Some Results on Greedy Embeddings in Metric Spaces Ankur Moitra, Tom Leighton October 26, 2008 Ankur Moitra () Geometric Graph Theory October 26, 2008 1 / 82 Greedy Embedding: Example Ankur Moitra () Geometric Graph Theory October 26, 2008 2 / 82 Greedy Embedding: Example t s Ankur Moitra () Geometric Graph Theory October 26, 2008 3 / 82 Greedy Embedding: Example t s Ankur Moitra () Geometric Graph Theory October 26, 2008 4 / 82 Greedy Embedding: Example t s Ankur Moitra () Geometric Graph Theory October 26, 2008 5 / 82 Greedy Embedding: Example t s Ankur Moitra () Geometric Graph Theory October 26, 2008 6 / 82 Greedy Embedding: Example t s Ankur Moitra () Geometric Graph Theory October 26, 2008 7 / 82 Greedy Embedding: Example t s Ankur Moitra () Geometric Graph Theory October 26, 2008 8 / 82 Greedy Embedding: Example t s Ankur Moitra () Geometric Graph Theory October 26, 2008 9 / 82 Greedy Embedding: Example t s Ankur Moitra () Geometric Graph Theory October 26, 2008 10 / 82 Greedy Embedding: Example t s Ankur Moitra () Geometric Graph Theory October 26, 2008 11 / 82 Greedy Embedding: Example t s Ankur Moitra () Geometric Graph Theory October 26, 2008 12 / 82 Greedy Embedding: Example t s Ankur Moitra () Geometric Graph Theory October 26, 2008 13 / 82 Greedy Embedding: Example Ankur Moitra () Geometric Graph Theory October 26, 2008 14 / 82 Greedy Embedding: Example Ankur Moitra () Geometric Graph Theory October 26, 2008 15 / 82 Greedy Embedding: Example Ankur Moitra () Geometric Graph Theory October 26, 2008 16 / 82 Greedy Embedding: Example Ankur Moitra () Geometric Graph Theory October 26, 2008 17 / 82 Greedy Embedding: Example t s Ankur Moitra () Geometric Graph Theory October 26, 2008 18 / 82 Greedy Embedding: Example t s Ankur Moitra () Geometric Graph Theory October 26, 2008 19 / 82 Greedy Embedding: Example t s Ankur Moitra () Geometric Graph Theory October 26, 2008 20 / 82 Greedy Embedding: Example t s Ankur Moitra () Geometric Graph Theory October 26, 2008 21 / 82 Greedy Embedding: Example t s Ankur Moitra () Geometric Graph Theory October 26, 2008 22 / 82 Greedy Routing Reminder: (X , d) is a metric space, f : V → X Greedy Routing Always forward packets to a neighbor that is strictly closer to the destination Ankur Moitra () Geometric Graph Theory October 26, 2008 23 / 82 Greedy Routing Reminder: (X , d) is a metric space, f : V → X Greedy Routing Always forward packets to a neighbor that is strictly closer to the destination (distances are measured using the distance function d applied to the images of nodes in the metric space) Ankur Moitra () Geometric Graph Theory October 26, 2008 23 / 82 Greedy Embedding: Definition Fact For all (s, t) there exists a path connecting s to t in which distances to t are decreasing ⇐⇒ greedy routing never fails Ankur Moitra () Geometric Graph Theory October 26, 2008 24 / 82 Greedy Embedding: Definition Fact For all (s, t) there exists a path connecting s to t in which distances to t are decreasing ⇐⇒ greedy routing never fails Definition A graph G admits a greedy embedding into a metric space (X , d) if there is a function f : V → X s.t. greedy routing never fails Ankur Moitra () Geometric Graph Theory October 26, 