LONGITUDINAL PROFILES OF EPHEMERAL STREAMS IN SOUTHEASTERN ARIZONA. by D ou glas S tu a r t Cherkauer A T h e s is S u b m itted t o t h e F a c u lty o f t h e DEPARTMENT OF GEOLOGY I n P a r t i a l F u lf illm e n t o f t h e R equirem ents For t h e D egree o f MASTER OF SCIENCE I n t h e G raduate C o lle g e THE UNIVERSITY OF ARIZONA 19 6 9 STATEMENT BY AUTHOR T h is t h e s i s h as b een s u b m itte d i n p a r t i a l f u l f i l l m e n t o f r e q u ire m e n ts f o r an advanced d e g re e a t The U n iv e r s ity o f A rizo n a and i s d e p o s ite d i n th e U n iv e r s ity L ib ra r y to be made a v a il a b le to b o rro w e rs u n d er th e r u l e s o f th e L ib ra r y . B r ie f q u o ta tio n s from t h i s t h e s i s a r e a llo w a b le w ith o u t s p e c ia l p e rm is s io n , p ro v id e d t h a t a c c u r a te acknowledgment o f so u rc e i s made. R eq u e sts f o r p e rm is s io n f o r e x ten d e d q u o ta tio n from o r r e p ro d u c tio n o f t h i s m a n u sc rip t i n w hole o r i n p a r t may be g ra n te d by th e head o f th e m ajo r d e p a rtm e n t:o r th e Dean o f th e G rad u ate C o lle g e when i n h i s ju d g ment th e p ro p o sed u s e o f th e m a t e r i a l i s i n th e i n t e r e s t s o f s c h o la r s h ip . I n a l l o th e r i n s t a n c e s , how ever, p e rm is s io n m ust be o b ta in e d from th e a u th o r. SIGNED: V CL APPROVAL BY THESIS DIRECTOR T h is t h e s i s h as been approved on t h e d a te shown below : W illiam 3 . B u ll P r o fe s s o r o f G eology D ate ACKNOWLEDGMENTS T h is p r o j e c t c o u ld n ev er have b een com p leted w ith o u t t h e . c o n tin u a l h e lp and en couragem ent, i n th e f i e l d and w ith th e d r a f t in g and ty p in g , o f my w if e , K athy. Mr. Thomas Haddock, J r . i n i t i a l l y su g g e ste d th e t o p ic f o r s tu d y , and h i s su b seq u en t comments and id e a s have b een o f g r e a t v a lu e . Dr. W illia m B. B u ll o f f e r e d many u s e f u l and tim e -s a v in g t e c h n iq u e s and s u g g e ste d im p o rta n t c o r r e l a t i v e i n v e s t i g a t i o n s w h ile s e r v in g a s t h e s i s d ir e c t o r . I n a d d it io n t o t h e s e two men, Dr. John S tu r g u l r ev iew ed t h e m a n u scr ip t, making many v a lu a b le comments. The Departm ent o f G eology and th e " U n iv e r s it y Computer C en ter p ro v id ed t h e n e c e s s a r y com puter tim e and program c o n s u lt a t io n . iii TABLE OF CONTENTS . Page LEST OF ILLUSTRATIONS . .................................... ................................................ .... . LEST OF T A B L E S ....................................................................... .... ABSTRACT v iii ........................................................... .................. .... INTRODUCTION ...................................................... vi ix .................. 1 Purpose . ............................................................... . . . . . . ....................... L o c a t i o n .................................... .... ......................................................... .... C o lle c tio n o f D ata ....................... P r e s e n ta tio n o f D ata ................................................ 1 1 3 3 MEASUREMENTS......................................................................................... 4 S e le c tio n o f P a ra m e te rs f o r M easurem ent .................................................. Map M e a s u r e m e n ts ................................................. D rainage A rea . . . . . . . . ............................................................... C hannel L ength .............................................................................................. C hannel G ra d ie n t ................................. C o n c a v i t y ........................................................................................................... R e l i e f ....................................................................... F ie ld M easurem ents ..................................................... C hannel C r o s s - s e c tio n ............................... . . . ................................ Bed M a te r ia l S i z e ............................................ ....................... . . . A d d itio n a l F ie ld P a ra m e te rs . . . . . . . P r e c i p i t a t i o n I n d e x ............................... 4 5 5 6 6 6 7 7 8 10 12 12 GEOLOGIC AND HYDRAULIC CONDITIONS IN THE CHANNELS STUDIED................... 1? W hetstone M ountains .............................................................................................. M ustang M o u n ta in s .................................................................................................. S i c r r i t a s ............................................................................................. Summary o f Downstream R e la tio n s . : ................................... 17 21 26 32 INTERRELATIONS AMONG PARAMETERS LEADING TO A NATURAL SUBDIVISION OF DATA . •..................................................................................................................... 36 CONCEPT OF THE EPHEMERAL STREAM PROFILE.......................................................... 44 Review o f P e r t i n e n t Work on L o n g itu d in a l P r o f i l e s ........................... C o n tro ls on th e L o n g itu d in a l P r o f i l e ...................................................... S ig n if ic a n c e o f th e P o in t o f C o n ca v ity Change . 1........................... . 44 46 48 IV. V TABLE OF CONTENTS— C ontinued Page Summary . . . . . . . . . . . . . . . . . . . . . 53 DEVELOPMENT OF EMPIRICAL EXPRESSIONS FOR THE PROFILES 54 TEST OF THE PROFILE EQUATIONS .................... . . . . . . . 63 CONCLUSIONS .......................................................................................... ; 71 ...................................... ........................ REFERENCES . . . . . . APPENDIX I ........................ ...................... ................................ .... . . 76 APPENDIX I I ..................................................................................... . . 78 74 LIST OF ILLUSTRATIONS Figure Page 1•In d e x Map Showing L o c a tio n s M entioned i n T ex t ....................................... 2 2. V a r ia tio n o f P r e c i p i t a t i o n w ith E le v a tio n i n t h e S tu d y A rea . 14 3. L o c a tio n Map f o r S tream s and S t a t i o n s i n t h e W hetstone M ountains ........................ 18 L o n g itu d in a l P r o f i l e s (A) and C o n c a v itie s (B) i n t h e W hetstone M o u n ta in s .................................................................... 19 Change o f D rain ag e A rea, P a r t i c l e S iz e and W id th :d e p th R a tio w ith C hannel L ength i n th e W hetstone M ountains . . . . . 20 L o c a tio n Map f o r S tream s and S t a t i o n s i n t h e M ustang M ountains ......................................................... ................................................... 22 L o n g itu d in a l P r o f i l e s (A) and C o n c a v itie s (B) i n th e Mustang M o u n t a in s ............................................................. 24 Change o f D rain age A rea, P a r t i c l e S iz e and W idth:depth R a tio w ith C hannel L ength i n t h e Mustang M o u n t a i n s ................... .... 25 L o c a tio n Map f o r Stream s and S t a t io n s i n th e S i e r r i t a M ountains ............................................................................................................. 27 L o n g itu d in a l P r o f i l e s (A) and C o n c a v itie s (B) i n th e S i e r r i t a M o u n t a i n s ....................... ............................................................. 