e . . . . . . . 25 Tailgate used to adjust tailwater depth . 25 . 30 . . . . . . . . . Downstream view of f l u m e showing s e p a r a t i o n with . . . . . . flow adhering to l e f t s i d e . . Top view of flume looking downstream showing s e p a r a t i o n with flow adhering t o right s i d e . . . Top view of flume exit a t design flow with s e v e r a l vanes . . . . . . . . . . . . . 30 . . 30 Top view of flume with t h r e e vanes a t end of t h r o a t . 30 Downstream view of f l u m e a t design flow (2.3 1 c f s ) . . , . with one row of t h r e e blocks . 31 . . 31 . . . Downstream view of flume a t design flow with pne . . . row of four blocks . . . . LIST OF FIGURES (continued) Page - Figure 17 Design flow with two rows of blocks placqd a t the beginning of the exit . . . . . . . . . Design flow with two rows of blocks p l a c e d i n the m i d d l e of the exit . . . . . . . . . . U p s t r e a m view of design flow conditions with Section I removed . . . . . . . D o w n s t r e a m view of 6 : 1 exit . . . . . . . Top view of f l u m e with 6 : 1 d i v e r g i n g exit . . . . . . . . . D o w n s t r e a m view of f l u m e a t d e s i g n flow with one vane , , - . . . . . . . . D o w n s t r e a m view of f l u m e a t d e s i g n flow using two , v a n e s and one column . . . . . . . . D o w n s t r e a m view of f l u m e a t d e s i g n flow using two columns and one vane , . . . . . . . . . . . . D o w n s t r e a m view of final model d e s i g n U p s t r e a m view of f i n a l model d e s i g n . ~ U p s t r e a m view of flume at d e s i g n conditions . . . . . . D o w n s t r e a m view of f l u m e flowing a t 2. 31 cfs,fully submerged . , . a a - . . . . . . . D o w n s t r e a m view of flume with flow of 1 . 4 c i s . . D o w n s t r e a m view of f l u m e d i s c h a r g i n g 1 . 4 c f s , fully . , . submerged . . . . . . . . . . F i n a l d e s i g n of m o d e l t r a p e z o i d a l m e a s u r i n g flume F i n a l d e s i g n of m o d e l prototype m e a s u r i n g f l u m e . . 31 LIST O F FIGURES (continued) Figure 33 34 35 36 Page Development of r e l a t i o n s h i p between d i s c h a r g e and u p s t r e a m depth 41 Calibration curve for critical-depth trapezoidal m e a s u r i n g flume 42 . . . . . . . . . . . . . . . . . . . . . . . E f f e c t of s u b m e r g e n c e on the d i s c h a r g e relationship 45 Relationship between e n e r g y l o s s p a r a m e t e r and log of s u b m e r g e n c e . 48 . . . . . . . . 49 . . . . . . . . 37 Relationship between p i - t e r m s 38 G r a p h i c a l solution of m i n i m u m depth in t h r o a t 39 Relationship between F r o u d e n u m b e r , m i n i m u m depth in t h r o a t , and d i s c h a r g e 40 41 42 . . . 51 . Development of r e l a t i o n s h i p b e t w e e n d i s c h a r g e , F r o u d e n u m b e r , and m i n i m u m depth in t h r o a t . . 54 Development of r e l a t i o n s h i p between d i s c h a r g e , . e n e r g y l o s s , and s u b m e r g e n c e . Calibration curves for submerged trapezoidal m e a s u r i n g flume . . . . . . 43 Design of r e c t a n g u l a r m e a s u r i n g f l u m e 44 Design of P a r s h a l l m e a s u r i n g flume . 52 . . 56 . 57 . . . . . . . 61 62 NOMENCLATURE Symb 01 A Definition A r e a , it. L A r e a a t e n t r a n c e of f l u m e , ft. A r e a a t t h r o a t of f l u m e , f t . 2 2 A r e a a t rectangular flume entrance, it. A r e a a t r e c t a n g u l a r f l u m e t h r o a t , ft. A r e a i n m o d e l , ft. M i n i m u m a r e a , ft. 2 2 2 2 A r e a in prototype, ft. 2 R a t i o of A /A , d i m e n s i o n l e s s P m B o t t o m w i d t h , ft. C o n s t a n t e q u a l t o 0 . 9 5 - 1. 0 but t a k e n , c o n s e r v a t i v e l y , a s 0.95, d i m e n s i o n l e s s Coefficient u s e d t o obtain a c t u a l d i s c h a r g e , d i m e n s i o n l e s s 2 C o e f f i c i e n t d e f i n e d b y C / ~ ( A ~ /) A- 1, d i m e n s i o n l e s s 2 Coefficient defined b y h /(Fmax)', f t . m - Any d e p t h , f t . Minimum specific energy, ft Goefflcient of s u r f a c e d r a g , a f u n c t l o n of R e y n o l d s n u m b e r and r e l a t i v e r o u g h n e s s , d i m e n s i o n l e s s F r o u d e n u m b e r , dimensionless G r a v ~ t yf o r c e s , l b s Vlll NOMENCLATURE ( c o n t i n u e d ) Symbol F~ F F max r Definition Inertia force, lbs. Maximum Froude number in the flume, dimensionless R a t i o of p r o t o t y p e F r o u d e n u m b e r t o t h a t in m o d e l , dimensionless A c c e l e r a t i o n d u e t o g r a v i t y , 3 2 . 2 ft./sec. 2 D i f f e r e n c e i n w a t e r l e v e l s a t t h e e n t r a n c e and t h r o a t of r e c t a n g u l a r f l u m e , ft. U p p e r head of P a r s h a l l f l u m e , ft. Head l o s s , i t . Depth of flow at e n t r a n c e , f t . Depth of flow a t point in t h e t h r o a t , f t . Depth of flow at e x i t , f t . M i n i m u m d e p t h of flow in t h r o a t , f t . Depth of flow a t e n t r a n c e of p r o t o t y p e , f t . M i n i m u m d e p t h of flow in t h r o a t f o r p r o t o t y p e , f t . Depth of flow a t exit of p r o t o t y p e , ft. Depth of flow at e n t r a n c e of m o d e l , f t . M i ~ n i m u md e p t h of flow i n t h r o a t f o r m o d e l , f t . Depth of flow at e x i t of m o d e l , f t . Any l e n g t h , i t , NOMENCLATURE (continued) Symbol Definition L e n g t h i n m o d e l , it Length in p r o t o t y p e , it. R a t i o of L /L , d i m e n s i o n l e s s D m Actual d i s c h a r g e , c f s Theoretical discharge, cfs Discharge in model, cfs Discharge in prototype, cfs R a t i o of Q /Q,. P dimensionless Hydraulic m e a n depth, ft, Slope, d i m e n s i o n l e s s Water s u r f a c e width, f t . M i n i m u m w a t e r s u r f a c e w i d t h , ft. W a t e r s u r f a c e w i d t h of p r o t o t y p e , f t . Average velocity, f p s Average velocity a t entrance, fps A v e r a g e v e l o c i t y a t point i n the t h r o a t , i p s Velocity i n m o d e l , f p s Velocity i n p r o t o t y p e , i p s NOMENCLATURE (con-cxnued) Symbol Definition vr Ratio of V / V , d i m e n s i o n l e s s P m W T h r o a t width of P a r s h a l l f l u m e , it. Section f a c t o r dependent upon g e o m e t r y , ft. 2.5 E n e r g y coefficient which c o n s i d e r s non-uniform v e l o c i t y d i s t r i b u t i o n , equals 1. 0 , d i m e n s i o n l e s s Coefficient depending on s t r e a m tube c u r v a t u r e , a s s u m e d equal 1. 0 , d i m e n s i o n l e s s Density of fluid, l b s . - s e c . Any angle, d i m e n s i o n l e s s 2 /ft. 4 SCOPE A N D P U R P O S E O F INVESTIGATION T h e d i s c h w g e o c c u r r i n g i n a n open channel c a n b e m e a s u r e d by p l a c i ~ ga c o n s t r i c t i o n in the channel. c o n s t r i c t i o n s in open charmels, F l u m e s a r e commonly u.sed a s A flume i s a s p e c i a l l y designed and c a l i b r a t e d s e c t i o n built into a channel, t h e p h y s i c a l p r o p e r t i e s of which allow t h e calculation of the d i s c h a r g e . of the f l u m e i s u s u a l l y called the t h r o a t . T h e n a r r o w e s t section The velocity of flow through the t h r o a t , f o r any given flow r a t e , i n c r e a s e s with a d e c r e a s e in the flow deptlp. The ideal condition f o r m e a s u r e m e n t of d i s c h a r g e i s a t h r o a t sufficiently c o n s t r i c t e d t o p r o d u c e c r i t i c a l - d e p t h in the t h r o a t . When- e v e r the g e o m e t r y of a channel produces c r i t i c a l flow the relationship between d i s c h a r g e and h e a d is independent of conditions d o w n s t r e a m , making d i s c h a r g e a function of only the u p s t r e a m depth. Thus, when critical-depth o c c u r s i n the t h r o a t , the only m e a s u r e m e n t r e q u i r e d to d e t e r m i n e t h e d i s c h a r g e through t h e f l u m e is the u p s t r e a m depth of flow, thus m a k i n g the wide u s e of c r i t i c a l - d e p t h f l u m e s d e s i r a b l e f o r measurement purposes. F l u m e s of v a r i o u s s h a p e s a r e used to obtain a condition of critical-depth, the m o s t c o m m o n and well known being the P a r s h a l l flume. One p u r p o s e of thrs ~ n v e s t l g a t i o nh a s b e e n to study the tsapezordal shaped f l u m e s which s e v e r a l r e s e a r c h e r s ( A c k e r s a n d H a r r r s o n , 1965, L u d w ~ gand Ludwig, 1951, P a l m e r and Bowlus. 