2008 24 / 82 Results on Greedy Embeddings Lemma (Papadimitriou, Ratajczak, 2005) K1,7 , K2,13 , ...Kr ,6r +1 admit no greedy embedding into Euclidean plane Ankur Moitra () Geometric Graph Theory October 26, 2008 25 / 82 Results on Greedy Embeddings Lemma (Papadimitriou, Ratajczak, 2005) K1,7 , K2,13 , ...Kr ,6r +1 admit no greedy embedding into Euclidean plane Conjecture (Papadimitriou, Ratajczak, 2005) All 3-connected planar graph admits a greedy embedding into the Euclidean plane Ankur Moitra () Geometric Graph Theory October 26, 2008 25 / 82 Results on Greedy Embeddings Lemma (Papadimitriou, Ratajczak, 2005) K1,7 , K2,13 , ...Kr ,6r +1 admit no greedy embedding into Euclidean plane Conjecture (Papadimitriou, Ratajczak, 2005) All 3-connected planar graph admits a greedy embedding into the Euclidean plane Theorem (Kleinberg, 2007) All connected graphs admit a greedy embedding into the Hyperbolic plane Ankur Moitra () Geometric Graph Theory October 26, 2008 25 / 82 Results on Greedy Embeddings Lemma (Papadimitriou, Ratajczak, 2005) K1,7 , K2,13 , ...Kr ,6r +1 admit no greedy embedding into Euclidean plane Conjecture (Papadimitriou, Ratajczak, 2005) All 3-connected planar graph admits a greedy embedding into the Euclidean plane Theorem (Kleinberg, 2007) All connected graphs admit a greedy embedding into the Hyperbolic plane Theorem (Dhandapani, 2008) All 3-connected, triangulated planar graphs admit a greedy embedding into the Euclidean plane Ankur Moitra () Geometric Graph Theory October 26, 2008 25 / 82 Our Results Ankur Moitra () Geometric Graph Theory October 26, 2008 26 / 82 Our Results 1 The Papadimitriou-Ratajczak Conjecture is true! Ankur Moitra () Geometric Graph Theory October 26, 2008 26 / 82 Our Results 1 2 The Papadimitriou-Ratajczak Conjecture is true! A combinatorial condition which is sufficient to guarantee no greedy embedding into Euclidean plane exists Ankur Moitra () Geometric Graph Theory October 26, 2008 26 / 82 Proof Outline Theorem All 3-connected planar graph admits a greedy embedding into the Euclidean plane 1 All 3-connected planar graphs contain a spanning Christmas Cactus graph 2 All Christmas Cactus graphs admit a greedy embedding into the Euclidean plane Ankur Moitra () Geometric Graph Theory October 26, 2008 27 / 82 Proof Outline Theorem All 3-connected planar graph admits a greedy embedding into the Euclidean plane 1 All 3-connected planar graphs contain a spanning Christmas Cactus graph 2 All Christmas Cactus graphs admit a greedy embedding into the Euclidean plane Ankur Moitra () Geometric Graph Theory October 26, 2008 28 / 82 Cactus Graphs: Definition Definition A cactus graph G = (V , E ) is a connected graph for which each edge is in at most one simple cycle not cactus Ankur Moitra () cactus, not Christams cactus Geometric Graph Theory Christmas cactus October 26, 2008 29 / 82 Cactus Graphs: Definition Definition A cactus graph G = (V , E ) is a connected graph for which each edge is in at most one simple cycle not cactus Ankur Moitra () cactus, not Christams cactus Geometric Graph Theory Christmas cactus October 26, 2008 30 / 82 Christmas Cactus Graphs: Definition Definition A Christmas cactus graph G = (V , E ) is a cactus