Calculus Homework Assignment 10 1. Evaluate the integrals, Z a. y tan−1 (y 2 )dy. Z b. 5x sec2 3xdx. [like §8.2 #7,10] Sol. Z Z 1 −1 2 2 tan−1 xdx. a. Let x = y , then dx = 2ydy and y tan (y )dy = 2 dx Let u = tan−1 x, dv = dx, then du = 1+x 2 , v = x. So we have that Z Z x −1 −1 tan xdx = x tan x − dx 1 + x2 Z 1 dw −1 , by letting w = 1 + x2 = x tan x − 2 w 1 1 = x tan−1 x − ln w + C0 = x tan−1 x − ln(1 + x2 ) + C0 2 2 Hence Z 1 1 C0 y tan−1 (y 2 )dy = x tan−1 x − ln(1 + x2 ) + C, where C = 2 4 2 1 1 2 y tan−1 (y 2 ) − ln(1 + y 4 ) + C = 2 4 2 b. Let u = 5x, dv = sec 3x, then du = 5dx, v = 13 tan 3x. So we have that Z Z 5 5 2 5x sec 3xdx = x tan 3x − tan 3xdx 3 3 Z 5 5 sin 3x = x tan 3x − dx 3 3 cos 3x Z 5 5 dw = x tan 3x + , by letting w = cos 3x 3 9 w 5 5 = x tan 3x + ln |w| + C 3 9 5 5 = x tan 3x + ln | cos 3x| + C 3 9 2. Evaluate the integrals, Z 1 3 a. θ3 cos πθdθ. Z0 b. e−2x cos 2xdx. [like §8.2 #2,24] Sol. a. Let f (θ) = θ3 , g(θ) = cos πθ. Then f (θ) and its derivatives g(θ) and its integrals θ3 \\\\\\\\\\\\\\\\\\\\\\(+) \\ cos πθ \\\\\\\\\\\\ \\\\\\. 1 2 \\\\\\\ sin πθ \\\\\\\\\\\ (−) 3θ π \\\\\\\\\\\ \\\\\\\\\\\ − π12 cos πθ 6θ \\\\\\\\\\\\\\\\\\\\ (+) \\\\\\\\\\\ \\\\\\\\\− π13 sin πθ 6 \\\\\\\\\\\\\\\\\\\\ (−) \\\\\\\\\\\ \\\\\\\\\\\ - 1 0 π4 cos πθ Hence 3 13 Z 1 3 θ 3θ2 6θ 6 3 θ cos πθdθ = sin πθ + 2 cos πθ − 3 sin πθ − 4 cos πθ π π π π 0 0 √ 3 √ 2 3π + 9π − 54 3π + 162 = 54π 4 b. Let f (x) = cos 2x, g(x) = e−2x . Then f (x) and its derivatives g(x) and its integrals cos 2x \\\\\\\\\\\\\\\\\\\\(+) e−2x \\\\\\\\\\\\ \\\\\\\\. 1 −2x −2e −2 sin 2x \\\\\\\\\\\\\\\ (−) \\\\\\\\\\\ \\\\\\\\\\\ \\\- 1 −2x o e −4 cos 2x (+) 4 So we have that Z Z 1 −2x 1 −2x −2x cos 2x+ e sin 2x− e−2x cos 2xdx e cos 2xdx = − e 2 2 Z 1 Thus, 2 e−2x cos 2xdx = e−2x (sin 2x−cos 2x), and hence 2 Z 1 e−2x cos 2xdx = e−2x (sin 2x − cos 2x) + C 4 Z 3. Evaluate the integral, x sin(2 ln x)dx. [like §8.2 #29] Sol. Let y = ln x, then x = ey and dy = dx ⇒ dx = xdy = ey dy. x Thus Z Z x sin(2 ln x)dx = e2y sin 2ydy Now let f (y) = e2y , g(y) = sin 2y, then f (y) and its derivatives g(y) and its integrals e2y \\\\\\\\\\\\\\\\\\\\\\(+) \ 2e2y 4e2y sin 2y \\\\\\\\\\\\ \\\\\\. 1 \\\\\\\\\\\ − 2 cos 2y \\\\\\\\\\(−) \\\\\\\\\\\ \\\\\\\\- 1 o (+) − 4 sin 2y So we have that Z Z 1 2y 1 2y 2y e sin 2ydy = − e cos 2y + e sin 2y − e2y sin 2ydy 2 2 Z 1 Hence 2 e2y sin 2ydy = e2y (sin 2y − cos 2y) + C0 . Therefore, 2 Z Z 1 x sin(2 ln x)dx = e2y sin 2ydy = e2y (sin 2y − cos 2y) + C 4 1 2 C0 = x [sin(2 ln x) − cos(2 ln x)] + C, C = 4 2 4. Find the volume of the solid generated by revolving the region in the first quadrant