1936; Robinson and C h a m b e r l a i n , i 9 6 2 ; awii Mi e l i s and Goiaas , 1943) have investigated. However, t h e p r l r r ~ a r yp u r p o s e of t h i s investigation h a s been the desi-gn, c a l i b r a t i o n , and evaluation, by m o d e l study, of a t r a p e z o i d a l m e a s u r i n g flume to be c o n s t r u c t e d i n the distribution s y s t e m of the D. M. A . D. Company ( D e l t a , M e l v i l l e , A b r a h a m , and D e s e r e t I r r i g a t i o n C o m p a n i e s ) in Delta, Utah. The f l u m e l o b e c o n s t r u c t e d will be used to m e a s u r e having a capacity of 3 0 0 c f s i r r i g a t i o n w a t e r s in a c a r ~ a l(Canal "B") (cubic f e e t p e r second) and located below the D. M . A . D. Dam. The e s s e n t i a l objectives of the model study have been: (1) investigation of s e v e r a l e n t r a n c e and exit conditions to obtain the m o s t economical, efficient, and p r a c t i c a l d e s i g n , (2) c o r r e l a t i o n of the d a t a f r o m this study with that of previous r e s e a r c h , and ( 3 ) c o m p a r i s o n of head l o s s e s i n t r a p e z o i d a l f l u m e s with t h o s e of r e c t a n g u l a r and P a r shall flumes. The t r a p e z o i d a l f l u r r ~ eh a s b e e n designed a s a c r i t i c a l - d e p t h flume utilizing p r e s e n t t a i l w a t e r coriditions ( t h e p r e s e n t depth-.discharge reltitionship f o r Canal "B" i s i l l u s t r a t e d in F i g u r e l ) , However, in- c r e a s e d developments by the D. M. A. D. Company i n the channel downs t r e a r n f r o m t h e proposed flume m a y yield i a c r e a s e d depth. of flow f o r ariy p a r t i c u l a r d i s c h a r g e , thereby increasirlg the d e g r e e of s u b m e r g e n c e . %n c a s e the t a i l w a t e r depths s h ~ > o i d r i s e m u c h above the p r e s e n t i e v e i . ~ l o r any p a r t i c u l a r d i s c h a r g e , sut:mer6ence of the f l u m e will un.. dojii-,tedly o c c u r a n d iheii two varii;bie$ will have to b e m e a s u r e d - - both the u p s t r e a m and t a i l w a t e r depths. Consequently, t h e calibratlor? of the t r a p e z o i d a l m e a s u r i n g f l u m e was extended t o s u b m e r g e d flow i n this investigation. After the prototype s t r u c t u r e h a s b e e n c o n s t r u c t e d , a field c a l i b r a t i o n will b e conducted. This field c a l i b r a t i o q will b e c o m p a r e d with the c a l i b r a t i o n f o r the prototype s t r u c t u r e a s p r e d i c t e d f r o m t h e model study. Neither the field calibration n o r t h e c o m p a r i s o n between the field and m o d e l p r e d i c t i o n calibrations will b e i n c o r p o r a t e d into this thesis. LITERATURE REVIEW Although t h e r e i s a g r e a t d e a l of information a v a i l a b l e concerning c r i t i c a l - d e p t h f l u m e s , few studies have b e e n m a d e r e g a r d i n g t r a p e zoidal f l u m e s . The m o s t common and widely u s e d open c h a n ~ e w l ater- m e a s u r i n g device i s probably the P a r s h a l i m e a s u r i n g f l u m e , whlc'n is of r e c t a n g u l a r s h a p e with a n i r r e g u l a r bottom. The ParshaS? flume h a s been s o designed that d i s c h a r g e m e a s u r e m e n t of f r e e and subm e r g e d flow c a n b e attained. only of the u p s t r e a m depth. The free-flow d i s c h a r g e i s a function D i s c h a r g e f o r s u b m e r g e d flow through a P a r s h a l l f l u m e i s a function of the u p s t r e a m depth and the r a t i o of the u p s t r e a m to t h r o a t depth ( s u b m e r g e n c e ) ( P a r s h a l l , 1945, 1950, 1953). The s u b m e r g e n c e c h a r t s provide a d i s c h a r g e c o r r e c t i o n which i s subt r a c t e d f r o m t h e f r e e - f l o w d i s c h a r g e based on t h e u p s t r e a m depth alone. Development of t r a p e z o i d a l flumes f o r m e a s u r e m e n t of flows in c i r c u l a r conduits w a s accomplished by P a l m e r and Bowlus (1936). L a t e r , Wells and Gotaas (1948) c a l i b r a t e d a n u m b e r of trapezoidal flumes f o r u s e in c i r c u l a r conduits. An extensive study of t r a p e z o i d a l f l u m e s f o r u s e in open channel flow m e a s u r e m e n t h a s b e e n m a d e by Robinson and C h a m b e r l a i n (196%). They conclyded thar a p p r o a c h condinons have only slight effects on t h e d i s c h a r g e , and t h a t t r a p e z o i d a l flumes could o p e r a t e a t higher d e g r e e s of sv.l,'mcrgence than rectangul.ar sections without the need of a c o r r e c t i o n f a c t o r . Robinsol? and Chamberlain i1962) found thz'c trapezoidal f l u m e s could be used withoilt c o r r e c t r o n f o r sfibmergences a s high a s 8 0 to 85 p e r c e n t . Wells and Gotaas (1948) d e i ~ n e dsub- m e r g e n c e a s "the p e r c e n t r a t i o of tailwater depth -lo the u-pstrearn depth of flow w h e r e the tailwater depth i s r e f e r r e d t o channel xnvert a t the point of u p s t r e a m m e a s u r e m e n t . " The justification and advantages for u s e of the trapezoidal flume over the r e c t a n g u l a r f l q m e a s l i s t e d by Robinson and C h a m b e r l a m (1960) a r e : 1. Approach conditions seemed to e x e r t a m i n o r effect on the h e a d - d i s c h a r g e relationship. M a t e r i a l d e posited in the approach sectign did not change this relationship t o any d e g r e e . 2. A l a r g e range of flow can be m e a s u r e d with a relatively s m a l l change in depth thus minimizing the amount of f r e e b o a r d needed on the c a n a l . 3. The trapezoidal shape f l t s the common c a n a l section m o r e c l o s e l y than does the rectangular flume. 4. Trapezoidal f l u m e s operate under higher d e g r e e s of submergence than will the rectangular f l u m e s without c o r r e c t i o n s bcing n e c e s s a r y t o the s t a n d a r d rating. The b a s l c t h e o r y lnvolved in the deszgn of the flvrne i s that Summal-ized frron?. minimum specific e n e r g y o c c u r s at critical-depth, A c k e r s and H a r r i s o n (1963) E = Bd 3 4- a: . - ~ r J 2 ~2 , . . . . . . . . . , 1 i n which E = minimum specific energy, f t ~ V = a v e r a g e v e l o c i t y of flow, f t . / s e c . g = a c c e l e r a t i o n due t o gravity, 3 2 . 2 f t . / s e c . d = d e p t h of f l o w , i t . a = e n e r g y c o e f f i c i e n t which c o n s i d e r s n o n - u n i f o r m velocity 2 distribution, equals 1, 0, dimensionless B = c o e f f i c i e n t depending on m e a n s t r e a m t u b e c u r v a t u r e , a s s u m e d e q u a l to 1. 0, d i m e n s i o n l e s s F r o m t h e equation of continuity Q=AV . . ~ ~ . . . . . i n which A = c r o s s - s e c t i o n a l a r e a of f l o w , f t . A = d(b b = t h r o a t width, feet 1 :m = + m d ) f o r trapezoidal 2 shape, ft. 2 flume side slope (vertical : horizontal) With p r o p e r s u b s t i t u t i o n a n d s o l u t i o n of t h e s p e c i f i c e n e r g y and continuity e q u a t i o n s i t c a n b e shown that Chow (1959) a n a l y z e d t h e flKme g e o m e t r y a c c o r d i n g t o in which Z = s e c t i o n f a c t o r dependent upon g e o m e t r y F o r a trapezoidal shape, Z r e l a t e s t h e bottom width to the depth of flow and by u s e of F i g u r e 4 - 1 in Chow (1959) a check is provided on t h e validity of Equation 3. 4 1 m ( v a r i e s in l o c a t i o n ) I Profile The a p p r o a c h used by Roblnson and C h a m b e r l a i n (1962) i s the b a s i c p r i n c i p l e of e n e r g y c o n s e r v a t i o n . T h e B e r n o u l l i equation c a n be w r i t t e n between two s e c t i o n s (Sections 1 and 2 ) a s i n which V1 V2 hl hZ hL = a v e r a g e velocity of flow a t e n t r a n c e , f t , / s e c = a v e r a g e velocity of flow a t a point in the t h r o a t , f t , / s e c . = depth of flow a t e n t r a n c e , ft. = depth of flow a t a point in the t h r o a t , f t . = l o s s of e n e r g y ( a s s u m e d negligible), f t When combined with the equation of continuity Q =AV r e s u l t s in To obtain t h e a c t u a l d i s c h a r g e , the t h e o r e t i c a l d i s c h a r g e m u s t b e modified by a c o e f f i c i e n t , C . Since the f i r s t r a d i c a l i s d i m e n s i o n l e s s and tends to r e f l e c t the g e o m e t r y of the s t r u c t u r e , it c a n be i n c o r p o r a t e d into a new d i s c h a r g e coefficient, C ' (Robinson and C h a m b e r l a i n , 1960) which yields in which A c k e r s and H a r r i s o n (1963) h a v e i n v e s t ~ g a t e denergy l o s s e s through t r a p e z o i d a l f l u m e s , Head l o s s i s c o n s i d e r e d Important 1 2 t h i s study s i n c e a m a x i m u m l o s s of one foot i s t o be allowed f o r the prototype s t r u c t u r e under investigation. Consequently, the r e s e a r c h of A c k e r s and H a r r i s o n h a s b e e n utilized to p r e d i c t l o s s e s . The t o t a l e n e r g y l o s s through the flume c o n s i d e r s , ( a ) the effect of c o n v e r g e n c e , ( b ) the e f f e c t of n o n - p a r a l l e l flow a t the c o n t r o l section, ( c ) f r i c t l o n l o s s e s through the t h r o a t , and ( d ) the effect of d i v e r g e n c e . The~w r ork shows the head l o s s due to f r i c t i o n through the t h r o a t to b e in which h f = head Loss, f t . L = length of t h r o a t , f t . R = hydraulic m e a n depth in t h r o a t a n d i s A/P, f = ft. d i m e n s i o n l e s s coefficient of s k i n d r a g , depending on Reynolds n u m b e r and t h e r e l a t i v e roughness. The head l o s s due to f r i c t i o n i s b a s e d on t h e following a s s u m p t i o n s ( A c k e r s and H a r r i s o n , 1963): 1. Critical-depth o c c u r s throughout the length of the t h r o a t . 2. The control s e c t i o n o c c u r s a t the d o w n s t r e a m end of t h e throat. 