30 Change o f D rain age A rea, P a r t i c l e S iz e and W idth:depth R a tio ' w ith C hannel L ength i n t h e S i e r r i t a M ountains ........................ 31 R e la tio n o f Mean P a r t i c l e S iz e (A) and W id th :d e p th R a tio (B) t o C hannel G r a d ien t . . . . . . . . . . . . . . . . . . . 37 R e la t io n o f D rain age Area (A) and A r o a s r e li e f 2 R a tio (B) t o C hannel G ra d ie n t ................................... 38 R e la tio n o f Channel G ra d ien t a t a G iven D is ta n c e from th e D iv id e t o B a sin R e l i e f and L ength .................................................... 39 R e la t io n B etw een Mean P a r t i c l e S iz e and W idth:depth R a tio • . 41 4. 56. 7. 8. 9. 10. 11. 12. 13« 14. 15» vi v ii LIST OF ILLUSTRATIONS— C o n tin u ed F ig u re 16. 17. 18. 19* Page R e la tio n o f C um ulative T r ib u ta r y D e n sity t o C hannel L ength and C o n cav ity C h a n g e ................................................................... .... . 49 L o c a tio n Map f o r S tream s and S t a t i o n s i n C a ta lin a and Tucson M ountains ..................................................................................... • 64 Com parison o f R e a l and P r e d ic te d P r o f i l e s i n C a ta lin a M ountains ....................................................................... 6? Com parison Between R e a l and P r e d ic te d P r o f i l e s i n th e Tucson M ountains .............................................................. 68 H ST OF TABLES Table Page 1 . E le v a tio n Zones f o r t h e P r e c i p i t a t i o n In d e x V a lu es . . . . . . 15 2 . Summary o f L o c a tio n s o f M ajor ch an g es i n t h e L o n g itu d in a l V a r ia tio n o f P a ra m e te rs and T h e ir R e la tio n s t o Bedrock . . 33 3 . R e l i e f :le n g th R a tio s o f th e C o n ca v ity Segm ents . ........................... 40 4 . Com parison o f th e A c tu a l C hannel L en g th from D iv id e to C o n ca v ity Change w ith Those P r e d ic te d from C um ulative T r ib u ta r y D e n s ity ....................... . . . . . . . . . . . . . . 49 5 . C om parison o f P r o f i l e C o n c a v ity , R a te o f D rain ag e A rea I n c r e a s e and R a te o f P a r t i c l e S iz e D ecrease . . . . . . . 52 6 . R e g re s s io n E q u a tio n s R e la tin g D rain ag e A rea, A, P a r t i c l e S iz e , Horn, W id th :d e p th R a tio , W/D, and G ra d ie n t, S, t o C hannel L en g th , L ................................................................... .... 59 . 7 . C om parison o f R e a l and P r e d ic te d C o n c a v itie s . . . . . . . . . v iii 61 ABSTRACT The e x is te n c e o f two l o n g i t u d i n a l p r o f i l e segm ents o f d i f f e r e n t c o n c a v ity i n ephem eral s tre a m s h e ad in g i n t h e m o u n ta in s o f s o u th e a s te r n A riz o n a i s shown t o b e r e l a t e d t o t h e l o n g i t u d i n a l v a r i a t i o n o f d ra in a g e a r e a . A, bed m a t e r i a l s i z e , and c h a n n e l w id th :d e p th r a t i o , W/D. These p a ra m e te rs a p p ro x im a te d is c h a r g e , sed im en t lo a d and ro u g h n e s s, w hich have b een fo u n d t o c o n t r o l th e p r o f i l e i n o th e r r e g io n s , b u t w ere u n a v a ila b le f o r t h i s s tu d y . I n c lu s io n o f b a s in r e l i e f , R, and l i t h o l o g y allo w ed developm ent o f s t a t i s t i c a l l y s i g n i f i c a n t e q u a tio n s f o r b o th segm ents o f stre a m s d r a in in g g r a n i t i c and se d im e n ta ry t e r r a i n s : S e d im e n ta ry co n cav e: S = ( 6 .6 x 1 0 -5 )R '8 0 D ;m ,'2 0 (w /D )'^ (D ^40 S e d im e n ta ry s t r a i g h t : S = ( 1 .4 x 1Ct 3 ) r »3 8 ^ . 