Non-linearity and small strain plasticity of lacustrine clay Sophie Messerklinger Swiss Federal Institute of Technology ETH Zurich Content: - Motivation - Laboratory investigation - Sampling - Test data analysis - Numerical modelling - Conclusions Motivation: Switzerland: Zürich Soft clayey soils in densly settled areas Geological: Lacustrine clay Bern Geneva Source: hydrological map of Switzerland Mechanical properties: strength and stiffness ? Wauwil @ 27 m Fine sands, silts, clays Alternating layers of peat, clays, silts and sands State of the art: On mechanical properties of Swiss Lacustrine clays: 9 Post peak softening (Bucher, 1965) 9 Undrained shear strength & Insitu determination (Heil, 1999) 9 Strain rate dependency of stiffness 9 Initial shear stiffness Trausch Giudici, 2004) Non-linear, elasto-plastic stiffness response Anisotropy & stress path dependency Triaxial test equipment: Back pressure unit Triaxial cell 7 Cell pressure unit Axial displacements: local LVDT‘s : membrane (Loctite 460) • Measurement range: ± 5 mm 70 mm • Fixities glued on the rubber LVDT top fixity • Accuracy: εa ± 0.05 % bottom fixity Triaxial test equipment: Back pressure unit Triaxial cell Cell pressure unit Laser scanning device 7 Measurement range: ± 5 mm Distance to the sample: Accuracy: εr: 0.2% load frame 20 mm laser in housing lead screw connection plate load frame Axial velocity: 1 mm/s lead screw Radial displacements with Lasers: Soil investigated: Sample tube: • Inner diameter 196 mm • Area ratio: 4 % • Outer cutting edge angle 11° 196 mm 4 test specimen: à ø 50 mm Soil properties: block sample: ø 196 mm x 250 mm • Plastic limit wP: 14.4 % USCS: CL • Plasticity Index IP: 12.3 % • Insitu water content w: 26.5 % • Specific gravity ρs : 2.74 g/mm3 • Grain content < 2 µm : 20 % • load rate: 1 kPa/hour • break between stress paths: 24 hours Analysis of test results: q = σ 1 – σ3 Θ = 97° Θ = 90° Θ = 42° Θ = 37° Θ = 31° Θ = 180° p‘= 150 kPa q = 113 kPa Θ = 217° Θ = 0° p‘= (σ1‘+ 2σ3‘)/3 Θ = 289° 2 x Θ = 270° Θ = 278° q [kPa] 0 0.00 150 100 p‘= 300 kPa q = 225 kPa Y2 = 13 kPa 50 εs [%] 0.04 0.08 0.12 Y3 = 85 kPa εs = 0.25 % 0 0.00 0.4 εs = 0.015 % q [kPa] 13 Drained stress path tests: 20 0.30 εs [%] Triaxial tests: 40 εs [%] 0.60 0.90 δεs/δεv = 1.67 0.2 δεs/δεv = 0.77 0.0 0.0 0.1 0.2 0.3 εv [%] 0.4 Test data analysis: Y2 -–von Y2 fromp'p‘ - εv plot 250 Y2 -–von Y2 fromq q - εs plot 150 q [kPa] Startpunkt der state Consolidation Y2 Wiederbelastung 50 -50 0 100 200 -150 -250 p' [kPa] 300 400 Test data analysis: Y2 – - von Y2 fromp'p‘ - εv plot q [kPa] & δεs [-] q [kPa] 250 Y2 – - von Y2 fromq q - εs plot Startpunkt der state Consolidation Y2 150 Wiederbelastung Dehnungsvektor