3. The velocity in the t h r o a t i s uniform. DESIGN O F PROTOTYPE TRAPEZOIDAL MEASURING FLUME The approach used f o r designing the prototype t r a p e z o i d a l m e a s u r i n g f l u m e w a s t h a t given by A c k e r s and H a r r i s o n (1963) in Equation 3. The d e s i g n w a s t h e n checked by the m e t h o d d e v e l o p e d b y Chow (1959). To obtain t h e n e c e s s a r y d i m e n s i o n s , t h e r e s e a r c h b y Robinson and C h a m b e r l a i n (1960), and A c k e r s and H a r r i s o n (1963) w a ? consulted. The side s l o p e of the t r a p e z o i d a l s e c t i o n h a s b e e n found ta be "unimportant provided i t s a t i s f i e s the n e c e s s a r y e n e r g y r e l -at 'ionships" ( P a l m e r and Bowlus, 1936; Wells and G o t a a s , 1948). T h u s , the author decided upon a 1 : 1 s i d e slope. The p r e s e n t o r e x i s t i n g d e p t h - d i s c h a r g e relationship in C a n a l "B" ( a s shown i n F i g u r e 1 ) gives the tailwater depth f o r any d i s c h a r g e . The velocity in the c a n a l i s v e r y low. T h e r e f o r e , the minimurn specific e n e r g y w a s taken a s t h e depth of flow in the c a n a l and the velocity head w a s neglected. H e n c e , b a s e d on the range of d i s c h a r g e s t o b e m e a - s u r e d b y the f l u m e , which i s 2 0 to 300 cfs (with 300 c f s being used a s the d e s i g n flow), the t h r o a t width w a s calculated to be six f e e t u s i n g Equations 3. This s a m e value of s i x f e e t w a s calculated f r o m Equation 4 and u s e d a s a c h e c k on the validity of Equation 3 . In Equation 1 , an a n a l y s i s of the actual exit velocity d i s t r i b u t i o n o c c u r r i n g in t h e m o d e l showed a = I . 0, and i,O. B w a s a s s u m e d equal t o Calculations b a s e d on t h i s equation show tha: f r e e - f l o w wiLI occur over the range of d i s c h a r g e u n d e r p r e s e n t t a i l w a t e r c o n d i t i o n s , No definite c r i t e r i a f o r the length of the t h r o a t c a n b e found in the l i t e r a t u r e . the head. A c k e r s a n d H a r r i s o n (1963) suggest a length of twice A length of two to f o u r t i m e s the t h r o a t width i s suggested by Robinson and C h a m b e r l a i n (1960). The a u t h o r ' s opinion, a f t e r con- s i d e r a t i o n of t h e i r r e s e a r c h , i s that a t h r o a t length of f i f t e e n f e e t , which i s two and one-half t i m e s t h e t h r o a t width, would b e sufficient. F r o m A c k e r s and H a r r i s o n (1963) the calculated f r i c t i o n a l l o s s e s i n the t h r o a t w e r e found to b e about one-tenth of the t o t a l l o s s . Since t h e f r i c t i o n a l l o s s e s through t h e t h r o a t + r e only a s m a l l p e r c e n t a g e of the total e n e r g y l o s s , t h e a u t h o r felt that s e v e r a l e n t r a n c e and exit conditions should be investigated. The b a s i c c r i t e r i a f o r u s e of a s h o r t e r o r l o n g e r e n t r a n c e o r exit t r a n s i t i o n slope depend on the l o s s of energy, a c c u r a c y of flow m e a s u r e m e n t r e q u i r e d of t h e installation, and possible e r o s i o n d o w n s t r e a m f r o m the flume. Evidence shows that the "exit t r a n s i t ~ o nh a s n o effect on the a c c u r a c y of m e a s u r e m e n t and . . , i s d e s i r a b l e only to c o n s e r v e energy" (Wells and G o t a a s , 1948). T h i s s t a t e m e n t i s t o b e modified f o r e a r t h c h a n n e l s , w h e r e high exit velocities m a y c a u s e e r o s i o n . The w o r k s of s e v e r a l a u t h o r s ( A c k e r s and Harkison, 1963; Ludwig and Ludwig, 1951; P a l m e r and Bowlus, 1936; Robinson and C h a m b e r l a i n , 1960; Wells and G o t a a s , 1948) w e r e investigated to d e t e r m i n e the d e s i r a b l e e n t r a n c e and exit t r a n s i t i o n slope. b c k e r s and H a r r i s o n " 2 a ~ n 8 j dur umoys s: arunlj Bur.Inseaur -(eproz -ade;rq adLqoloxd ayq JOJ u8rsap -(erqrul aqA 'uorq-eZrqsanur ayq ui d a ~ s ~e~qU ; Pu ~s-e L ~ o l e ~ o q -ayl e l q paJsa3 pu-e p a ~ x ~ 1 q s u o 3seM a3uaZxanrp -[ : F e B u ~ n e yp x a u-e y q ~ m2uol-e a 3 u a Z ~ a n u o 3 1 : g u e 'axn?eAaajl ay3 jo Lpnqs e uo pas-eg : g JQ e Z u r ~ e ya 3 u - e ~ l u a .(L~1exa3el: i(l-(eurpnq~Zuol) a 3 u a Z ~ a n j p.IO a 3 u a 8 ~ a n u o surnurrxerrr e papuaruruo3ax ( £ 9 6 1 ) DESIGN O F M O D E L TRAPEZOIDAL MEASURING F L U M E T h e p r i m a r y o b j e c t i v e s of the m o d e l s t u d y of t h e p r o p o s e d p r o t o t y p e f l u m e t o b e u s e d b y the D.M.A. D. C o m p a n y w e r e : (1) the i n v e s t i g a t i o n of e n t r a n c e and exit conditions t o f i n d , if p o s s i b l e , a m o r e e c o n o m i c a l d e s i g n t h a n t h a t which w a s f i r s t p r o p o s e d , (2) c a l i b r a t i o n a n d r e c o m m e n d a t i o n of t h e d e s i g n t o t h e D. M. A . D. C o m p a n y , a n d ( 3 ) c o r r e l a t i o n of the d a t a f r o m t h i s s t u d y w i t h t h o s e of previous investigations. The t e a c h i n g l a b o r a t o r y a t Utah S t a t e U n i v e r s i t y i s equipped w i t h a five-foot-wide f l u m e , which i s o n e - s e v e n t h t h e w i d t h of t h e 35-foot- w i d e c a n a l into which t h e p r o t o t y p e f l u m e i s t o b e p l a c e d . The l a b o r a t o r y f l u m e is of r e c t a n g u l a r s h a p e , w h e r e a s C a n a l "B" i s U - s h a p e d . s i m u l a t e t h e g e o m e t r i c s h a p e of Canal To "B" i n t h e l a b o r a t o r y , it would b e n e c e s s a r y t o f i l l i n t h e c o r n e r s of t h e f l u m e . Robinson and C h a m b e r l a i n (1960) h a v e found t h a t a p p r o a c h c o n d i t i o n s h a v e a m i n o r e f f e c t on t h e h e a d - d i s c h a r g e r e l a t i o n s h i p a n d a r e t h e r e f o r e not s i g n i f i c a ~ t C o n s e q u e n t l y , t h e c o r n e r s of the f l u m e w e r e not f i l l e d . After consider; a t i o n of the a v a i l a b l e l a b o r a t o r y f a c i l i t i e s , a d e c i s i o n w a s m a d e t o u s e a Length r a t i o of 1 : 7 (model : prototype). In the open c h a n n e l flow p r o b l e m b e i n g s t u d i e d , l a m i n a r flow w i l l not o c c u r a n d s u r f a c e t e n s i o n w i l l h a v e n o s i g n i f i c a n t e f f e c t ( A c k e r s and H a r r i s o n , 1963). The p r e d o m i n a n t f o r c e s a c t i n g on t h e flow w i l l b e t h o s e of gravi'cy a n d i n e r t i a . T h e g r a v i t y f o r c e s a r e pronounced when the flow i s s u b c r i t i c a l and the i n e r t i a f o r c e s a r e pronoti.nced wtien the flow i s s u p e r c r i t i c a l . prototype. Both f o r c e s a r e e x e r t e d on the m o d e l and The r a t i o of i n e r t i a f o r c e s to g r a v i t y f o r c e s i s the F r o u d e The i n e r t i a f o r c e s a r e given by number. in which FI = i n e r t i a f o r c e s , l b . 4 p = density of fluid, 1b.-see. /ft. L = length, f t . V = a v e r a g e velocity of flow, ft. / s e c . The g r a v i t y f o r c e s a r e given by in which F g g = gravity f o r c e s , lb. = a c c e l e r a t i o n due to g r a v i t y , 3 2 , 2 f t . / s e c . The F r o u d e n u m b e r , Normally, F, 2 1s defined by the s q u a r e r o o t of the r a t i o of t h e i n e r t i a f o r c e s to the g r a v i t y f o r c e s i s used a s the F r o u d e n u m b e r , thu.s T h e length, L, channel flow, i n the F r o u d e n u m b e r m a y be any lengch, bub m open L i s u s u a l l y t a k e n t o be the depth of flow. depth i s t a k e n a s the cross-sectional a r e a , A , the s u r f a c e width, T h e hydrautac of the w a t e r divided by T ( A / T ) (Chow, 1959). F o r r e c t a n g u l a r c h a n n e l s A / T would b e the depth of f l o w , but f o r t r a p e z o i d a l channels would b e s o m e constant t i m e s the depth. Hence, the F r o u d e n u m b e r s t o be evaluated i n this study will u s e the hydraulrc depth @ I T ) f o r t h e iengch measurement. The F r o u d e n u m b e r will v a r y a t each c r o s s s e c t i o n i n t h e f l u m e b e c a u s e the flow depth and m e a n velocity change f r o m c r o s s s e c t i o n to c r o s s section. Model m e a s u r e m e n t s a r e converted to corresponding prototype m e a s u r e m e n t s by the l a w s of similitude. u s e d to denote prototype p r o p e r t i e s , and " r " The s u b s c r i p t "p" will b e "m" to denote m o d e l p r o p e r t i e s , to denote the r a t i o of t h e prototype p r o p e r t i e s t o t h e m o d e l properties. The fundamental r e q u i r e m e n t f o r the design of a F r o u d e model i s t h a t the F r o u d e n u m b e r b e t h e s a m e in the m o d e l and in the prototype (Murphy, 1950), thus F model Froude number, r ( r a t i o of prototype F r o u d e n u m b e r , F ) i s equal to one. rn A s mentioned b e f o r e , the length r a t i o i s equal to s e v e n . F P' to aq L e n s e uaTJ:xmax Z 'JJ ' M O ~ J JO eaxe IeuoqJas- s s o x ~ = v = 0 'sas/ E '75 %$ex MOTJ YJlYM U!. AV = 0 i(q;nu;$uo3 jo uo;qenba ayL . . . . . . . s 9 . z =LJ '1 = x n A59'Z= = B pue 1 = I d A . I 3= A .I J asuIs 'pue In the prototype s t r u c t u r e , pipes will b e extended into the flow, both u p s t r e a m and d o w n s t r e a m f r o m the flume, to m e a s u r e the depths of flow a t t h e s e l o c a t i o n s . T h e s e pipes will l e a d to stilling wells p l a c e d along s i d e the f l u m e , in which f l o a t s and a r e c o r d b r will b e located. To duplicate t h i s condition in t h e m o d e l f l u m e , tubing w a s used to m e a s u r e the u p s t r e a m and d o w n s t r e a m flow depth. The u p s t r e a m a n d d o w n s t r e a m depth m e a s u r e m e n t s , a s r e a d in the m o d e l stilling w e l l s , w e r e c o r r e l a t e d with the d i s c h a r g e r a t e s through the f l u m e to yleld the n e c e s s a r y calibration. The prototype f l u m e will b e c o n s t r u c t e d of c o n c r e t e . The a v e r a g e r o u g h n e s s height f o r a c o n c r e t e s u r f a c e v a r i e s f r o m 0. 001 to 0. 01 feet (King, 1954). To obtain a n equivalent r o u g h n e s s in the model it would b e n e c e s s a r y t o have a roughness height s o m e w h e r e between 0.0001 to 0. 