Rules for integrands of the form Hg Sin@e + f xDLp Ha + b Sec@e + f xDLm 1: à Hg Sin@e + f xDLp Ha + b Sec@e + f xDLm â x when m Î Z Derivation: Algebraic normalization Basis: If m Î Z, then Ha + b Sec@zDLm Rule: If m Î Z, then Hb+a Cos@zDLm Cos@zDm p m à Hg Sin@e + f xDL Ha + b Sec@e + f xDL â x à Program code: Hg Sin@e + f xDLp Hb + a Cos@e + f xDLm Cos@e + f xDm âx Int@Hg_.*cos@e_.+f_.*x_DL^p_.*Ha_+b_.*csc@e_.+f_.*x_DL^m_.,x_SymbolD := Int@Hg*Cos@e+f*xDL^p*Hb+a*Sin@e+f*xDL^mSin@e+f*xD^m,xD ; FreeQ@8a,b,e,f,g,p<,xD && IntegerQ@mD 2. à Sin@e + f xDp Ha + b Sec@e + f xDLm â x when p-1 2 ÎZ 1: à Sin@e + f xDp Ha + b Sec@e + f xDLm â x when p-1 2 Derivation: Integration by substitution Basis: If Rule: If p-1 2 p-1 2 ÎZ í a2 - b2 0, then Sin@e + f Î Z í a2 - b2 0, then Program code: Î Z í a2 - b2 0 xDp 1 f bp-1 p m á Sin@e + f xD Ha + b Sec@e + f xDL â x SubstB 1 f bp-1 H-a+b xL SubstBá p-1 2 Ha+b xL xp+1 p-1 2 , x, Sec@e + f xDF ¶x Sec@e + f xD H- a + b xL p-1 2 Ha + b xLm+ p-1 2 â x, x, Sec@e + f xDF xp+1 Int@cos@e_.+f_.*x_D^p_.*Ha_+b_.*csc@e_.+f_.*x_DL^m_,x_SymbolD := -1Hf*b^Hp-1LL*Subst@Int@H-a+b*xL^HHp-1L2L*Ha+b*xL^Hm+Hp-1L2Lx^Hp+1L,xD,x,Csc@e+f*xDD ; FreeQ@8a,b,e,f,m<,xD && IntegerQ@Hp-1L2D && ZeroQ@a^2-b^2D Rules for integrands of the form (g sin(e+f x))^p (a+b sec(e+f x))^m 2: à Sin@e + f xDp Ha + b Sec@e + f xDLm â x when 2 Î Z í a2 - b2 ¹ 0 p-1 2 Derivation: Integration by substitution Basis: If Rule: If p-1 2 p-1 2 Î Z, then Sin@e + f xDp 1 f SubstB Î Z í a2 - b2 ¹ 0, then H-1+xL p-1 2 H1+xL xp+1 á Sin@e + f xD Ha + b Sec@e + f xDL â x p Program code: m 1 f p-1 2 , x, Sec@e + f xDF ¶x Sec@e + f xD SubstBá H- 1 + xL p-1 2 H1 + xL xp+1 p-1 2 Ha + b xLm â x, x, Sec@e + f xDF Int@cos@e_.+f_.*x_D^p_.*Ha_+b_.*csc@e_.+f_.*x_DL^m_,x_SymbolD := -1f*Subst@Int@H-1+xL^HHp-1L2L*H1+xL^HHp-1L2L*Ha+b*xL^mx^Hp+1L,xD,x,Csc@e+f*xDD ; FreeQ@8a,b,e,f,m<,xD && IntegerQ@Hp-1L2D && NonzeroQ@a^2-b^2D 3: à Ha + b sec@e + f xDLm âx Sin@e + f xD2 Derivation: Integration by parts Basis: Ù Basis: - 1 Sin@e+f xD2 Cot@e+f xD f Rule: Program code: à âx - Cot@e+f xD f ¶x Ha + b Sec@e + f xDLm - b m Sec@e + f xD Ha + b Sec@e + f xDLm-1 Ha + b sec@e + f xDLm Sin@e + f xD2 âx - Cot@e + f xD Ha + b Sec@e + f xDLm f IntAHa_+b_.*csc@e_.+f_.*x_DL^m_cos@e_.+f_.