graph for which the removal of any node v ∈ V disconnects G into at most 2 components. not cactus Ankur Moitra () cactus, not Christams cactus Geometric Graph Theory Christmas cactus October 26, 2008 31 / 82 Christmas Cactus Graphs: Definition Definition A Christmas cactus graph G = (V , E ) is a cactus graph for which the removal of any node v ∈ V disconnects G into at most 2 components. not cactus Ankur Moitra () cactus, not Christams cactus Geometric Graph Theory Christmas cactus October 26, 2008 32 / 82 ?? What is a Christmas cactus?? Ankur Moitra () Geometric Graph Theory October 26, 2008 33 / 82 ?? What is a Christmas cactus?? Ankur Moitra () Geometric Graph Theory October 26, 2008 33 / 82 Spanning Subgraphs in 3-Connected Planar Graphs Theorem (this paper) All 3-connected planar graphs contain a spanning Christmas cactus graph Ankur Moitra () Geometric Graph Theory October 26, 2008 34 / 82 Spanning Subgraphs in 3-Connected Planar Graphs Theorem (this paper) All 3-connected planar graphs contain a spanning Christmas cactus graph ⇓ Theorem (Gao, Richter, 1994) All 3-connected planar graphs contain a spanning 2-walk Ankur Moitra () Geometric Graph Theory October 26, 2008 34 / 82 Spanning Subgraphs in 3-Connected Planar Graphs Theorem (this paper) All 3-connected planar graphs contain a spanning Christmas cactus graph ⇓ Theorem (Gao, Richter, 1994) All 3-connected planar graphs contain a spanning 2-walk ⇓ Theorem (Barnette, 1966) All 3-connected planar graphs contain a spanning 3-tree Ankur Moitra () Geometric Graph Theory October 26, 2008 34 / 82 Proof Outline Theorem All 3-connected planar graph admits a greedy embedding into the Euclidean plane 1 XAll 3-connected planar graphs contain a spanning Christmas Cactus graph 2 All Christmas Cactus graphs admit a greedy embedding into the Euclidean plane Ankur Moitra () Geometric Graph Theory October 26, 2008 35 / 82 Example I 5b 3a 2a 1b 1a 1b 2a 2b 3a 3b 4a 4b 5a 5b 6a 6b 7a 7b 4b 3b 2b 1a 4a 6b 5a 6a 7b 7a R Ankur Moitra () Geometric Graph Theory R+e October 26, 2008 36 / 82 Example I 5b 3a 2a 1b 1a 1b 2a 2b 3a 3b 4a 4b 5a 5b 6a 6b 7a 7b 4b 3b 2b 1a 4a 6b 5a 6a 7b 7a R Ankur Moitra () Geometric Graph Theory R+e October 26, 2008 37 / 82 Example I s 3b 3a 2a t 1b 1a 1b 2a 2b 3a 3b 4a 4b 5a 5b 6a 6b 7a 7b 4b 5b 2b 1a 4a 6b 5a 6a 7b 7a R Ankur Moitra () Geometric Graph Theory R+e October 26, 2008 38 / 82 Example I s 3b 3a 2a t 1b 1a 1b 2a 2b 3a 3b 4a 4b 5a 5b 6a 6b 7a 7b 4b 5b 2b 1a 4a 6b 5a 6a 7b 7a R Ankur Moitra () Geometric Graph Theory R+e October 26, 2008 39 / 82 Example I s 3b 3a 2a t 1b 1a 1b 2a 2b 3a 3b 4a 4b 5a 5b 6a 6b 7a 7b 4b 5b 2b 1a 4a 6b 5a 6a 7b 7a R Ankur Moitra () Geometric Graph Theory R+e October 26, 2008 40 / 82 Example I s 3b 3a 2a t 1b 1a 1b 2a 2b 3a 3b 4a 4b 5a 5b 6a 6b 7a 7b 4b 5b 2b 1a 4a 6b 5a 6a 7b 7a R Ankur Moitra () Geometric Graph Theory R+e October 26, 2008 41 / 82 Example I s 3b 3a 2a t 1b 1a 1b 2a 2b 3a 3b 4a 4b 5a 5b 6a 6b 7a 7b 4b 5b 2b 1a 4a 6b 5a 6a 7b 7a R Ankur Moitra () Geometric Graph Theory R+e October 26, 2008 42 / 82 Example I s 3b 3a 2a t 1b 1a 1b 2a 2b 3a 3b 4a 4b 5a 5b 6a 6b 7a 7b 4b 5b 2b 1a 4a 6b 5a 6a 7b 7a R Ankur Moitra () Geometric Graph Theory R+e October 26, 2008 