001 f e e t . T o obtain this roughness height, t h e m o d e l flume w a s c o n s t r u c t e d of plywood with a sanded-painted s u r f a c e . The e s t i m a t e d r o u g h n e s s height w a s about 0 , 0 0 1 f e e t . The initial d e s i g n used f o r the m o d e l t r a p e z o i d a l m e a s u r i n g f l u m e i s shown i n F i g u r e 3 . E X P E R I M E N T A L FACILITIES A f t e r t h e c o n s t r u c t i o n of t h e m o d e l t r a p e z o i d a l m e a s u r i n g f l u m e was completed ( F i g u r e 4 ), i t w a s p r o p e r l y placed in t h e f i v e - f o o t by f i v e - f o o t f l u m e ( F i g u r e 5 ), l o c a t e d i n t h e f l u i d m e c h a n i c s laboratory. T w o p u m p s w e r e u s e d , o p e r a t i n g t o g e t h e r and c a p a b l e of delivering over 3 cfs. T h e flow r a t e w a s r e g u l a t e d by m e a n s of a v a l v e l o c a t e d on t h e l i n e a s i t e n t e r s the l a b o r a t o r y . When s m a l l e r f l o w s w e r e d e s i r e d i t w a s n e c e s s a r y t o u s e only one p u m p . The water w a s p u m p e d t h r o u g h a 1 2 - i n c h - d i a m e t e r pipeline which f e e d s into t h e f i v e - f o o t b y five-foot f l u m e . A t t h e beginning of t h i s f l u m e is a s c r e e n w h i c h p r o v i d e s a n e v e n d i s t r i b u t i o n of the flow. the f l u m e and discharged into weighing tanks. T h e flow p a s s e d t h r o u g h T h e flow r a t e w a s c a l c u l a t e d f r o m t h e weight of w a t e r c a u g h t i n the t a n k s d u r i n g a particular time period. T h e w a t e r w a s w a s t e d f r o m the weighing t a n k s into the s u m p , w h e r e i t w a s r e c i r c u l a t e d ( F i g u f e 7 ) . When the flow w a s p a s s i n g t h r o u g h t h e t r a p e z o i d a l f l u m e , m e a s u r e m e n t s w e r e m a d e of ( 1 ) u p s t r e a m d e p t h , ( 2 ) m i n i m u m d e p t h in t h e t h r o a t a n d i t s l o c a t i o n , ( 3 ) c r i t i c a l - d e p t h a n d i t s l o c a t i o n , and ( 4 ) d o w n s t r e a m depth. A l l d e p t h m e a s u r e m e n t s w e r e m a d e b y the u s e of a point g a g e , and r e a d i n g s w e r e m a d e t o t h e n e a r e s t 0 . 0 0 1 foot. C o p p e r tubing ( F i g u r e s 8 a n d 9 ) r u n n i n g f r o m u p s t r e a m and d o w n s t r e a m ends of the t r a p e z o i d a l fluEe ' 5 @noJzl? T suoq:,aS jo pasoduxo:, auxn-[j8 u ; ~ n s e a u x 1 e p r o z a d e ~ Taporu ? pa?snz?suoD a~n8y .* 'y3dap x a p ~ ~ l sr nef p~e 07 p a s n a~.eZ.[!e~ .01 a x n 8 ~ j .a8-e2 lujod pue Bujqnl laddo:, 30 pua ~ U ~ M Oawn13 ~ S 30 M a y u r e a q s d n .6 a x n % ? j into stilling w e l l s , located n e a r the m i d d l e of the flume ( F i g u r e 6), provided f o r m e a s u r e m e n t of the u p s t r e a m and d o w n s t r e a m depths. A c r o s s b a r a c r o s s the flume w a s u s e d to s u p p o r t a point gate to m e a s u r e the m i n i m u m and critical-depths o c c u r r i n g in t h e t h r o a t ( F i g u r e s 8 and 9 ) . A t a i l g a t e w a s placed d o w n s t r e a m f r o m the dlume exit in o r d e r to r e g u l a t e the tailwater depth c o r r e s p o n d i n g to that to be encountered ln t h e field ( F i g u r e 1 0 ) . DESIGN CI-IANGES RESULTING PROM MODEL STUDY The m o s t s e v e r e conditon which the trapezoidal m e a s u r i n g f l u m e m u s t undergo f r o m t h e standpoint of d o w n s t r e a m e r o s i o n and total e n e r g y l o s s i s the d e s i g n flow of 300 c f s , whlch c o r r e s p o n d s to 2 . 3 1 c i s in the model. Consequently, t h e effect of design c h a n g e s was evaluated i n t h e m o d e l a t 2 31 c f s . A f t e r design flow w a s e s t a b l i s h e d i n the model, the t a i l w a t e r w a s a d j u s t e d t o the height which gave the existing t a i l w a t e r d e p t h t o be encountered in the f i e l d , which f o r the model a t d e s i g n flow w a s 0. 57 feet. With the w a t e r flowing a t d e s i g n conditions, o r a t any o t h e r flow, s e p a r a t i o n of flow o c c u r r e d a t the end of the throat. The s k i n f r i c t i o n of the f l u m e w a s n ' t g r e a t enough to c a u s e the flow to d e c e l e r a t e rapidly enough to exit uniformly, b e c a u s e the divergence of the exit s e c t i o n w a s too g r e a t . This s e p a r a t i o n c a u s e d t h e flow to a d h e r e to one s i d e o r the o t h e r of the diverging wall. (See F i g u r e s 11 and 12.3 A r e c i r c u l a t i o n o c c u r r e d d o w n s t r e a m allowing p a r t of the flow to c o m e back t o the exit on the opposite s i d e of the f l u m e f r o m which it was leaving. The m a i n r e a s o n f o r the s e p a r a t i o n i s t h e inability of the flow to d i v e r g e a t t h e a n g l e t h a t the f l u m e w a s c o n s t r u c t e d , which w a s included angle of this d i v e r g e n c e i s 3 6 . 9 0 . t h r e e t o one. The F r o m Chqw (1959, p. 3141, the length of a t r a n s i t i o n should b e d e t e r m i n e d s o that "a s t r a i g h t line joining the flow 1lne a t the two ends of the t r a n s i t ~ o nwill m a k e a n angle of about 1 2 . 5' with the a x i s of t h e s t r u c t u r e . " Similar c r i t e r i a a r e given by Hinds (1928) c o n c e r n i n g the m a x i m u m d i v e r g e n c e angle. T h i s condition would r e q u i r e a divergence of about 9 : 1 i n s t e a d of 3 : 1 . To e l i m i n a t e s e p a r a t i o n of flow and to b r e a k up the jet leaving the t h r o a t , s e v e r a l m e t h o d s w e r e explored. Vanes c o n s t r u c t e d of s t e e l w e r e placed on the t r a p e z o i d a l f l u m e bottom in the exit s e c t i o n s i n an a t t e m p t t o d i s t r i b u t e the flow evenly. T h e s e v a n e s w e r e placed in v a r i o u s p a t t e r n s , with s o m e t r i a l s extending v a n e s up into the f l u m e throat. The v a n e s w e r e m a d e of varying heights and s i z e s . T h e r e was n o noticeable effect of the v a n e s upon the m a i n flow conditions. Critical- depth always o c c u r r e d in t h e t h r o a t and a t t h e s a m e l o c a t i o n f o r the. d e s i g n flow, The head l o s s a l s o r e m a i n e d about the s a m e , p r o b l e m of s e p a r a t i o n w a s s t i l l p r e s e n t . The (See F i g u r e s 1 3 and 14. ) Next, wooden blocks w e r e placed in the Plume bottom. Various p a t t e r n s and a r r a n g e m e n t s w e r e used.lSee F i g u r e 15, 16, 1 7 , and 18,) T h e s e blocks w e r e always placed with the idea i n mind t h a t t h e y w o u l d not t r a p p a s s i n g s e d i m e n t but allow it to p a s s through the blocks. Double r o w s of blocks w e r e t r i e d . ( F i g u r e s 1 7 and 18) with the second row s t a g g e r e d behind the f i r s t a s well a s the second row being placed a t v a r y i n g d i s t a n c e s behind t h e f i r s t . Using the b l o c k s , the flow of w a t e r w a s d i f f e r e n t depending on the p a t t e r n u s e d . The c l o s e r t o the t h r o a t the blocks w e r e placed, the g r e a t e r t h e d e g r e e of s u b m e r g e n c e that o c c u r r e d i n the t h r o a t . Although the blocks b r o k e up the jet and p a r t i a l l y prevented s e p a r a t i o n , and although s o m e a r r a n g e m e n t s ( t h o s e placed f u r t h e r f r o m the t h r o a t ) evenly distributed the flow a c r o s s the exit, the m a i n objection t o t h e i r u s e w a s t h e c r e a t i o n of a h y d r a u l i c jump ( F i g u r e 16) d i r e c t l y behind the b l o c k s , yielding a w o r s e condition f o r e r o s i o n a t the end of t h e f l u m e . Another f e a t u r e which d i s c o u r a g e d the u s e of the blocks w a s t h e s u b m e r g e d flow t h e r e b y c r e a t e d i n the t h r o a t , which prevented o p e r a t i o n a s a c r i t i c a l - d e p t h f l u m e . A f t e r m a n y t r i a l s , it w a s concluded that t h e exiting section would have to b e c o n s t r u c t e d with a divergence m u c h l e s s than the one being used. F r o m o t h e r s t u d i e s , t h e i d e a l d i v e r g e n c e should b e 9 ; 1, bnt in view of economic f a c t o r s i t w a s decided t o d i v e r g e a t 6 : 1. B e f o r e a new exit section (Section 6 ) w a s c o n s t r u c t e d , the f i r s t converging s e c t i o n (Section 1) was r e m o v e d , a s it s e e m e d f r o m o h s e r vation of the e n t e r i n g flow that t h i s s e c t i o n m i g h t possibly be eliminated. With Section 1 r e m o v e d , t h e f l u m e w a s t e s t e d u n d e r design conditions ':eo.zya aya 30 pua ae ? J Ma m T J 3x118;J saued* a a q q ~ 30 ma:/\ do& . s y 3 0 ~ qx n o j a u o y ? ; ~MOTS u K r s a p 1-e a u r n 1 j j o Ma;A 3-e MOJ and v e r y l i t t l e d i f f e r e n c e w a s observed in t h e e n t e r i n g flow conditions o r in the m e a s u r e m e n t s . in the t h r o a t . C r i t i c a l - d e p t h o c c u r r e d a t the s a m e location The flow e n t e r e d the flume smoothly ( F i g u r e 19) and with a slight c o n t r a c t i o n a t the two s i d e s . The amount of h e a d l o s s through t h e f l u m e , with Section 1 r e m o v e d , w a s r e d u c e d by 0 . 