bounded by the coordinate axes, the curve y = ex , and the line x = ln 2 about the line x = 1. [like §8.2 #33] Sol. It is clear that the curve y = ex and the line x = ln 2 intersect at the point (ln 2, 2). The region is sketched as follows Observe that shell radius is 1 − x and the shell height is ex . Z the ln 2 2πex (1 − x)dx. Note that if we let u = x, dv = Hence V = 0 ex dx ⇒ du = dx, v = ex , and then Z Z Z Z Z x x x x x e (1 − x)dx = e dx − xe dx = e dx − xe + ex dx Z x = −xe + 2 ex dx = ex (2 − x) + C This implies that Z ln 2 h iln 2 2πex (1 − x)dx = 2π ex (2 − x) = 4π(1 − ln 2) V = 0 0 Z 5. Evaluate the integral, e4t + 16 dt. (e2t + 4)2 [like §8.3 #26] Sol. Observe that Z Z Z 4t (e2t + 4)2 − 8e2t 8e2t e + 16 dt = dt = 1 − dt (e2t + 4)2 (e2t + 4)2 (e2t + 4)2 Z e2t = t−8 dt (e2t + 4)2 Let x = e2t , then dx = 2e2t dt, so Z 4t Z e + 16 dx 4 4 dt = t−4 = t+ +C = t+ 2t +C 2t 2 2 (e + 4) (x + 4) x+4 e +4 6. Evaluate the integral, Z (x − 1)2 tan−1 (3x) − 18x3 − 2x dx. (9x2 + 1)(x − 1)2 [like §8.3 #40] Sol. Observe that Z Z (x − 1)2 tan−1 (3x) − 18x3 − 2x tan−1 (3x) 2x dx = − dx (9x2 + 1)(x − 1)2 9x2 + 1 (x − 1)2 Z Z tan−1 (3x) x = dx − 2 dx 2 9x + 1 (x − 1)2 B x A A(x − 1) + B + = = . 2 2 (x − 1) x − 1 (x − 1) (x − 1)2 3dx and Then we have that dy = 2 9x + 1 Let y = tan−1 (3x) and A =1 ⇒ −A + B = 0 A=1 B=1 Thus, Z Z (x − 1)2 tan−1 (3x) − 18x3 − 2x 1 1 1 dx = ydy − 2 + dx (9x2 + 1)(x − 1)2 3 x − 1 (x − 1)2 Z Z y2 dx dx −2 −2 = 6 x−1 (x − 1)2 1 2 = [tan−1 (3x)]2 − 2 ln |x − 1| + +C 6 x−1 1 2 = [tan−1 (3x)]2 − ln(x − 1)2 + +C 6 x−1 Z 7. Evaluate the integrals, Z π √ 6 sec2 x − 1dx. a. π − Z π6 √ 4 b. θ 1 − cos 4θdθ. 0 [like §8.4 #20,21] Sol. a. Z π 6 √ Z sec2 x − 1dx = − π6 π 6 Z Z | tan x|dx = − tan xdx + − π6 − π6 π 6 Z 0 = 2 Z tan xdx = 2 0 Z √ 3 2 0 π 6 sin x dx cos x du by letting u = cos x u 1 √3 4 2 = −2 ln |u| = ln 3 1 = −2 π 6 tan xdx 0 b. Z π 4 √ Z θ 1 − cos 4θdθ = 2 √ 0 π 4 θ 0 √ Z = 2 r √ 1 − cos 4θ dθ = 2 2 π 4 Z θ| sin 2θ|dθ 0 π 4 θ sin 2θdθ 0 Let u = θ, v = sin 2θdθ, then du = dθ, v = − 21 cos 2θ and hence # " π Z π Z π √ √ 4 1 4 4 1 θ 1 − cos 4θdθ = cos 2θdθ 2 − θ cos 2θ + 2 2 0 0 0 √ √ π 4 2 2 = sin 2θ = 4 4 0 8. Find the length of the curve y = ln(sin x), π π ≤x≤ 3 2 [like §8.4 #40] dy cos x Sol. Since y = ln(sin x), so = = cot x. Hence the dx sin x length of the curve is Z πp Z πr dy 2 2 2 1+ dx = 1 + cot2 xdx L = π π dx 3 3 Z π Z π Z π 2 2 2 csc x(csc x + cot x) = dx | csc x|dx = csc xdx = π π π cot x + csc x 3 3 3 Z π 2 − csc2 x − csc x cot x = − dx π cot x + csc x 3 Z 1 du = − √ be letting u = cot x + csc x 3 u 1 1 = − ln |u|√ = ln 3 2 3
© Copyright 2026 Paperzz