RESEARCH PROJECT: MODELING OF PYROCLASTIC FLOW By: Jess Rositano GPH 904: Research Analysis Spring 2012 INTRODUCTION: VOLCANOES • Lava: What most people think of • Pyroclastic Flow: Even more destructive than lava INTRO: PYROCLASTIC FLOWS • What are they? • Formation: • Column collapse • Dome collapse • Dilute clouds interact with topography • Velocity: up to 150mph • Temperature: up to 800˚C (1472˚F) Pyroclastic Flow Link PYROCLASTIC FLOW: SIGNIFICANCE OF RESEARCH PYROCLASTIC FLOW RISK MODELING • No one best way to model • Small scale: • Models concentrate on one or a few particular hazards • Even this can become quite complex • Benefits: allow for focus and more detailed understanding of hazard(s) • To take into account: Variations on how to calculate movement, damage, composition, etc of the hazard • Large scale: • Models take many variables into account • Benefits: perhaps better for a large scale risk assessment • To take into account: Variations on which hazards to include and how each hazard may affect the assessment of “risk” PILOT PROJECT • Goal: Create a model based off of equations from the Toyos et al. (2007) model using ArcGIS for a small volume pyroclastic flow from Mt. St. Helens. • Equations to be Integrated: • Run-out distance: ∆H/L = 2.03V-0.15 • L= run-out distance • ∆H = change in elevation • V = volume of pyroclastic flow • Max potential vel: v = 0.38∆h0.68 • v = velocity • ∆h = change in elevation PILOT PROJECT • Data required: • Elevation data for the volcano and surrounding area (DEM, raster), Pyroclastic flow volumes • Method: • Data collection: Web search • 1st: Write script for equations w/in ArcGIS • 2nd: Use already established ArcGIS tools Figure: Mt. St. Helens elevation raster PILOT PROJECT Figure. Focal flow output for Mount St. Helens. Figure. Slope output for Mount St. Helens. PILOT PROJECT: UNDERSTANDING THE RUN-OUT DISTANCE ∆H ∆H/L = 2.03V-0.15 Distace (m) Run-out Distance 10000.0 9000.0 8000.0 7000.0 6000.0 5000.0 4000.0 3000.0 2000.0 1000.0 0.0 Vol 1x10e5 Vol 1x10e6 Vol 1x10e7 0 500 1000 ∆H (m) 1500 2000 volume Run-out Run-out Run-out (m3) Vol 1x10e5 Volume (m3) Vol 1x10e6 volume (m3) Vol 1x10e7 50 100000 138.5 1000000 195.6 10000000 276.4 100 100000 277.0 1000000 391.3 10000000 552.7 120 100000 332.4 1000000 469.6 10000000 663.3 140 100000 387.8 1000000 547.8 10000000 773.8 160 100000 443.2 1000000 626.1 10000000 884.3 180 100000 498.6 1000000 704.3 10000000 994.9 200 100000 554.0 1000000 782.6 10000000 1105.4 220 100000 609.4 1000000 860.8 10000000 1216.0 240 100000 664.8 1000000 939.1 10000000 1326.5 260 100000 720.2 1000000 1017.4 10000000 1437.1 280 100000 775.6 1000000 1095.6 10000000 1547.6 300 100000 831.0 1000000 1173.9 10000000 1658.2 320 100000 886.4 1000000 1252.1 10000000 1768.7 340 100000 941.9 1000000 1330.4 10000000 1879.2 360 100000 997.3 1000000 1408.7 10000000 1989.8 380 100000 1052.7 1000000 1486.9 10000000 2100.3 400 100000 1108.1 1000000 1565.2 10000000 2210.9 420 100000 1163.5 1000000 1643.4 10000000 2321.4 440 100000 1218.9 1000000 1721.7 10000000 2432.0 460 100000 1274.3 1000000 1800.0 10000000 2542.5 480 100000 1329.7 1000000 1878.2 10000000 2653.0 500 100000 1385.1 1000000 1956.5 10000000 2763.6 520 100000 1440.5 1000000 2034.7 10000000 2874.1 540 100000 1495.9 1000000 2113.0 10000000 2984.7 560 100000 1551.3 1000000 2191.3 10000000 3095.2 580 100000 1606.7 1000000 2269.5 10000000 3205.8 600 100000 1662.1 1000000 2347.8 10000000 3316.3 620 100000 1717.5 1000000 2426.0 10000000 3426.9 PILOT PROJECT: UNDERSTANDING MAXIMUM POTENTIAL VELOCITY ∆H v = 0.38∆h0.68 Potential Velocity 70.00 Potential Velocity 60.00 50.00 40.00 30.00 Potential Vel. 20.00 10.00 0.00 0 500 1000 Elevation Change 1500 2000 Potential Vel. 50 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420 440 460 480 500 520 540 560 580 600 620 640 660 680 5.43 8.71 9.85 10.94 11.98 12.98 13.95 14.88 15.79 16.67 17.53 18.37 19.20 20.01 20.80 21.58 22.35 23.10 23.84 24.57 25.29 26.01 26.71 27.40 28.09 28.77 29.44 30.10 30.76 31.41 32.05 PILOT PROJECT • Results/Conclusions: • Creating own tools may be the best option • Visual Basic METHODOLOGY • Step 1: Data gathering • Elevation data that can be used in ArcGIS • Make sure you’re using an appropriate projection and coordinate system • Pyroclastic flow volume • Step 2a: Learn to write code in Visual Basic • Step 2b: Write script in VB to accommodate the run-out distance and velocity equations METHODOLOGY • Step 3: Template for • ArcGIS • QuantumGIS • etc • Step 4: Interface allowing user specified values. Namely: • Height of the source • Pyroclastic flow volume CONCLUDING THOUGHTS • What I used very simple and incomplete. • Other variables to be taken into account when calculating areas to be impacted: • pressure buildup • initial velocity • If only looking at risk from a small volume pyroclastic flow: Toyos et al.’s model • If you want total risk to an area from a volcano, may want to consider a more complex model • Ex. Mount St. Helens REFERENCES • Volcanic Phenomena at Pompeii. 1997. http://www.arch.virginia.edu/struct/pompeii/volcanic.html -Pyroclastic animation, img • Toyos, G.P., P.D.Cole, A. Felpeto, and J. Marti. 2007. A GIS-based methodology for hazard mapping of small volume pyroclastic density currents. Natural Hazards. 41:1. 99112 • 1980 eruption of Mount St. Helens. Wikipedia.com ~FIN~
© Copyright 2026 Paperzz