0 0 5 f e e t . Economically then, i t w a s f e a s i b l e to r e m o v e the f i r s t section s i n c e d e s i r a b l e e n t r a n c e conditions could b e maintained. The 6 : 1 d i v e r g e n c e section w a s c o n s t r u c t e d inside of the d i s c a r d e d 3 : 1 exit ( F i g u r e s 2 0 and 21). The construction and flnish w a s done in the s a m e m a n n e r a s the 3 : 1 e x i t s e c t i o n had b e e n . With the w a t e r flowing a t design conditions, s e p a r a t i o n of flow still o c c u r r e d . The p r o b l e m w a s again approached u s i n g v a n e s (Flgure 22) and b l o c k s , and with the s a m e r e s u l t s a s previously attained. A d e s i g n w a s then t r i e d using wooden blocks ( e s s e n t i a l l y c o l u m n s ) high enough to p r o t r u d e above the w a t e r s u r f a c e a t t h e m a x i m u m flow. In the beginning t h e s e columns w e r e used in conjunction with the s t e e l vanes ( F i g u r e s 2 3 and 2 4 ) . s e e n in t h e s e f i g u r e s , Some idea of the p a t t e r n s t r i e d can be T h e r e w a s s o m e l i m i t e d s u c c e s s in the u s e of two columns ( F i g u r e 24) m distributing t h e flow a l i t t l e m o r e evenly. The next s t e p , then, w a s to t r y v a r i o u s p a t t e r n s of columns. The columns w e r e u s e d in one and two rows and with v a r i e d spacing b e f o r e the b e s t p o s s i b l e combination was s e l e c t e d . F i g u r e s 2 5 and 2 6 .aue~ a u o ~ J MOU M u s l s a p qe a u n u 30 MarA rureaJlsuMoa .ZZ a ~ n 8 r a . a u e ~auo pue suurnIor, OMJ 8 u ~ s nM O ~ Ju2:sap le arrrnlj jo Marn UT?a.I$SUMoa ' + z a x n K ! ~ 'urrrn1os auo pue SaU'eA OM? Bursn M O ~ Ju21sap le arunlj JO MarA ureaJ?surr\oa . C Z a x n K r ~ .MOT$ a m p s ayq ?e p a 8 z a u q n s A I ~ JMOTJ Zurchoys 0 s a ~ n s r pue j suo:~rpuor, pIaIj ~ v n q 3 eaqq Zuq3:dap 6 2 a x n s ~ yqrM j ' ~ 0 1 3u s r s a p ayq JTey qe aurnIf ay? MOTS 0s pue 6 7 s a ~ n K : j . p a S ~ a u q n sL11nj 2nq a u n T j aq3 s ~ o y 8s 2 a ~ n 3 r j ' ( 2 s PUP T C s a ~ n 4 : j )9 pue MOT$ 's ' z u'3isap ?e s u o g 3 a s jo p a s o d u o 2 seM ' p a j e ~ q q e sL1-[njaxe3 seM q > : y ~ 'u8rsap leu!$ ayL . a d A ~ o ? o ~ay? d ur s d j 1 ' Z 02 8u!puodsa.1.103 ' s d j I qnoqe u e y q : ~pa$nq:Jqsrp Aluana A ~ z r e aJaM j sar273oIan lrxa ayL B u o ~ eMOTJ y ~ v qL O MOIJ J O u o q e ~ ~ d ou a s sr azayL $0 aseza~e 'sap:s ay3 Z.suol:?rpuo:,uZrsap ?e a m n p aya s ~ o q s~2 a . I n 8 - l ~pue ' s ~ 3 0 1 qjo u ~ a l l e dTeug a q j MOYS ANALYSIS O F DATA FROM FINAL DESIGN Super-critical flow a n a l y s i s The m o s t d e s i r a b l e condition f o r predicting the d i s c h a r g e i n a f l u m e i s t o have t h e t h r o a t sufficiently c o n s t r i c t e d t o p r o d u c e c r i t i c a l depth, When c r i t i c a l - d e p t h o c c u r s in the t h r o a t , the only m e a s u r e m e n t r e q u i r e d t o d e t e r m i n e t h e d i s c h a r g e , through t h e f l u m e , i s the u p s t r e a m depth. T h e proposed prototype d e s i g n w a s c a l i b r a t e d a s a c r i t i c a l - d e p t h f l u m e by m e a n s of a m o d e l , previously s t a t e d . The flow and depth w e r e m e a s u r e d a s A s long a s the flow p a s s e d through c r i t i c a l - d e p t h in the t h r o a t , the flow w a s independent of the d o w n s t r e a m depth even though the u p s t r e a m depth v a r i e d with d i s c h a r g e . A f t e r the d a t a were r e c o r d e d , the flow w a s plotted a s t h e o r d i n a t e and the depth a s the a b s c i s s a . A conversion was made t o corresponding prototype m e a s u r e m e n t s and the data w e r e plotted on both c a r t e s i a n and log-log p a p e r . On log-log p a p e r , the points plotted a s a s t r a i g h t l i n e ( F i g u r e 33 ) which shows tha$ a n exponential r e l a t i o n s h i p e x i s t s between flow and depth. The equation of a s t r a i g h t l i n e on l o g - l o g p a p e r c a n be w r i t t e n a s l o g y = s (log x) + log C o r y = Cx S in which y = the function plotted a s the ordinate x = the function plotted on the a b s c i s s a s = the slope of the line C = constant equal to the value of y when x = 1. 0 thus log Q = s l o g (h 3 P 1P + log C or From F i g u r e 33 s = 1,78 C = 18.0 therefore The corresponding equation relating depth and flow in the model, which w a s obtained i n the s a m e way, i s Equation 16 allows the calculation of any flow passing through the prototype flume provided the u p s t r e a m depth i s m e a s u r e d and c r i t i c a l depth h a s o c c u r r e d in the t h r o a t . S u b m e r g e d flow a n a l y s i s If a n y flow p a s s i n g t h r o u g h t h e f l u m e f a i l s t o p a s s t h r o u g h c r i t i c a l d e p t h , the flow is s a i d t o b e s u b m e r g e d . S u b m e r g e n c e , a s defined b y Wells a n d G o t a a s ( 1 9 4 8 ) , i s ' I t he p e r c e n t r a t i o of t a i l w a t e r d e p t h t o t h e u p s t r e a m d e p t h of flow w h e r e the t a i l w a t e r d e p t h i s r e f e r r e d t o t h e channel i n v e r t a t t h e point of u p s t r e a m m e a s u r e m e n t . " Many a s p e c t s of s u b m e r g e n c e r e s e a r c h h a v e not yet b e e n s t u d i e d . One a p p r o a c h t o t h e s i t u a t i o n i s t h a t m a d e b y R o b i n s o n (1964) w h e r e ( h / h ) is p l o t t e d a g a i n s t Q / Q , i n which 0 4 1 Q Q 0 = observed discharge = t h e o r e t i c a l d i s c h a r g e obtained f r o m E q u a t i o n 7 Robinson (1964) found t h a t the flow did not r e q u i r e c o r r e c t i o n until the s u b m e r g e n c e r e a c h e d a p p r o x i m a t e l y 80 p e r c e n t . Then, f o r s u b m e r g e n c e g r e a t e r t h a n 80 p e r c e n t , the plot of s u b m e r g e n c e v e r s u s Q/Q 0 can b e utilized to obtain Q / Q 0 . The theoretical discharge, c a n b e obtained f r o m t h e u p s t r e a m d e p t h , Q, hl, Qo, and thus the discharge can b e computed. T h e d a t a f r o m t h i s r e s e a r c h effort h a v e b e e n p l o t t e d i n , t h e s a m e m a n n e r a s u s e d b y R o b i n s o n ( F i g u r e 35). This r e s e a r c h effort also found t h a t n o c o r r e c t i o n f o r flow w a s n e e d e d u n t i l a s u b m e r g e n c e of a p p r o x i m a t e l y 80 p e r c e n t w a s r e a c h e d a n d the plot of ( Q / Q ) v e r s u s 0 jh4/hl) w a s identical in shape to those produced b y Rdbinson (1964). F r o m F i g u r e 35, i t c a n b e s e e n that c o n s i d e r a b l e s c a t t e r e x i s t s in the d a t a . The u s e of F i g u r e 35 f o r s u b m e r g e d flow conditions would r e s u l t in c o n s i d e r a b l e e r r o r in d e t e r m i n i n g the d i s c h a r g e , Consequently, it w a s f e l t that a n i m p r o v e d method of analyzing s u b m e r g e d flow in a trapezoidal flume was n e c e s s a r y . C o n s i d e r a b l e thought w a s given to a n a p p r o a c h f o r analyzing s u b m e r g e d flow conditions. The submergence, to be an a p p r o p r i a t e p a r a m e t e r . h 4 / h l , was considered The proper c r i t e r i a for super-critical o r s u b c r i t i c a l flow in t h e t h r o a t i s the F r o u d e n u m b e r . Consequently, the F r o u d e n u m b e r w a s evaluated a t the c r o s s s e c t i o n of the t h r o a t w h e r e m i n i m u m depth o c c u r r e d . This F r o u d e number, Fmax, i s actually t h e m a x i m u m F r o u d e n u m b e r o c c u r r i n g in the f l u m e . The o t h e r p a r a m e t e r , which will b e r e f e r r e d to a s t h e e n e r g y . l o s s p a r a m e t e r , i s defined a s (h 1 - h ) / h . The energy l o s s parameter 4 m - w a s s e l e c t e d a s a m e a n s of using the energy . l o s s , h 1 - h 4' as a significant p a r a m e t e r m a d e d i m e n s i o n l e s s by division of the minimum depth of flow in t h e t h r o a t , h m - , also m - The u s e of m i n i m u m depth, h had the advantage of utilizing the conditions a t t h e t h r e e i m p o r t a n t c r o s s sections. The p a r a m e t e r s involved in s u b m e r g e d flow i n t r a p e z o i d a l m e a s u r i n g f l u m e s c a n b e obtained f r o m d i m e n s i o n a l a n a l y s i s , a s follows : With five independent quantities and two d i m e n s i o n s , t h r e e p i - t e r m s a r e derived, Equatxon 19 c a n be modified by replacing V with Q / A m - /T . m m - and h m - A TI 1 Q = - - Am ' g A m / = F T max m - in which Q = flow r a t e , cfs A m = m i n i m u m a r e a , equals ( b t hm ) b, f t . 2 b = f l u m e t h r o a t bottom width, f t h = m i n i m u m depth of flow in the t h r o a t , f t . m - T g m = m i n i m u m w a t e r s u r f a c e width of flow in the t h r o a t , i t = a c c e l e r a t i o n due to g r a v i t y , 32. 2 f t . / s e c . 2 with T h e relationship between s u b m e r g e n c e and the e n e r g y l o s s p a r a m e t e r w a s developed by plotting the log of s u b m e r g e n c e a s the o r d i n a t e and the energy l o s s p a r a m e t e r a s the a b s c i s s a . The r e l a t i o n - s h i p w a s e s s e n t i a l l y a s t r a i g h t l i n e ( F i g u r e 36) which can b e w r i t t e n a s a n equation o r simplifying 0.99 = Submergence = h / h 4 1 . . . 