Formula Sheet for Calculus 2 (201-NYB-05) Trigonometry TEST #1 Exponential/Log Functions Integrals eln(x) = x Z e0 = 1, ln(ex ) = x ln(1) = 0, lim ex = 0 x→−∞ b f (x)dx = F (b) − F (a) ln(e) = 1 a Z xn dx = lim ln(x) = −∞ x→0+ Z 1 dx = ln |x| + C x Z ex dx = ex + C ln(xy) = ln(x) + ln(y) ln(x/y) = ln(x) − ln(y) xn+1 +C n+1 y ln(x ) = y ln(x) for n 6= 1 Z sin(x)dx = − cos(x) + C Derivatives Z d dx d dx d dx d dx d dx d dx opp hyp hyp csc(θ) = opp opp tan(θ) = adj sin(θ) = 1 sin(θ) sin(θ) tan(θ) = cos(θ) csc(θ) = adj hyp hyp sec(θ) = adj adj cot(θ) = opp cos(θ) = 1 cos(θ) cos(θ) cot(θ) = sin(θ) sec(θ) = sin2 (θ) + cos2 (θ) = 1 1 + tan2 (θ) = sec2 (θ) 1 + cot2 (θ) = csc2 (θ) sin(2θ) = 2 sin(θ) cos(θ) cos(2θ) = cos2 (θ) − sin2 (θ) 1 − cos(2θ) sin2 (θ) = 2 1 + cos(2θ) 2 cos (θ) = 2 Inverse Trig Functions arcsin(x) ⇒ range = [−π/2, π/2] arccos(x) ⇒ range = [0, π] arctan(x) ⇒ range = (−π/2, π/2) cos(x)dx = sin(x) + C (c) = 0 Z sec2 (x)dx = tan(x) + C Z csc2 (x)dx = − cot(x) + C (xn ) = nxn−1 (f (x) ± g(x)) = f 0 (x) ± g 0 (x) Z (f (x)g(x)) = f 0 (x)g(x) + f (x)g 0 (x) f (x) f 0 (x)g(x) − f (x)g 0 (x) = g(x) g(x)2 Z (f (g(x))) = f 0 (g(x)) · g 0 (x) Z d x (e ) = ex dx d 1 (ln(x)) = dx x sec(x) tan(x)dx = sec(x) + C csc(x) cot(x)dx = − csc(x) + C tan(x)dx = − ln | cos(x)| + C Z cot(x)dx = ln | sin(x)| + C Z sec(x)dx = ln | sec(x) + tan(x)| + C Z d dx d dx d dx d dx d dx d dx d dx d dx d dx d dx d dx d dx csc(x)dx = − ln | csc(x) + cot(x)| + C (sin(x)) = cos(x) (cos(x)) = − sin(x) Z 1 1 −1 x dx = tan +C x2 + a2 a a (tan(x)) = sec2 (x) Integration by parts (sec(x)) = sec(x) tan(x) R (cot(x)) = − csc2 (x) u dv = uv − R v du (csc(x)) = − csc(x) cot(x) Trig substitution 1 1 − x2 1 (arccos(x)) = − √ 1 − x2 1 (arctan(x)) = 1 + x2 1 (arccsc(x)) = − √ x x2 − 1 1 (arcsec(x)) = √ x x2 − 1 1 (arccot(x)) = − 1 + x2 a2 − x2 (arcsin(x)) = √ 2 ⇒ x = a sin θ 2 x −a ⇒ x = a sec θ x2 + a2 ⇒ x = a tan θ Partial fractions (examples) · = (x + 1)(3x − 4) · A = + x(x + 2)2 x · A = + x(x2 + 3) x A B + x+1 3x − 4 B C + x+2 (x + 2)2 Bx + C x2 + 3
© Copyright 2026 Paperzz