43 / 82 Example I s 3b 3a 2a t 1b 1a 1b 2a 2b 3a 3b 4a 4b 5a 5b 6a 6b 7a 7b 4b 5b 2b 1a 4a 6b 5a 6a 7b 7a R Ankur Moitra () Geometric Graph Theory R+e October 26, 2008 44 / 82 Example I s 3b 3a 2a t 1b 1a 1b 2a 2b 3a 3b 4a 4b 5a 5b 6a 6b 7a 7b 4b 5b 2b 1a 4a 6b 5a 6a 7b 7a R Ankur Moitra () Geometric Graph Theory R+e October 26, 2008 45 / 82 Example I s 3b 3a 2a t 1b 1a 1b 2a 2b 3a 3b 4a 4b 5a 5b 6a 6b 7a 7b 4b 5b 2b 1a 4a 6b 5a 6a 7b 7a R Ankur Moitra () Geometric Graph Theory R+e October 26, 2008 46 / 82 Example I s 3b 3a 2a t 1b 1a 1b 2a 2b 3a 3b 4a 4b 5a 5b 6a 6b 7a 7b 4b 5b 2b 1a 4a 6b 5a 6a 7b 7a R Ankur Moitra () Geometric Graph Theory R+e October 26, 2008 47 / 82 Example I s 3b 3a 2a t 1b 1a 1b 2a 2b 3a 3b 4a 4b 5a 5b 6a 6b 7a 7b 4b 5b 2b 1a 4a 6b 5a 6a 7b 7a R Ankur Moitra () Geometric Graph Theory R+e October 26, 2008 48 / 82 Example II 1b 1a 1c 2d 2b2c 3b3c 3d 2a 1d 2b 3a 2d 3b 4a 3d 4b 2a 2c 3a 1d 1c 1b 4b 4c 4d 1a 3c 4a R 4c R+e 4d Ankur Moitra () Geometric Graph Theory October 26, 2008 49 / 82 Example II 2d 2c 2b 1b 3d 3c 3b 1a 1c 2a 1d 2b 3a 2d 3b 4a 3d 4b 2a 2c 3a 1d 4b 4c 1c 1b 4d 3c 1a 4a R 4c R+e 4d Ankur Moitra () Geometric Graph Theory October 26, 2008 50 / 82 Example II 2d 2c 2b 1b 3d 3c 3b 1a 1c 2a 1d 2b 3a 2d 3b 4a 3d 4b 2a 2c 3a 1d 4b 4c 1c 1b 4d 3c 1a 4a R 4c R+e 4d Ankur Moitra () Geometric Graph Theory October 26, 2008 51 / 82 Example II 2d 2b 3b 2a Ankur Moitra () Geometric Graph Theory October 26, 2008 52 / 82 Example II 2d 2b 3b 2a Ankur Moitra () Geometric Graph Theory October 26, 2008 53 / 82 Example II 2d 2b 3b 2a Ankur Moitra () Geometric Graph Theory October 26, 2008 54 / 82 Example II 1b 1a 1c 2d 2b2c 3b3c 3d 2a 1d 2b 3a 2d 3b 4a 3d 4b 2a 2c 3a 1d 1c 1b 4b 4c 4d 1a 3c 4a R 4c R+e 4d Ankur Moitra () Geometric Graph Theory October 26, 2008 55 / 82 Example II 1b s 1a t 2d 2b2c 1c 3b3c 3d 2a 1d 2b 3a 2d 3b 4a 3d 4b 2a 2c 3a 1d 1c 1b 4b 4c 4d 1a 3c 4a R 4c R+e 4d Ankur Moitra () Geometric Graph Theory October 26, 2008 56 / 82 Example II 1b s 1a t 2d 2b2c 1c 3b3c 3d 2a 1d 2b 3a 2d 3b 4a 3d 4b 2a 2c 3a 1d 1c 1b 4b 4c 4d 1a 3c 4a R 4c R+e 4d Ankur Moitra () Geometric Graph Theory October 26, 2008 57 / 82 Example II 2b s 2d t 2a Ankur Moitra () Geometric Graph Theory October 26, 2008 58 / 82 Example II 2b s 2d t 2a Ankur Moitra () Geometric Graph Theory October 26, 2008 59 / 82 Example II 1b s 1a t 2d 2b2c 1c 3b3c 3d 2a 1d 2b 3a 2d 3b 4a 3d 4b 2a 2c 3a 1d 1c 1b 4b 4c 4d 1a 3c 4a R 4c R+e 4d Ankur Moitra () Geometric Graph Theory October 26, 2008 60 / 82 Example II 2d 2b 3c 2a Ankur Moitra () Geometric Graph Theory October 26, 2008 61 / 82 Example II 2d 2b 3c 2a Ankur Moitra () Geometric Graph Theory October 26, 2008 62 / 82 Example II 1b s 1a t 2d 2b2c 1c 3b3c 3d 2a 1d 2b 3a 2d 3b 4a 3d 4b 2a 2c 3a 1d 1c 1b 4b 4c 4d 1a 3c 4a R 4c R+e 4d Ankur Moitra () Geometric Graph Theory October 26, 2008 63 / 82 Example II 1b s 1a t 2d 2b2c 1c 3b3c 3d 2a 1d 2b 3a 2d 3b 4a 3d 4b 2a 2c 3a 1d 1c 1b 4b 4c 4d 1a 3c 4a R 4c R+e 4d Ankur Moitra () Geometric Graph Theory October 26, 2008 64 / 82 Example II 1b s 1a t 2d 2b2c 1c 3b3c 3d 2a 1d 2b 3a 2d 3b 4a 3d 4b 2a 2c 3a 1d 1c 1b 4b 4c 4d 1a 3c 4a R 4c R+e 4d Ankur Moitra () Geometric Graph Theory October 