23 0.34 10 A log-log plot w a s p r e p a r e d between the energy l o s s p a r a m e t e r and t h e m a x i m u m F r o u d e n u m b e r , F max' ( F i g u r e 37). The energy l o s s p a r a m e t e r w a s plotted a s the ordinate and F w a s plotted a s max the a b s c i s s a . The relationship w a s e s s e n t i a l l y a s t r a i g h t l i n e and r e s u l t e d in the equation To show the relationship between the t h r e e p i - t e r m s h 4 / h l , and (h 1 - F max' h 4 ) / h m a n additional plot w a s m a d e between s u b - - m e r g e n c e and the e n e r g y l o s s p a r a m e t e r . The e n e r g y l o s s p a r a m e t e r w a s plotted on the log s c a l e a s t h e ordinate and to the s a m e s c a l e a s in F i g u r e 37. scale. Submergence w a s plotted a s the a b s c i s s a on a c a r t e s i a n T h i s plot ( F i g u r e 37) yields a p r a c t i c a l graphical solution of -mu 30 801 pue ;raqaurexed s s o i(8;raua ~ uaamqaq drysuoqe1a\6 .9g a ; r n 8 1 ~ F max when the s u b m e r g e n c e i s known a s well a s showing the r e l a t i o n - ship between the t h r e e p a r a m e t e r s o r p i - t e r m s , With the r e l a t i o n s h i p between s u b m e r g e n c e and F r o u d e n u m b e r known, i t w a s d e s i r e d to r e l a t e t h e s e two p a r a m e t e r s to d i s c h a r g e . F i r s t , a log-log t h r e e - d i m e n s i o n a l plot of h (hl m' - - h4)/hm - was prepared. a s the o r d i n a t e , h m - (hl - h4), and The energy l o s s p a r a m e t e r w a s plotted a s t h e a b s c i s s a , and h For the f a m i l y of c u r v e s s e e F i g u r e 38. a s t h e variable, 1 - h4 Since h and h 4 a r e 1 m e a s u r e d , the value of the e n e r g y l o s s p a r a m e t e r c a n b e obtained f r o m F i g u r e 37, t h e r e b y allowing t h e determination of h m - f r o m F i g u r e 38. , F Next, a t h r e e - d i m e n s i o n a l log-log plot w a s m a d e of h Q. and d i s c h a r g e , Here h m - w a s plotted a s the o r d i n a t e , m - max' F as max the a b s c i s s a , and d i s c h a r g e a s the p a r a m e t e r f o r t h e f a m i l y of c u r v e s ( F i g u s e 39. ) The solution f o r any d i s c h a r g e , given the u p s t r e a m and d o w n s t r e a m d e p t h s , would entail the u s e of F i g u r e 38 to obtain a value of h ; the u s e of F i g u r e 37 to obtain the F r o u d e n u m b e r ; and m - then f r o m F i g u r e 39 a value of d i s c h a r g e could b e i n t e r p o l a t e d . However, a n equation f o r evaluating the d i s c h a r g e f r o m F i g u r e 39 can b e obtained b y w r i t i n g the equation of e a c h of t h e l i n e s , h m - = C F 5 max The coefficient, a value of C 5 C5' S i s the value of h f o r F = 1. 0. m - Consequently, i s obtained f o r each line of constant d i s c h a r g e ( s e e the t a b l e included in F i g u r e 39). A log-log plot was t h e n p r e p a r e d between .a8sey3srp pue ' j e o x y ~u! yJdap urnru!urur 'xaqrunu apnoL3 uaam3aq d : y s u o ~ ~ e ~' a6 ~a ~x n 8 l s the p a r a m e t e r C and d i s c h a r g e 5 r e l a t i o n s h i p between d i s c h a r g e , Q = 34.7 C 1.74 h m - C 5 h and F max m - = C F 5 max and C 5 straight-line can be expressed b y a r e related to C 5 25 as -0.57 0.57 =h F Q, The . . . , . . . . . . . . 5 F r o m F i g u r e 39, ( F i g u r e 40). . . . . . . . . . . m max - Combining Equations 25 and 26 Q = 34.7 F h 1.74 - max m . . . . . . . . . . To obtain the r e l a t i o n s h i p between Q and h / h 4 1' 27 Equations 27 and 24 a r e combined t o yield which, when combined with Equation 23 and s i m p l i f i e d , yields -13.83 ( h Q= 1 - h ) 1.74 4 . . . . ? . . . -h4 1.32 (log- t 0. 0044) 1 Although Equation 28 i s only valid f o r the t r a p e z o i d a l m e a s u r i n g f l u m e s t u d i e d , i t d o e s show t h a t only the u p s t r e a m and d o w n s t r e a m depths need t o b e m e a s u r e d t o d e t e r m i n e t h e d i s c h a r g e under subm e r g e d flow conditions in any t r a p e z o ~ d a fl l u m e . 'Jeo.zy7 ur y ~ d a purnurIuIur pue 'xaqurnu apno.zA 'a2.z.ey3sjp uaamJaq dyysrtoq~1a.x30 p a u t d o ~ a ~ a a .op a.zn8rj In o r d e r to p e r f o r m t h e a r i t h m e t i c operations of the equations f o r the submerged trapezoidal flume, a computer program was written. T h i s p r o g r a m , including input and output d a t a , i s l i s t e d in Appendix B. The computations show t h e a c c u r a c y of Equations 23, 24, and 28. The a c c u r a c y obtained i n calculating d i s c h a r g e a s a function of s u b m e r g e n c e only i s of s p e c i a l i n t e r e s t . The computer p r o g r a m output showed that the d i s c h a r g e a s computed f r o m Equation 28 h a s a p e r c e n t a g e of e r r o r ( b a s e d on m e a s u r e d v a l u e s ) of 0 . 5 0 p e r c e n t f o r s u b m e r g e n c e values g r e a t e r than 90 p e r c e n t ; 1,78 p e r c e n t f o r s u b m e r g e n c e v a l u e s between 85 to 9 0 p e r c e n t ; and 3 . 8 2 p e r c e n t f o r s u b m e r g e n c e v a l u e s f r o m 85 p e r c e n t to c r i t i c a l flow. The a v e r a g e e r r o r f o r all m e a s u r e d values of s u b m e r g e n c e w a s 1 . 4 1 p e r c e n t . Hence, the r e l a t i o n s h i p obtained between d i s c h a r g e and s u b m e r g e n c e i s m o r e a c c u r a t e f o r the higher s u b m e r g e n c e v a l u e s . T h e relationships thus a r r i v e d a t in t h e preceding equations a r e valid and the d e g r e e of i n a c c u r a c y i s p r i m a r i l y due to e x p e r i m e n t a l procedures. The amount of e r r o r i s s a t i s f a c t o r y f o r m o s t f i e l d flow m e a s u r e m e n t stations. One of the p r i m a r y p u r p o s e s of t h i s investigation h a s b e e n t h e d e s i g n and c a l i b r a t i o n of a prototype t r a p e z o i d a l m e a s u r i n g f l u m e which could b e c o n s t r u c t e d in Canal 33,M . A . D . Company. "B" of the distribution s y s t e m of t h e P r i m a r i l y , t h e f l u m e will o p e r a t e with c r i t i c a l - d e p t h o c c u r r i n g in the t h r o a t and consequently, only the u p s t r e a m depth, .asuaE!;cartrqhs pu-e ' s s o ~AE!.zaua 'a8;c-eyssrp uaamJaq d?ysuor~eljax30 $ u a u r d o ~ a n a a . I * a z n 8 1 ~ LEI hl, If the t a i l - will have to b e m e a s u r e d t o d e t e r m i n e the d i s c h a r g e . w a t e r depths in Canal "B" should i n c r e a s e in the f u t u r e , t h e f l u m e m a y become submerged. T h e r e f o r e , c a l i b r a t i o n c u r v e s f o r s u b m e r g e d flow have been p r e p a r e d . In o r d e r to p r e p a r e c a l i b r a t i o n c u r v e s f o r s u b m e r g e d flow, a t h r e e - d i m e n s i o n a l log-log plot w a s p r e p a r e d of Q, h4/hl. h 1 - h The d i s c h a r g e , 4' Q, h 1 - h 4' and w a s plotted a s the ordinate, e n e r g y l o s s , a s the a b s c i s s a , and s u b m e r g e n c e , For the f a m i l y of c u r v e s s e e F i g u r e 41. h4/hl, a s the variable. A s e r i e s of p a r a l l e l l i n e s of v a r y i n g s u b m e r g e n c e w e r e then d r a w n f o r s u b m e r g e n c e s b e t w e e n 80 p e r c e n t and 96 percent.(See F i g u r e 41.3 In t h e field then, f o r a m e a s u r e d u p s t r e a m and d o w n s t r e a m depth, the energy l o s s , the submergence, h 4 / h l , h 1 - h4 ' and c a n b e computed, thus allowing a d e t e r - m i n a t i o n of the d i s c h a r g e f r o m F i g u r e 42 f o r the prototype t r a p e z o i d a l measuring flume. E N E R G Y LOSSES I N MEASURING F L U M E S A c o m p a r i s o n of the e n e r g y l o s s e s in t h r e e t y p e s of v e n t u r i f l u m e s ( P a r s h a l l , r e c t a n g u l a r , a n d t r a p e z o i d a l ) is t o b e m a d e . These flumes a r e all v e n t u r i f l u m e s w h i c h c o n s i s t of a g r a d u a l l y c o n v e r g i n g portion (the e n t r a n c e ) , a constricted portion (the t h r o a t ) , and a gradually diverging portion (the exit). T h e c o m p a r i s o n of t h e f l u m e s w i l l be b a s e d upon d e s i g n c o n d i t i o n s f o r C a n a l "B"w h e r e the h e a d l o s s t h r o u g h e a c h t y p e f l u m e m u s t b e l e s s t h a n one foot and the m a x i m u m d i s c h a r g e i s 300 c f s . Under d e s i g n c o n d i t i o n s , m o d e l m e a s u r e m e n t s c o n v e r t e d t o p r o t o t y p e m e a s u r e m e n t s f o r t h e t r a p e z o i d a l f l u m e gave a n u p s t r e a m d e p t h e q u a l t o 4. 865 f e e t w i t h a d o w n s t r e a m d e p t h of 3 , 9 5 5 f e e t . T h e r e f o r e , t h e h e a d l o s s t h r o u g h the f l u m e i s 0 . 9 1 f e e t . A prototype r e c t a n g u l a r m e a s u r i n g flume w a s designed according t o t h e c r i t e r i a of Kinfg (1954), Q = c M a 2 4h . . . . . . . . . . . . . 29 i n which = c constant equal to 0.95 - 1. 0 and t a k e n , c o n s e r v a t i v e l y , a s 0.95. a h 2 2 = a r e a a t throat, ft. = d i f f e r e n c e i n w a t e r l e v e l s a t the e n t r a n c e a n d t h r o a t , f t . Q = f l o w r a t e , cfs. a = 1 a r e a at entrance, ft. 2 F o r a flow r a t e of 300 c f s , and using c = 0 . 9 5 , the t h r o a t width of 10 f e e t gives the s a m e total e n e r g y (4. 75) a s computed f o r the t r a p e zoidal f l u m e . F o r the prototype r e c t a n g u l a r f l u m e design s e e F i g u r e 43. A prototype P a r s h a l l m e a s u r i n g f l u m e w a s designed a c c o r d i n g to the c r i t e r i a of the U . S. B u r e a u of R e c l a m a t i o n (1953) in which in which Q = discharge, cis. W = width of t h r o a t , f t . H = upper h e a d , f t . a The value of H a w a s obtained f r o m I s r a e l s e n (1953) in which the m i n i m u m head l o s s f o r f r e e flow equals 0.4 x H , and the m i n i m u m a head loss w a s t a k e n a s 1 . 0 f e e t f o r a c o m p a r i s o n with the t r a p e z o i d a l flume. The d e s i g n w a s then completed a c c o r d i n g t o t h e U. S . B u r e a u of Reclamation (1953) and F i g u r e 44 shows t h e d e t a i l s of the design. The c o m p a r i s o n of the s t r u c t u r e s , a l l of which w i l l a c c o m p l i s h the s a m e o p e r a t i o n with the s a m e head l o s s , shows that 46. 