Trig Function Integration Problem 1 1 ⅆx 1 + Sin[a + b x] ◼ The Rubi results are simple and symmetric: Int 1 1 + Sin[a + b x] , x Cos[a + b x] - b 1 + Sin[a + b x] Int 1 1 - Sin[a + b x] , x Cos[a + b x] b 1 - Sin[a + b x] ◼ The Mathematica results are symmetric but more complicated: 1 1 + Sin[a + b x] ⅆx 2 Sin 1 (a + b x) 2 b Cos 1 2 (a + b x) + Sin 1 (a + b x) 2 1 1 - Sin[a + b x] ⅆx 2 Sin 1 (a + b x) 2 b Cos 1 2 (a + b x) - Sin 1 (a + b x) 2 ◼ The Maple results are simple and symmetric: int 1 1 + sin (a + b * x), x; 2 b 1 + Tan 1 2 (a + b x) int 1 1 - sin (a + b * x), x; - 2 b - 1 + Tan 1 (a + b x) 2 Trig Function Integration Problem 2 1 ⅆx 1 + Sec[a + b x] ◼ The Rubi result is simple: Int x- 1 1 + Sec[a + b x] , x Sin[a + b x] b 1 + Cos[a + b x] ◼ The Mathematica result is unnecessarily complicated: 1 1 + Sec[a + b x] 2 Cos 1 2 ⅆx (a + b x) Sec[a + b x] (a + b x) Cos 1 2 (a + b x) - Sin 1 2 (a + b x) b 1 + Sec[a + b x] ◼ The Maple result includes a term whose derivative is 1, the same as the derivative of x: int 1 1 + sec (a + b * x), x; Tan 1 (a + b x) - 2 b 2 ArcTanTan 1 (a + b x) + 2 b Trig Function Integration Problem 3 Sin[x] Tan[n x] ⅆ x ◼ The Rubi results are simple, expressed in trigonometric form and grow modestly with n: Int[Sin[x] Tan[x], x] ArcTanh[Sin[x]] - Sin[x] Int[Sin[x] Tan[2 x], x] ArcTanh 2 Sin[x] - Sin[x] 2 Int[Sin[x] Tan[3 x], x] 1 3 ArcTanh[Sin[x]] + 1 3 ArcTanh[2 Sin[x]] - Sin[x] Int[Sin[x] Tan[4 x], x] 1 2- 4 2 ArcTanh 2 Sin[x] 2- + 2 1 2+ 4 2 ArcTanh 2 Sin[x] 2+ - Sin[x] 2 ◼ The Mathematica results grow unpredictably, are expressed in terms of logarithms and involve RootSum when n is 4: Sin[x] Tan[x] ⅆ x x x x x - LogCos - Sin + LogCos + Sin - Sin[x] 2 2 2 2 Sin[x] Tan[2 x] ⅆ x 1 -2 ⅈ 8 2 ArcTan Cos x - - 1 + 2 1 + 2ⅈ 2 ArcTan 2 2 2 Cos x 2 Cos x - 1 + - 1 + 2 Log4 + 2 2 2 Sin x 2 Sin x 2 Cos x 2 2 Cos[x] - 2 - - Sin x 2 - Sin x +2 2 Log 2 2 Sin[x] - 2 Log- 2 - 2 + Sin[x] Tan[3 x] ⅆ x - 1 2 + 2 Sin[x] - x x 1 x x LogCos - Sin + LogCos + Sin 3 2 2 3 2 2 1 1 Log[- 1 + 2 Sin[x]] + Log[1 + 2 Sin[x]] - Sin[x] 6 6 2 Cos[x] + 2 Sin[x] - 8 Sin[x] Sin[x] Tan[4 x] ⅆ x 1 16 RootSum1 + #18 &, 2 ArcTan 1 7 2 ArcTan #1 Sin[x] Cos[x] - #1 Sin[x] Cos[x] - #1 - ⅈ Log1 - 2 Cos[x] #1 + #12 + #16 - ⅈ Log1 - 2 Cos[x] #1 + #12 #16 & - Sin[x] ◼ The Maple results are simple, but expressed in terms of logarithms when n is odd: int (sin (x) * tan (x), x); Log[Sec[x] + Tan[x]] - Sin[x] int sin (x) * tan 2 * x, x; ArcTanh 2 Sin[x] - Sin[x] 2 int sin (x) * tan 3 * x, x; 1 - 6 Log[- 1 + Sin[x]] + 1 6 Log[1 + Sin[x]] - 1 6 Log[- 1 + 2 Sin[x]] + 1 6 Log[1 + 2 Sin[x]] - Sin[x] int (sin (x) * tan (4 * x), x); 1 4 2- 2 ArcTanh 2 Sin[x] 2- 2 + 1 4 2+ 2 ArcTanh 2 Sin[x] 2+ - Sin[x] 2 Note that these systems give similar results to the above for the cosine function. Trig Function Integration Problem 4 a + b Sin[x] ⅆ x ◼ Rubi instantaneously computes the general case, and the special cases are relatively simple: Int a + b Sin[x] , x 2 EllipticE 1 - π + 2 x, 4 2b a+b a + b Sin[x] a+b Sin[x] a+b Int 1 + Sin[x] , x 2 Cos[x] - 1 + Sin[x] Int 1 - Sin[x] , x 2 Cos[x] 1 - Sin[x] ◼ Mathematica requires several seconds to compute the general case, and the special cases are more complicated: a + b Sin[x] ⅆ x 2 EllipticE 1 π - 2 x, 4 - 2b a+b a + b Sin[x] a+b Sin[x] a+b 1 + Sin[x] ⅆ x 2 - Cos x + Sin x 2 1 + Sin[x] 2 Cos x + Sin x 2 2 1 - Sin[x] ⅆ x 2 Cos x + Sin x 2 2 Cos x 2 1 - Sin[x] - Sin x 2 ◼ The Maple result for the general case is more complicated (note that Maple defines EllipticE and F differently than Mathmatica): int (sqrt (a + b * sin (x)), x); 2 (a - b) a + b Sin[x] b 1 - Sin[x] a-b a+b (a + b) EllipticF a + b Sin[x] a + b Sin[x] b Cos[x] int sqrt 1 + sin (x), x; 2 Sin[x] - 1 1 + Sin[x] Cos[x] int sqrt 1 - sin (x), x; 2 1 - Sin[x] 1 + Sin[x] Cos[x] 1 - Sin[x] a-b , - a-b a+b b 1 + Sin[x] a-b - (a + b) EllipticE a + b Sin[x] a-b , a-b a+b Trig Function Integration Problem 5 Sec[a + b x] ⅆ x & Sec[a + b x]2 ⅆ x ◼ The Rubi results are symmetric and simple: Int[Sec[a + b x], x] ArcTanh[Sin[a + b x]] b Int Sec[a + b x]2 , x ArcSinh[Tan[a + b x]] b ◼ The Mathematica results are symmetric but not simple: Sec[a + b x] ⅆ x LogCos a + 2 - - Sin a + 2 bx 2 b LogCos a + + 2 bx 2 + Sin a + 2 bx 2 b Sec[a + b x]2 ⅆ x - bx 2 1 b Cos[a + b x] LogCos 1 2 (a + b x) - Sin 1 2 (a + b x) - LogCos 1 2 (a + b x) + Sin 1 2 ◼ The Maple results are relatively simple but not symmetric: int (sec (a + b * x), x); Log[Sec[a + b x] + Tan[a + b x]] b int sqrt sec (a + b * x) ^ 2, x; - 1 b 2 ArcTanh- 1 + Cos[a + b x] Csc[a + b x] Cos[a + b x] Sec[a + b x]2 (a + b x) Sec[a + b x]2 Trig Function Integration Problem 6 Sec[x]2 ⅆ x & Csc[x]2 ⅆ x ◼ The Rubi results are simple and symmetric: Int Sec[x]2 , x ArcSinh[Tan[x]] Int Csc[x]2 , x - ArcSinh[Cot[x]] ◼ The Mathematica results are symmetric but more complicated: Sec[x]2 ⅆ x x x x x Cos[x] - LogCos - Sin + LogCos + Sin 2 2 2 2 Csc[x]2 ⅆ x Csc[x]2 x x - LogCos + LogSin Sin[x] 2 2 ◼ The Maple results are not symmetric and more complicated: int sqrt sec (x) ^ 2, x; - 2 ArcTanh- 1 + Cos[x] Csc[x] Cos[x] Sec[x]2 int sqrt csc (x) ^ 2, x; 1 2 4 1 1 - Cos[x]2 Sin[x] Log 1 - Cos[x] Sin[x] Sec[x]2 Trig Function Integration Problem 7 1 + Sec[x] ⅆ x & 1 + Csc[x] ⅆ x ◼ The Rubi results are simple, expressed in terms of elementary functions and symmetric: Int 1 + Sec[x] , x Tan[x] 2 ArcTan 1 + Sec[x] Int 1 + Csc[x] , x Cot[x] - 2 ArcTan 1 + Csc[x] ◼ The Mathematica results are large, not expressed in terms of elementary functions and not symmetric: 1 + Sec[x] ⅆ x 4 2 3 + 2 2 -1 + 2 - - 2 + 2 Cos x 2 1- 1 + Cos x 2 + - 2 + 2 -1 + 2 + - 2 + x 2 Cos 2 2 EllipticPi- 3 + 2 2 EllipticFArcSin 2 , - ArcSin - 1 + Sec[x] 4 3-2 Tan x 4 3-2 x Sec Sec[x] 2 Tan x - -1 + , 17 - 12 x 2 Cos 2 , 17 - 12 2 + 2 2 2 2 + - 2 + x x 2 2 Cos Sec 2 4 1 + Csc[x] ⅆ x 2 ArcTan - 1 + Csc[x] Cot[x] - 1 + Csc[x] 1 + Csc[x] ◼ The Maple results are expressed in terms of elementary functions, but large and not symmetric: int sqrt 1 + sec (x), x; - 2 ArcTanh - Cos[x] 1 + Cos[x] Tan[x] int sqrt 1 + csc (x), x; - Cos[x] 1 + Cos[x] 1 + Cos[x] Cos[x] - 1 2 - 1 + Cos[x] - Sin[x] 1 - Cos[x] Sin[x] Sin[x] Log - 1 + Cos[x] - - 1 + Cos[x] + 4 ArcTan 1 + Sin[x] 2 1 - Cos[x] Sin[x] 1 - Cos[x] Sin[x] - 1 + Cos[x] - Sin[x] 1 - Cos[x] Sin[x] 2 Sin[x] - Sin[x] 2 Sin[x] - Sin[x] + 4 ArcTan 2 - 1 + Log - 1 + Cos[x] + 1 - Cos[x] Sin[x] 2 Sin[x] - Sin[x] 1 - Cos[x] Sin[x] 1 - Cos[x] Sin[x] 2 + 1 + 2 Sin[x] - Sin[x] Trig Function Integration Problem 8 a Cos[x] + b Sin[x] ⅆ x ◼ Rubi returns a relatively simple result by using the identity a cos(z)+b sin(z) = sqrt(a^2+b^2) cos(zarctan(a,b)): Int c * Cos[x - d] , x c Cos[d - x] EllipticE d-x , 2 2 2 Cos[d - x] Int a Cos[x] + b Sin[x] , x 2 EllipticE 1 2 a Cos[x] + b Sin[x] (x - ArcTan[a, b]), 2 a Cos[x] + b Sin[x] a2 + b2 ◼ Mathematica knows the identity, but