*x_D^2,x_SymbolE := + b m à Sec@e + f xD Ha + b Sec@e + f xDLm-1 â x Tan@e+f*xD*Ha+b*Csc@e+f*xDL^mf + b*m*Int@Csc@e+f*xD*Ha+b*Csc@e+f*xDL^Hm-1L,xD ; FreeQ@8a,b,e,f,m<,xD Rules for integrands of the form (g sin(e+f x))^p (a+b sec(e+f x))^m 3 4: à Hg Sin@e + f xDLp Ha + b Sec@e + f xDLm â x when a2 - b2 0 ê H2 m pL Î Z Derivation: Piecewise constant extraction Basis: ¶x Cos@e+f xDm Ha+b Sec@e+f xDLm Hb+a Cos@e+f xDLm Rule: If a2 - b2 0 ê H2 m 0 pL Î Z, then p m à Hg Sin@e + f xDL Ha + b Sec@e + f xDL â x Cos@e + f xDm Ha + b Sec@e + f xDLm Program code: Hb + a Cos@e + f xDLm à Hg Sin@e + f xDLp Hb + a Cos@e + f xDLm Cos@e + f xDm Int@Hg_.*cos@e_.+f_.*x_DL^p_.*Ha_+b_.*csc@e_.+f_.*x_DL^m_,x_SymbolD := Sin@e+f*xD^FracPart@mD*Ha+b*Csc@e+f*xDL^FracPart@mDHb+a*Sin@e+f*xDL^FracPart@mD* Int@Hg*Cos@e+f*xDL^p*Hb+a*Sin@e+f*xDL^mSin@e+f*xD^m,xD ; FreeQ@8a,b,e,f,g,m,p<,xD && HZeroQ@a^2-b^2D ÈÈ IntegersQ@2*m,pDL X: à Hg Sin@e + f xDLp Ha + b Sec@e + f xDLm â x Rule: Program code: p m p m à Hg Sin@e + f xDL Ha + b Sec@e + f xDL â x à Hg Sin@e + f xDL Ha + b Sec@e + f xDL â x Int@Hg_.*cos@e_.+f_.*x_DL^p_.*Ha_+b_.*csc@e_.+f_.*x_DL^m_.,x_SymbolD := Defer@IntD@Hg*Cos@e+f*xDL^p*Ha+b*Csc@e+f*xDL^m,xD ; FreeQ@8a,b,e,f,g,m,p<,xD Rules for integrands of the form Hg Csc@e + f xDLp Ha + b Sec@e + f xDLm x: à Hg Csc@e + f xDLp Ha + b Sec@e + f xDLm â x when p Ï Z ì m Î Z Derivation: Algebraic normalization Basis: If m Î Z, then Ha + b Sec@zDLm Rule: If p Ï Z ì m Î Z, then Hb+a Cos@zDLm Cos@zDm âx Rules for integrands of the form (g sin(e+f x))^p (a+b sec(e+f x))^m p m à Hg Csc@e + f xDL Ha + b Sec@e + f xDL â x à Program code: 4 Hg Csc@e + f xDLp Hb + a Cos@e + f xDLm Cos@e + f xDm âx H* Int@Hg_.*sec@e_.+f_.*x_DL^p_*Ha_+b_.*csc@e_.+f_.*x_DL^m_.,x_SymbolD := Int@Hg*Sec@e+f*xDL^p*Hb+a*Sin@e+f*xDL^mSin@e+f*xD^m,xD ; FreeQ@8a,b,e,f,g,p<,xD && Not@IntegerQ@pDD && IntegerQ@mD *L 1: à Hg Csc@e + f xDLp Ha + b Sec@e + f xDLm â x when p Ï Z Derivation: Piecewise constant extraction Basis: ¶x HHg Csc@e + f xDLp Hg Sin@e + f xDLp L 0 Rule: If p Ï Z, then Program code: p m p p à Hg Csc@e + f xDL Ha + b Sec@e + f xDL â x Hg Csc@e + f xDL Hg Sin@e + f xDL à Int@Hg_.*sec@e_.+f_.*x_DL^p_*Ha_+b_.*csc@e_.+f_.*x_DL^m_.,x_SymbolD := Hg*Sec@e+f*xDL^p*Hg*Cos@e+f*xDL^p*Int@Ha+b*Csc@e+f*xDL^mHg*Cos@e+f*xDL^p,xD ; FreeQ@8a,b,e,f,g,m,p<,xD && Not@IntegerQ@pDD Ha + b Sec@e + f xDLm Hg Sin@e + f xDLp âx
© Copyright 2024 Paperzz