5 cubic y a r d s of c o n c r e t e a r e n e c e s s a r y f o r construction of t h e t r a p e z o i d a l f l u m e , 45 cubic y a r d s f o r the r e c t a n g u l a r , and 3 3 . 5 cubic y a r d s of c o n c r e t e a r e needed to e r e c t t h e P a r s h a l l f l u m e . F i g u r e 43. END Design of r e c t a n g u l a r m e a s u r i n g flu*---------------- VIEW F i g u r e 44. Design of Parshall m e a s u r i n g f l u m e . E v e n though the P a r s h a l l flume r e q u i r e s a s m a l l e r volume of c o n c r e t e it h a s two m a i n disadvantages b e c a u s e of t h e n e c e s s i t y to s e t the f l o o r of the s t r u c t u r e a t a n elevation which wlll sirtisfy the n o r m a l headwater conditions. T h e s e disadvantages are: ( 1) s i l t depositing u p s t r e a m , and ( 2 ) i n c r e a s e d depth u p s t r e a m , c a u s i n g additional s e e p age l o s s e s . Canal "B" i s v e r y s i m i l a r to C a n a l "A". In Canal "A", m e a s u r e m e n t s showed t h a t a n i n c r e a s e i n flow depth of 2 . 3 f e e t caused an additional s e e p a g e l o s s of m o r e than 20 c f s . At 20 c f s , the prototype t r a p e z o i d a l m e a s u r i n g f l u m e h a s an u p s t r e a m d e p t h of 1 . 2 7 feet. The P a r s h a l l f l u m e with t h e s a m e flow r a t e h a s a n u p s t r e a m depth of 3. 02 feet. Thus, t h e s e e p a g e l o s s e s would definitely i n c r e a s e with u s e of the P a r s h a l l flume. Under s u p e r - c r i t i c a l flow conditions, t h e t r a p e z o i d a l f l u m e and the r e c t a n g u l a r f l u m e a r e v e r y c o m p a r a b l e with l i t t l e d i f f e r e n c e in the operation of e i t h e r . The m o d e l study of the t r a p e z o i d a l m e a s u r i n g f l u m e h a s shown that such a f l u m e designed f o r submerged flow conditions c a n b e used a s a measuring device. A s u b m e r g e d flume h a s s e v e r a l advantages in f a v o r of i t s u s e : (1) l e s s head l o s s through the s t r u c t u r e , (2) l e s s e r o s i o n d o w n s t r e a m f r o m the s t r u c t u r e , ( 3 ) u s e of a s h o r t e r s t r u c t u r e b e c a u s e of a f a s t e r exit d i v e r g e n c e . The difficulty in c o m p a r i n g different types of v e n t u r i f l u m e s under s u b m e r g e d flow conditions i s the v e r y m e a g e r amount of i n f o r m a t i o n which e x i s t s . Some of the f o r m u l a s that have been cited a r e i n c o n s i d e r a b l e e r r o r and a r e e n t i r e l y inadequate a s a b a s i s f o r designing a flow m e a s u r e m e n t s t r u c t u r e . Both the r e c t a n g u l a r and t r a p e z o i d a l flat-bottomed flumes would b e v e r y advantageous under s u b m e r g e d flow conditions. It i s f e l t , h o w e v e r , that the t r a p e z o i d a l f l u m e , b e c a u s e of i t s g e o m e t r y , h a s a slight advantage over the r e c t a n g u l a r f l u m e . SUMMARY AND CONCLUSIONS In o r d e r to provide an e c o n o m i c a l flow m e a s u r i n g s t r u c t u r e f o r t h e D. M. A. D. Company, and t o c o r r e l a t e this study with p r e v i o u s r e s e a r c h , a model study w a s conducted of a trapezoidal m e a s u r i n g flume. T h e object of t h i s study w a s to provide the d e s i g n f o r a prototype s t r u c t u r e c a p a b l e of c a r r y i n g 300 c f s and to c a l i b r a t e the s t r u c t u r e f o r both s u p e r - c r i t i c a l and submerged flow conditions, Utilizing r e s e a r c h e f f o r t s of o t h e r s , and the known field cond i t i o n s , a n initial d e s i g n f o r a prototype s t r u c t u r e w a s p r o p o s e d a n d then a m o d e l study w a s m a d e of t h i s proposed design. The r a t i o of prototype to m o d e l w a s taken a s 7 : 1 in view of l a b o r a t o r y f a c i l i t i e s . The initial design p r o p o s e d w a s not s u c c e s s f u l due to t h e o c c u r r e n c e of s e p a r a t i o n , which w a s c a u s e d by too g r e a t a d i v e r g e n c e i n t h e exit section, T o r e c t i f y t h i s p r o b l e m , s e v e r a l p a t t e r n s of b l o c k s , s t e e l v a n e s , and columns w e r e u s e d to eliminate t h e s e p a r a t i o n and to evenly d i s t r i b u t e the flow. . T h i s proved i m p r a c t i c a l o n the i n i t i a l 3 : 1 diverging s e c t i o n , b u t on t h e next selection of a 6 : 1 diver- g e n c e , a p a t t e r n of t h r e e c o l u m n s placed a t the beginning of the exit and of height g r e a t e r than t h e m a x i m u m flow, fulfilled the r e q u i r e ments. E x p e r i m e n t a t i o n a l s o showed that elimination of a p o r t i o n of t h e e n t r a n c e section w a s justifiable. The modified m o d e l w a s then c a l i b r a t e d and t h u s provided the design of a prototype s t r u c t u r e f o r field u s e . A r a t i n g c u r v e and equation w e r e then developed f o r s u p e r - c r i t i c a l flow through the prototype s t r u c t u r e . By u s e of this c u r v e , the D . M , A , D. Company can c o n s t r u c t and u s e t h i s t r a p e z o i d a l m e a s u r i n g f l u m e . Should s u b m e r g e d flow develop i n the f i e l d , but p r i m a r i l y a s a point of p r a c t i c a l i n t e r e s t , the prototype s t r u c t u r e w a s c a l i b r a t e d f o r s u b m e r g e d flow by r e l a t i n g the m a x i m u m F r o u d e n u m b e r and subm e r g e n c e conditions to a new p a r a m e t e r , called t h e e n e r g y l o s s parameter. T h i s p a r a m e t e r i s actually the e n e r g y l o s s divided by the m i n i m u m depth of flow in the t h r o a t . T h i s r e l a t i o n s h i p yielded a r a t i n g c u r v e and an equation f o r s u b m e r g e d flow conditions. T o show the a c c u r a c y of the r e l a t i o n s h i p a computer p r o g r a m w a s w r i t t e n . The computer p r o g r a m showed the a v e r a g e e r r o r f o r a l l m e a s u r e d values of s u b m e r g e n c e to b e 1 . 4 4 p e r c e n t . A c o m p a r i s o n w a s then m a d e of t h r e e v e n t u r i f l u m e s : (1) trapezoidal, ( 2 ) r e c t a n g u l a r , and ( 3 ) P a r s h a l l . These t h r e e flumes w e r e s o designed that e a c h had one foot head l o s s through the s t r u c t u r e f o r a d i s c h a r g e of 300 c f s . The c o m p a r i s o n m a d e is the volume of c o n c r e t e n e c e s s a r y to c o n s t r u c t each s t r u c t u r e . The r e c t a n g u l a r and t r a p e z o i d a l a r e e s s e n t i a l l y the s a m e but the P a r s h a l l r e q u i r e s l e s s concrete. However, it should be noted h e r e that s i l t i n g u p s t r e a m and additional s e e p a g e l o s s e s d e c r e a s e d the d e s i r a b i l i t y of the P a r s h a l l flume. This investigation has provided a n adequate method f o r the c a l i b r a t i o n of open channel s u b m e r g e d m e a s u r i n g f l u m e s . The p a r a m e t e r s n e c e s s a r y to c a l i b r a t e a t r a p e z o i d a l m e a s u r i n g f l u m e w e r e developed. Subsequent t e s t i n g by Skogerboe, W a l k e r , and Roblnson (1965) h a s indicated that the s a m e p a r a m e t e r s a r e a l s o valid f o r rectangular flumes. The development of t h e s e p a r a m e t e r s will provide the b a s i s f o r a m o r e w i d e s p r e a d u s e of s u b m e r g e d f l u m e s i n t h e f u t u r e . S E L E C T E D BIBLIOGRAPHY 1. A c k e r s , P . , and A. J. M . H a r r i s o n . 1963. C r i t i c a l - d e p t h f l u m e s f o r flow m e a s u r e m e n t s in o p e n c h a n n e l s . H y d r a u l i c R e s e a r c h P a p e r No. 5, H y d r a u l i c s R e s e a r c h S t a t i o n , D e p a r t m e n t of S c i e n t i f i c and I n d i s t r i a l R e s e a r c h , Wallingford, B e r k s h i r e , England. April. 2. Chow, V . T . 1959. O p e n c h a n n e l h y d r a u l i c s . M c G r a w - H i l l B o o k C o m p a n y , I n c , , New Y o r k , New Y o r k , p. 63-85. 3. H i n d s , J u l i a n . 1928. T h e h y d r a u l i c d e s i g n of f l u m e a n d s i p h o n t r a n s i t i o n s . T r a n s . A S C E , 92:1435, 4. I s r a e l s e n , O r s o n W. 1953. I r r i g a t i o n principles a n d p r a c t i c e s J o h n Wiley & S o n s , I n c . , N@w Y o r k , New York. p. 43-51, 5. K i n g , H o r a c e W i l l i a m s . 1954. Handbook of h y d r a u l i c s . M c G r a w H i l l Book C o m p a n y , I n c . , New Y o r k , New Y o r k . p. 9 , 3 4 - 3 7 . 6. L u d w i g , J . H . and R . C . Ludwig. 1951. D e s i g n of PalmerB o w l u s f l u m e s . S e w a g e a n d I n d u s t r i a l W a s t e s , 23(9):1096-1107. 7. M u r p h y , G. 1950. S i m i l i t u d e in E n g i n e e r i n g . Company, New Y o r k , New Y o r k . p. 137-184. 8. P a l m e r , H. K . , a n d F. D . B o w l u s . 1936. A d a p t a t i o n of ventLiri f l u m e s t o flow m e a s u r e m e n t s in c o n d u i t s . T r a n s . A S C E , 101:1195-1216. D i s c u s s i o n b y F. A r r e d i , p. 1231-1235. 9. P a r s h a l l , R . L. 1945. I m p r o v i n g t h e d i s t r i b u t i o n of w a t e r t o f a r m e r s b y u s e of t h e P a r s h a l l f l u m e . SCS B u l l e t i n 488, U. S . D e p a r t m e n t of A g r i c u l t u r e . M a y . 10. P a r s h a l l , R . L. 1950. M e a s u r i n g w a t e r in i r r i g a t i o n c h a n n e l s w i t h P a r s h a l l f l u m e s and small w e i r s . SCS C i r c u l a r No. 8 4 3 , U. S. D e p a r t m e n t of A g r i c u l t u r e . M a y . 