Strain vector 50 -50 0 100 200 300 -150 -250 p' [kPa] p‘ [kPa] & δεv [-] 400 Test data analysis: Y2 – - von Y2 fromp'p‘ - εv plot q [kPa] & δεs [-] q [kPa] 250 Y2 – - von Y2 fromq q - εs plot Startpunkt der state Consolidation Y2 150 Wiederbelastung Y3 – - von Y3 fromp'p‘ – εv plot Y3 50 Y3 fromq q – εs plot Y3 – - von Strain vector -50 0 100 200 300 -150 -250 p' [kPa] p‘ [kPa] & δεv [-] 400 Test data analysis: Y2 – - von Y2 fromp'p‘ - εv plot q [kPa] & δεs [-] q [kPa] 250 Y2 – - von Y2 fromq q - εs plot Startpunkt der state Consolidation Y2 150 Y3 50 -50 0 Wiederbelastung Y3 – - von Y3 fromp'p‘ – εv plot 100 200 300 -150 -250 p' [kPa] p‘ [kPa] & δεv [-] Y3 – - von Y3 fromq q – εs plot 400 Dehnungsvektor Strain vector Test data analysis: q [kPa] & δεs [-] q [kPa] 250 Y2 – - von Y2 fromp'p‘ - εv plot Mcomp = 1.25 → φ‘cv= 31° Y2 – - von Y2 fromq q - εs plot Startpunkt der state Consolidation Y2 150 Y3 50 -50 0 Wiederbelastung Y3 – - von Y3 fromp'p‘ – εv plot 100 200 300 Y3 – - von Y3 fromq q – εs plot 400 Versagen - von p' Failure state Strain vector -150 -250 Mext = 0.88 → φ‘cv= 31° p' [kPa] p‘ [kPa] & δεv [-] ? Plastic strain vector Elastic component ? Elastic strain component: Cross – anisotropic: ⎡ 1 ⎡ε a ⎤ ⎢ Ea ⎢ε ⎥ = ⎢ ν ⎣ r ⎦ ⎢ − ar ⎢⎣ Ea Kloten clay: −2 ν ar ⎤ Ea ⎥ ⎡σ a '⎤ ⎥⎢ ⎥ 1 (1 − ν rr )⎥ ⎣σ r '⎦ ⎥⎦ Er ν ar = 0.52 b Ea = 120 MPa b = 8 .7 E − 6 ? Ea > or < Er ? Anisotropic elasticity: Modified Cross – anisotropic matrix: (Houlsby & Graham, 1983) * * * ⎤ ⎡ε1 ⎤ ⎡ ' ( 1 ) σ ν αν αν − ⎡ 1⎤ * E ⎥⎢ ⎥ ⎢ ⎢σ '⎥ = * 2 * 2 * ( 1 ) ε αν α ν α ν − 2 * * ⎥ ⎢ ⎢ 2⎥ ⎢ ⎥ (1 + ν )(1 − 2ν ) 2 * 2 * ⎥ ⎢⎣ε 3 ⎥⎦ ⎢ αν * ⎢⎣σ 3 '⎥⎦ ( 1 ) α ν α ν − ⎦ ⎣ Anisotropy factor α: Er α = Ea 2 Kloten clay: α = 0.6 → ν rr α= ν ar Ea ≈ 2.8 Er Plastic Potential: p σa' [kPa] & δεa [-] 600 400 Y3 Associated flow rule: Y2 Y3 9 200 Y2 ~ 0 0 200 400 p σr' [kPa] & δεr [-] Numerical modelling: Constitutive models: • Modified Cam Clay Model (Roscoe & Burland, 1968) • 3 – SKH: Three surface kinematic hardening Model (Stallebrass 1990) • Soft Soil Model (Plaxis) • S_CLAY1 Model (Wheeler 1997, Näätänen et al. 1999) Numerical simulation: 300 200 q [kPa] 100 0 0 100 200 -100 -200 -300 p' [kPa] 300 400 Numerical simulation: 300 200 q [kPa] 100 0 0 100 200 -100 -200 -300 p' [kPa] 300 400 Numerical simulation: 300 Model Parameter: Modified Cam Clay: Mcomp: 1.25 Mext: 0.88 κ: 0.01 λ: 0.053 G‘: 11 MPa Γ: 1.86 200 qq [kPa] [kPa] 100 0 0 100 200 300 400 3-SKH: additional -100 S: 0.18 T: 0.002 κ∗: 0.003 λ∗: 0.04 ψ: 2 -200 -300 p' [kPa] Numerical simulation: 300 Model Parameter: Modified Cam Clay: Mcomp: 1.25 Mext: 0.88 κ: 0.01 λ: 0.053 G‘: 11 MPa Γ: 1.86 200 q [kPa] 100 0 0 100 100 200 300 300 400 400 3-SKH: additional -100 S: 0.18 T: 0.002 κ∗: 0.003 λ∗: 0.04 ψ: 2 -200 -300 p' [kPa] Numerical simulation: 300 Model Parameter: 200 [kPa] qq [kPa] 100 0 0 100 200 -100 -200 -300 p' [kPa] 300 400 Soft Soil: ϕ‘: 31° c‘: 0 κ∗: 0.006 λ∗: 0.033 ν‘: 0.3 M: 1.65 Numerical simulation: 300 Model Parameter: 200 [kPa] qq [kPa] 100 0 0 100 200 -100 -200 -300 p' [kPa] 300 400 S_CLAY1: Mcomp: 1.25 Mext: 0.88 κ: 0.01 λ: 0.053 ν‘: 0.3 e0: 1.86 pm‘: 80 kPa αKo: 0.42 β: 1.31 µ: 50 Numerical simulation: 300 Model Parameter: 200 [kPa] qq [kPa] 100 0 0 100 200 -100 -200 -300 p' [kPa] 300 400 S_CLAY1: Mcomp: 1.25 Mext: 0.88 κ: 0.01 λ: 0.053 ν‘: 0.3 e0: 1.86 pm‘: 80 kPa αKo: 0.42 β: 1.31 µ: 50 Numerical simulation: q = σ1 – σ3 p‘= 300 kPa Θ = 90° Θ = 97° q = 225 kPa ΘΘ== 42° 42° Θ = 37° Θ = 31° Θ = 180° p‘= 150 kPa q = 113 kPa Θ = 217° p‘= (σ1‘+ 2σ3‘)/3 Θ = 289° 0.1 m 2 x Θ = 270° Θ = 278° • Axisymmetric • 2 x 15 node elements 0.025 m Θ = 0° p' [kPa] 300 MCC Plaxis Soft Soil S_CLAY1 MCC Crisp 3-SKH Test data 250 200 εv [-] 150 0.0E+00 5.0E-03 1.0E-02 q [kPa] 300 250 200 150 100 0.E+00 3.E-03 MCC Plaxis Soft Soil S_CLAY1 ε [-] s MCC Crisp 3-SKH 6.E-03 Test data εs [-] 6.E-03 MCC Plaxis Soft Soil S_CLAY1 MCC Crisp 3-SKH Test data 4.E-03 2.E-03 εv [-] 0.E+00 0.E+00 4.E-03 8.E-03 Numerical simulation: q = σ1 – σ3 Θ = 97° Θ = 90° Θ = 42° p‘= 300 kPa q = 225 kPa Θ = 37° Θ = 31° Θ = 180° p‘= 150 kPa q = 113 kPa Θ = 217° p‘= (σ1‘+ 2σ3‘)/3 Θ = 289° 0.1 m Θ = 278° 2 x Θ = 270° Θ = 278° • Axisymmetric • 2 x 15 node elements 0.025 m Θ = 0° q [kPa] MCC Plaxis Soft Soil S_CLAY1 MCC Crisp 3-SKH Test data 120 20 -2.E-03 2.E-03 -80 -180 -280 εv [-] 6.E-03 120 εs [-] -1.E-02 -5.E-03 0.E+00 -80 MCC Plaxis Soft Soil S_CLAY1 MCC Crisp 3-SKH Test data -180 -280 q [kPa] -2.E-02 20 -2.E-03 2.E-03 0.E+00 6.E-03 MCC Plaxis Soft Soil S_CLAY1 MCC Crisp 3-SKH Test data -2.E-02 εs [-] -1.E-02 εv [-] Summary and Conclusions: -Triaxial test apparatus with • Local LVDT‘s • Laser scan device - Block samples of lacustrine clay - Triaxial stress path tests • Y2 & Y3 yield surfaces, • Anisotropic elastic stiffness, • Plastic potential surface found Summary and Conclusions: - Numerical simulation with • MCC, S_CLAY1, 3-SKH, Soft Soil Model - It was found that: • Shape of Y3 is crucial for deformation prediction • Hardening rule has to be defined by strain characteristics • In extension all models which use a Drucker Prager are on the unsafe side. Non of the models are capable of simulating the lacustrine clay behvaiour but the S_CLAY1 model at least gives qualitatively correct results. Non-linearity and small strain plasticity of lacustrine clay Sophie Messerklinger Swiss Federal Institute of Technology ETH Zurich
© Copyright 2026 Paperzz