26, 2008 65 / 82 Example II 1b s 1a t 2d 2b2c 1c 3b3c 3d 2a 1d 2b 3a 2d 3b 4a 3d 4b 2a 2c 3a 1d 1c 1b 4b 4c 4d 1a 3c 4a R 4c R+e 4d Ankur Moitra () Geometric Graph Theory October 26, 2008 66 / 82 Example II 1b s 1a t 2d 2b2c 1c 3b3c 3d 2a 1d 2b 3a 2d 3b 4a 3d 4b 2a 2c 3a 1d 1c 1b 4b 4c 4d 1a 3c 4a R 4c R+e 4d Ankur Moitra () Geometric Graph Theory October 26, 2008 67 / 82 Example II 1b s 1a t 2d 2b2c 1c 3b3c 3d 2a 1d 2b 3a 2d 3b 4a 3d 4b 2a 2c 3a 1d 1c 1b 4b 4c 4d 1a 3c 4a R 4c R+e 4d Ankur Moitra () Geometric Graph Theory October 26, 2008 68 / 82 General Christmas Cactus Graphs G Ankur Moitra () Geometric Graph Theory October 26, 2008 69 / 82 General Christmas Cactus Graphs G Ankur Moitra () Geometric Graph Theory October 26, 2008 70 / 82 General Christmas Cactus Graphs G Ankur Moitra () Geometric Graph Theory October 26, 2008 71 / 82 General Christmas Cactus Graphs G Ankur Moitra () Geometric Graph Theory October 26, 2008 72 / 82 General Christmas Cactus Graphs G Ankur Moitra () Geometric Graph Theory October 26, 2008 73 / 82 General Christmas Cactus Graphs G Ankur Moitra () Geometric Graph Theory October 26, 2008 74 / 82 General Christmas Cactus Graphs G Ankur Moitra () Geometric Graph Theory October 26, 2008 75 / 82 General Christmas Cactus Graphs G Ankur Moitra () Geometric Graph Theory October 26, 2008 76 / 82 General Christmas Cactus Graphs G Ankur Moitra () Geometric Graph Theory October 26, 2008 77 / 82 Proof Outline Theorem All 3-connected planar graph admits a greedy embedding into the Euclidean plane 1 XAll 3-connected planar graphs contain a spanning Christmas Cactus graph 2 XAll Christmas Cactus graphs admit a greedy embedding into the Euclidean plane Ankur Moitra () Geometric Graph Theory October 26, 2008 78 / 82 Open Questions Our embedding requires exponential sized coordinates: Ankur Moitra () Geometric Graph Theory October 26, 2008 79 / 82 Open Questions Our embedding requires exponential sized coordinates: Conjecture Any greedy embedding scheme for general Christmas cactus graphs requires exponential sized coordinates Ankur Moitra () Geometric Graph Theory October 26, 2008 79 / 82 Open Questions Our embedding requires exponential sized coordinates: Conjecture Any greedy embedding scheme for general Christmas cactus graphs requires exponential sized coordinates OR: Are there greedy embedding schemes for which coordinates are only polynomial sized? Ankur Moitra () Geometric Graph Theory October 26, 2008 79 / 82 Partial Results Theorem There exist graphs that admit a greedy embedding into the Euclidean line, but all greedy embeddings require exponential sized coordinates Ankur Moitra () Geometric Graph Theory October 26, 2008 80 / 82 Partial Results Theorem There exist graphs that admit a greedy embedding into the Euclidean line, but all greedy embeddings require exponential sized coordinates Theorem There are metric spaces s.t. all connected graphs can be greedily embedded, and average coordinate size is constant Ankur Moitra () Geometric Graph Theory October 26, 2008 80 / 82 Questions? Ankur Moitra () Geometric Graph Theory October 26, 2008 81 / 82 Thanks! Ankur Moitra () Geometric Graph Theory October 26, 2008 82 / 82
© Copyright 2026 Paperzz