11. P a r s h a l l , R . L . 1953. P a r s h a l l f l u m e s of l a r g e s i z e . SCS B u l l e t i n 426-A, U . S . D e p a r t m e n t of A g r i c u l t u r e . M a r c h . 12. R o b i n s o n , A . R . 1961. Study of t h e B e a v e r C r e e k m e a s u r i n g f l u m e s . R e p o r t CER61ARR-10, Civil Engineering Section. Colorado State University. F e b r u a r y . The Ronald Press 13. Robinson, A . R . 1964. W a t e r m e a s u r e m e n t s in s m a l l i r r i g a t i o n c h a n n e l s u s i n g t r a p e z o i d a l f l u m e s . P a p e r No. 64-210, p r e s e n t e d a t 1964 a n n u a l m e e t i n g of ASAE. F o r t C o l l i n s , C o l o r a d o . J u n e . 14. R o b i n s o n , A . R . , and A . R. C h a m b e r l a i n . 1960. T r a p e z o i d a l f l u m e s f o r open c h a n n e l f l o w m e a s u r e m e n t . T r a n s . ASAE 3(2):120- 128. 15. R o b i n s o n , A . R . , a n d A . R . C h a m b e r l a i n . 1962. F l o w m e a s u r e m e n t i n open c h a n n e l s . R e p o r t CER62ARR-ARC4. Colorado State University. February. 16. S e d o v , L. I. 1959. S i m i l a r i t y a n d D i m e n s i o n a l M e t h o d in M e c h a n i c s , A c a d e m i c P r e s s . New Y o r k , New Y o r k . p. 1-24, 27-28, 17. S k o g e r b o e , G. V . , a n d V. E . H a n s e n . 1964. C a l i b r a t i o n of irrigation headgates by model analysis. Engineering Experiment S t a t i o n . U t a h S t a t e U n i v e r s i t y . L o g a n , Utah. M a r c h . p. 11-15. 18. S k o g e r b o e , G . V . , a n d W. R. W a l k e r , and L . R . R o b i n s o n . 1965. D e s i g n , o p e r a t i o n , a n d c a l i b r a t i o n of t h e C a n a l "A" s u b m e r g e d r e c t a n g u l a r m e a s u r i n g f l u m e . R e p o r t P R - W G 2 4 - 3 , Utah W a t e r R e s e a r c h L a b o r a t o r y , Utah State University. M a r c h . 19. U. S. B u r e a u of R e c l a m a t i o n , D e p a r t m e n t of t h e I n t e r i o r . 1953. W a t e r m e a s u r e m e n t m a n u a l . U. S. G o v e r n m e n t P r i n t i n g Office. p. 2 9 - 7 0 , 189-206. 20. W e l l s , E . A . , a n d H . B . G o t a a s . 1948. D e s i g n of v e n t u r i f l u m e s 863312-400. i n c i r c u l a r c o n d u i t s . P r o c . A S C E , J . S a n . E n g . Div. P a p e r N o . 938. T a b l e 1. B a s i c m e a s u r e m e n t s . - Run No. am 30 2. 31 0 . 693 0.562 0.452 super. 31 32 33 34 35 2. 2. 2. 2. 2. 31 31 31 31 31 0. 6 9 3 0. 6 9 4 0.708 0.733 0. 784 0.521 0.599 0.626 0.678 0.744 0.437 0.490 0. 568 0. 637 0. 722 36 37 38 39 40 2.31 2.75 2.75 2.75 2.75 0.847 0. 764 0. 762 0. 764 0. 780 0.821 0.653 0.637 0.665 0, 694 41 42 43 44 45 2.75 2.75 2.02 2.02 2.02 0. 817 0.843 0. 649 0. 649 0.650 46 47 48 49 50 2.02 2.02 2. 02 1. 78 1. 78 0.665 0.691 0. 732 0.603 0.603 (hl)m (h ) m m Type (hl)p (h4)p (h ) m P 300. 0 4.851 3.934 3. 164 super. crit. sub. sub. sub. 300. 0 300. 0 300.0 300.0 300.0 4.851 4.858 4.956 5.131 5.488 3.647 4. 1 9 3 4.382 4 . 746 5.208 3.059 3.430 3.976 4.459 5. 054 0.815 0.540 0.516 0.549 0. 628 sub. super. super. crit. sub. 300.0 357.1 357.1 357.1 357.1 5.929 5.348 5.334 5.348 5.460 5. 747 4.571 4.459 4.655 4.858 5. 705 3. 780 3.612 3. 8 4 3 4 . 396 0.757 0. 796 0.522 0.483 0.554 0. 721 0.768 0.422 0.412 0.456 sub. sub. super. super. crit. 357.1 357.1 262. 3 262.3 262.3 5 . 719 5.901 4.543 4.543 4.550 5.299 5.572 3.654 3.381 3.878 5.047 5.376 2.954 2. 896 3. 192 0.584 0.633 0. 692 0.480 0.438 0.528 0.597 0. 670 0 . 389 0.380 sub. sub. sub. super. super. 262. 3 262. 3 262.3 231.1 231.1 4.655 4.837 5.124 4.221 4.221 4.088 4.431 4.844 3.360 3.066 3. 4. 4. 2. 2. (h4)m 0f. Flow QP 696 179 690 723 660 -4 J r. T a b l e 1. Continued Run No. Qm (hl'm (h4'rn ( hm )m Type of Flow Q P (hl$ (h4)p (h ) m P 181.8 181.8 155.8 155.8 155.8 4.291 5. 600 3.395 3.395 3.402 4.088 5.530 2 . 506 2.226 2.695 3.934 5.425 2.114 2.079 2.394 crit. sub. sub. sub. super. super. crit. sub. sub. sub. super. super. crit. sub. sub. 66 67 68 69 70 1 . 40 1.40 1.20 1.20 1.20 0.613 0.800 0.485 0.485 0.486 0.584 0. 790 0.364 0.318 0.385 0 . 562 0. 775 0. 302 0.297 0.342 sub. sub. super. super. crit. T a b l e 1. Run No. Continued Q m (h1)m (h4)m (hm)m Type of Flow sub. sub. sub. sub. super. super. crit. sub. sub. sub. sub. super. super. super. super. sub. sub. sub. super. Q P (hl)p (h4'p (h ) m P T a b l e 1. C o n t i n u e d Run No. Q m (h 1)m (h4)m (hm)m Type of Flow Q P (hl'p (h4lp ( hm ) P 91 92 93 94 95 0.580 0.580 0.580 0.580 0.580 0.321 0.322 0.324 0. 327 0.344 0.205 0.235 0.250 0.263 0.308 0.212 0.221 0.227 0.239 0.283 super. super. super. sub. sub. 75.3 75.3 75.3 75.3 75.3 2.247 2.254 2.268 2.289 2.408 1.435 1.645 1. 750 1.841 2.156 1.484 1.547 1. 589 1.673 1.981 96 97 98 99 100 0.580 0.407 0.407 0.407 0.407 0.589 0.266 0.266 0.266 0.267 0.588 0. 1 9 5 0.168 0.202 0.217 0.581 0. 1 7 3 0.167 0. 1 7 8 0. 1 9 3 sub. super. super. crit. sub. 75.3 52.9 52.9 52.9 52.9 4. 1 2 3 1, 862 1. 862 1.862 1.869 4.116 1.365 1.176 1.414 1.519 4 . 067 1.211 1. 169 1.246 1 . 351 101 102 103 104 105 0.407 0.407 0.215 0.215 0.215 0.283 0.678 0.181 0. 1 8 1 0.181 0.251 0.678 0. 128 0.118 0. 1 3 4 0.228 0.678 0. 119 0. 1 1 8 0.120 sub. sub. super. super. super. 52.9 52.9 27.9 27.9 27,9 1.981 4 . 746 1.267 1.267 1.267 1.757 4.746 0,896 0.826 0.938 1. 596 4. 746 0.833 0 . 826 0.840 106 107 108 109 110 0.215 0.215 0.215 0.215 0.215 0.183 0.183 0. 189 0.215 0.270 0. 1 4 3 0. 146 0. 166 0.204 0.266 0.122 0. 1 2 6 0.146 0.187 0.262 super. super. sub. sub. sub. 27. 9 27. 9 27.9 27. 9 27. 9 1.281 1.281 1.323 1.505 1.890 1.001 1.022 1. 162 1.428 1.862 0.854 0.882 1.022 1. 309 1.834 111 0.215 0.407 0.407 0.408 sub. 27. 9 2.849 2.849 2.856 4 Ln T a b l e 2. C o m p u t a t i o n o f p a r a m e t e r s . Run No. Q P C C' F 1 F max h4'hl (hl- h 4 ) p (h ) E P b l - h4) h m - Run No. Q C P C' 1 F max h4'hl (hl-h4)p (h ) m P - (h1-h4) - 1 F max Run No. Q P C C' 1 F max h4'hl (hl-h4)p (h ) mP (hl-h*) h m - e q e a pue r u e x 8 o . I ~~ a ~ n d u r o MoIJ 3 pafj~awqns g x:puaddy The computer p r o g r a m a s listed below gives the solution to: PRAM m e a s u r e d value of e n e r g y l o s s p a r a m e t e r . PRAME value of energy l o s s p a r a m e t e r a s computed f r o m Equation 24. SUB m e a s u r e d value of s u b m e r g e n c e . SUBE value of submergence a s computed f r o m Equation 2 3 . QESUB value of d i s c h a r g e a s computed f r o m Equation 28. DIF S B difference in m e a s u r e d d i s c h a r g e and value computed f r o m Equation 28. QEFR value of d i s c h a r g e a s computed f r o m Equation 2 7 DIFFR difference in m e a s u r e d d i s c h a r g e and value computed f r o m Equation 2 7 . COMPUTATION O F PARAMETERS CALCULATION O F F L O W R A T E USING S U B M E R G E N C E F O R A T R A P E Z O I D A L F L U M E DIMENSION H ( 4 ) , B ( 2 ) , A ( 2 ) , T ( 2 ) , F ( 2 ) H R E P R E S E N T S W A T E R D E P T H , B = F L U M E B O T T O M WIDTH, A = A R E A , T = W A T E R S U R F A C E WIDTH F = F R O U D E N U M B E R , Q = F L O W R A T E , P O I N T 1 = E N T R A N C E , 2 = P O I N T O F MIN. DEPTH, 4 = EXIT S L O P E O F F L U M E SIDE WAS A ONE T O ONE 1 READ 100, B ( l ) , B ( 2 ) 100 F O R M A T ( 2 F 6 . 2 ) P U N C H 200 200 F O R M A T (1X5HDIFFR3X4HQEFR5X1HQ5X5HQESUB4X5HDIFSB4X3HSUB4X4HSUBE4X 14HPRAM4X5HPRAMEl/ ) 2 READ 101, Q , H(1), H(Z), H(4) 101 F O R M A T ( F 6 . 2 , 3 F 8 . 5 ) G = 32.2 A (1) = (B(1) t H(l))*H(l) A ( 2 ) = ( B ( 2 ) t H(2))':'H(2) Z = SQR ( A ( I ) / A ( Z ) * A ( l ) / A ( 2 )- 1. 0 ) 3 Q T = A(l)::'SQR(G*(H(l) - H ( 2 ) ) ) l Z C Q T IS T H E T H E O R E T I C A L F L O W R A T E C = Q/QT C IS A DIMENSIONLESS NUMBER AND A F O R M O F A F R O U D E NUMBER C cc = c / z T ( 1 ) = B ( 1 ) t 2.0>%H(1) T ( 2 ) = B ( 2 ) t 2. O*H(Z) 4 F(1) = Q/(A(l)::'SQR(G*A(l)/T(l))) 5 F ( 2 ) = Q/(A(2)::'SQR(G::'A(2)/T(2))) 6 SUB = H ( 4 ) / H ( 1 ) C C C C C C C COMPUTATION O F P A R A M E T E R S ( c o n t i n u e d ) C SUB IS T H E D E G R E E T H E F L O W IS S U B M E R G E D PRAM = (H(1) - H ( 4 ) ) / H ( 2 ) C S T A T E M E N T S 1 0 , 1 1 , 1 2 , 13 A R E E M P I R I C A L L Y D E R I V E D EQUATIONS 34*PRAM 10 S U B E = 0 . 9 9 1 10. 0::O. 1 1 P R A M E = 0. 300:?F(2):%*:2.38 12 Q E F R = 34. 7:KF(2)*H(2):?:%1.74 1 3 QESUB = - 13. 83"(H(1) - H(4))*;*1. 7 4 / ( L O G ( H ( 4 ) / . 99::H(1))2;.43429):%:::1. 32 20 D I F F R = Q - Q E F R 2 1 DIFSB = Q - QESUB P U N C H 2 0 1 , D I F F R , Q E F R , Q , QESUB, D I F S B , S U B , S U B E , P R A M , P R A M E 201 F O R M A T ( F 6 . 3 , 3 F 8 . 2 , F 8 . 3 , 4 F 8 . 4 ) IF (SENSE SWITCH 9 ) 3 0 , 2 30 P A U S E END 16. 0 6. 0 6P8 ' Z 298 ' I 8ZP.1 Z91 ' 1 9PL ' P L5L ' I 615 ' 1 911 ' P 951 ' Z IP8.1 £96 'P 6£9 ' Z 962 ' Z I0Z ' 5 825 '£ 286 ' Z L65 ' Z ZL5 ' 5 LZ6 'E 9 0 2 .£ 0P6 ' Z 025 ' 5 680 'P PPP "2 b 6 0 'E L55 '77 P6L 'E 6££ '£ 68£ ' P 906 '£ 865 '£ PP8 '.6 I£=P.P RRO ' P ZLE ' 5 66Z ' 5 6 5 s ';b LPL ' 5 80Z ' 5 9PL ' P Z8£ ' P 058 ' Z 068 'I 505 ' 1 £ZE ' 1 L%L ' P 186'1 698 ' 1 FZ1 '=P 80P ' Z 682 ' Z 7786 '-6 506 ' Z L£L ' 2 9£Z ' 5 9 6 9 ~£ F8Z 'E 621 ' £ 1Z9 ' 5 560 ' P LL5 ' £ ZLP 'E 009 ' 5 16Z '.6 P98 'E 5PL * £ 9.6L ' P 002 'P 8 1 0 '.6 £89 'P 96s S9Z ' P .6ZT .5 LC8 ' P 5 5 9 .P 1 0 6 .5 61L ' 5 09P ' 5 6Z6 ' 5 88P ' 5 1E1 .5 956 ' 9 '* 6 6 6 6 6 6 6 £ £ £ 9 9 9 'LZO 'LZ0 'LZ0 'LZ0 'Z50 '250 '250 '5L0 '5L0 '5L0 'Z01 'ZOI 'Z01 z'1f1 Z'1E1 Z'IET Z '1£1 8 '551 8 '551 8 '551 8 '551 8'181 8 '187 8 '181 8 '181 8 'LOZ 8 'LOZ 8 'LOZ 1 .1£Z 1 'T£Z 7 '1SZ E 'Z9Z £ 'Z9Z £ 'Z9Z 1 'L5£ 1 'L5S I 'L5F 0 '00s 0 '00£ 0 '00£ 0 'OOE Table 4. DIFFR Continued. QEFR Q DIFSB QESUB SUB SUBE PRAM PRAME %ERROR (DIFSBIQ)
© Copyright 2026 Paperzz