instead returns a complicated expression involving a hypergeometric function: c * Cos[x - d] ⅆ x c Cos[d - x] EllipticE d-x , 2 2 2 Cos[d - x] a Cos[x] + b Sin[x] ⅆ x 1 - b a2 + b2 HypergeometricPFQ- b 2 Sinx - ArcTan a 2 a2 b ab 1+ b2 a2 1+ b2 a2 2 a3 2 ,- 1+ 1 3 b 2 b , , Cosx - ArcTan Sinx - ArcTan + 4 4 a a b2 a2 b Cos[x] - 2 a a2 + b2 Cosx - ArcTan + a b b Sin[x] + a2 b Sinx - ArcTan + b3 Sinx - ArcTan a a a Cos[x] + b Sin[x] b 2 Sinx - ArcTan a ◼ The Maple results are more complicated (note that Maple defines EllipticE and F differently than Mathmatica): int (sqrt (c * cos (x - d)), x); - 2c c 1 - Cos d-x 2 - 1 + 2 Cos 2 d-x 2 1 - 2 Cos 2 Sin d-x 2 d-x 2 2 EllipticECos leafcount (int (sqrt (a * cos (x) + b * sin (x)), x)); "Large expression involving EllipticE and EllipticF." d-x 2 , 2 Trig Function Integration Problem 9 Sin[x] a+b ⅆx Sin[x]2 ◼ The Rubi results are simple and expressed in trigonometric form: Sin[x] Int a+b ArcTan , x Sin[x]2 b Cos[x] a+b-b Cos[x]2 - b Sin[x] Int 1 - ArcSin , x + Sin[x]2 Cos[x] 2 Sin[x] Int , x 1 - Sin[x]2 - Cos[x] Log[Cos[x]] Cos[x]2 ◼ The Mathematica results are simple but can involve the imaginary unit: Sin[x] ⅆx a + b Sin[x]2 - Log 2 - b Cos[x] + 2 a + b - b Cos[2 x] -b Sin[x] ⅆx 1 + Sin[x]2 ⅈ Logⅈ 2 Cos[x] + Sin[x] 1 - 3 - Cos[2 x] ⅆx - Sin[x]2 Cos[x] Log[Cos[x]] Cos[x]2 ◼ The Maple results are more complicated: int sin (x) / sqrt a + b * sin (x) ^ 2, x; 2 b Sin[x]2 + a - b - a + b Sin[x]2 - 1 + Sin[x]2 ArcTan 2 2 b Cos[x] b a + b Sin[x]2 int sin (x) / sqrt 1 + sin (x) ^ 2, x; Cos[x]2 1 + Sin[x]2 ArcSinSin[x]2 2 Cos[x] 1 + Sin[x]2 int sin (x) / sqrt 1 - sin (x) ^ 2, x; - 1 + Sin[x]2 Log[Sin[x] - 1] + Log[1 + Sin[x]] 2 Cos[x] 1 - Sin[x]2 - a + b Sin[x]2 - 1 + Sin[x]2 Trig Function Integration Problem 10 Cot[x] a+b Tan[x]2 +c ⅆx Tan[x]4 ◼ Rubi is able to integrate the expression: Cot[x] Int a+b ArcTanh 2 Tan[x]2 +c , x Tan[x]4 a+b Tan[x]2 +c Tan[x]4 2 a+b Tan[x]2 a 2 ArcTanh 2 + a-b+c a+b Tan[x]2 +c Tan[x]4 2 a-b+(b-2 c) Tan[x]2 2 a a-b+c ◼ Mathematica is unable to integrate the expression in 60 seconds: Cot[x] ⅆx a+b Tan[x]2 +c Tan[x]4 $Aborted ◼ Maple is unable to integrate the expression: int cot (x) / sqrt a + b * tan (x) ^ 2 + c * tan (x) ^ 4, x; Cot[x] a + b Tan[x]2 + c Tan[x]4 ⅆx
© Copyright 2026 Paperzz