2 6 (2 ) G r a n itic co n cav e: 5 = ( 7 .6 x l0 ~ 6 )R1 *02]^nm‘ 2 8 (w /D )‘ 22 (3 ) G r a n itic s t r a i g h t : s = (1.6 x 10™3)Re/j'2i^mi062 ix w P r o f i l e s o f s tre a m s w ith known l i t h o l o g y and r e l i e f i n two a d d i t i o n a l m o u n tain ra n g e s w ere p r e d ic te d from th e e q u a tio n s w ith an a c c u ra c y w ith in t h e l i m i t s o f a c c u ra c y o f th e f i e l d and map m easurem ents. P r e c i p i t a t i o n - e l e v a t i o n r e l a t i o n s have no a p p a re n t e f f e c t on th e a c c u ra c y o f th e p r e d i c t i o n s o r on s tr e a m - p r o f ile c o n c a v ity . INTRODUCTION Purpose The lo n g it u d in a l p r o f i l e s o f t h e ephem eral strea m s d r a in in g t h e m ou n tain s and a l l u v i a l v a l l e y s i n s o u th e a s te r n A rizon a a r e u n u su a l. R ather th a n a c o n s ta n t r a t e o f d e c r e a s e o f g r a d ie n t downstream , or c o n s ta n t c o n c a v ity , t h e s e p r o f i l e s have one c o n c a v ity from t h e d i v i d e . t o a p o in t n ea r t h e m ountain f r o n t and a n o th e r , much lo w er c o n c a v ity b elo w t h i s p o in t . T h is s tu d y was u n d erta k en t o d eterm in e w hether t h e change i n c o n c a v ity i s r e l a t e d t o h y d r a u lic and g e o lo g ic c o n d it io n s . lo c a tio n . The t h r e e m ountain r a n g e s s t u d ie d , th e W h etsto n es, M ustangs and' S i e r r i t a s ( F ig . 1 ) , c o n ta in strea m s w ith segm ented p r o f i l e s . The W hetstone M ountains a r e lo c a t e d on t h e B enson, A rizo n a , q u ad ran gle ( 1 : 6 2 ,5 0 0 ) , some 45 m il e s s o u th e a s t o f T ucson. Stream s on t h e e a s t s id e o f t h e ran ge d r a in in g in t o t h e San Pedro R iv er w ere s t u d ie d . The Mustang M ountains a re im m ed ia te ly so u th o f th e W h etsto n es, s e p a r a te d from th e n by R ain V a lle y . They a r e mapped on t h e Mustang M ountains and E lg in , A rizo n a , q u a d r a n g les a t 1 : 2 4 ,0 0 0 . o r i e n t a t i o n s were m easured. Two d r a in i n t o th e Babocom ari R iv e r , and t h e t h ir d d r a in s i n t o R ain V a lle y . i n t o t h e San P ed ro. Three strea m s w ith d iv e r s e B oth o f t h e s e strea m s i n tu r n f lo w The S i e r r i t a s a r e lo c a t e d on th e Twin B u t t e s , A rizo n a , 1 :6 2 ,5 0 0 q u a d r a n g le, 25 m ile s so u th o f T u cson . Three main and fo u r s m a lle r strea m s d r a in in g e a s t t o t h e S an ta Cruz R iv er w ere s t u d ie d . 1 2 C O R^> N A D O | SAGUARO N A TI O NA L | M _ei»3£2«v, f a c e s '* * ' vi ir- y ^ j-c o T ^ T p o — --------r -^ ----------- N A T I O N AH. j REST FOREST SCA LE 0 « F!0. I. \ I: 1 , 0 0 0 , 0 0 0 10 « 2 0 M IL E S « INDEX MAP SHOWING LOCATIONS MENTIONED IN TEXT, 3 C o lle c tio n o f D a ta M easurem ents w ere made on a c c e s s ib le s tre a m s . S ta tio n s f o r m easurem ent w ere s e l e c t e d a r b i t r a r i l y alo n g th e l e n g th o f each s tre a m , b u t an a tte m p t was made t o sp ace them u n ifo rm ly w ith in each p r o f i l e segm ent. G e n e ra lly , a b o u t th e same number w ere e s t a b l i s h e d above and below th e change i n c o n c a v ity . A lo n g e r sp a c in g i n t e r v a l was u s e d i n . th e lo w -c o n c a v ity segm ents s in c e th e y a r e lo n g e r th a n th e h ig h -c o n c a v ity seg m en ts. F ig u r e s 3» 6 and 9 show t h e s t a t i o n l o c a t i o n s . F ie ld work was done d u rin g th e w in te r and s p rin g m onths o f 1968 - 1 969 . I n g e n e r a l, th e f u l l u p stre am segm ent and p a r t o f th e dow nstream segm ent o f e a c h stre a m was w alk ed , w h ile th e re m a in d e r was s p o t checked due t o t h e lo n g d is ta n c e in v o lv e d . S in c e th e em phasis was on d e te rm in in g th e c au se o f t h e c o n c a v ity ch an g e, th e f i e l d i n v e s t i g a t i o n s w ere c o n c e n tr a te d aro u n d t h e a r e a o f ch an g e. No s t a t i o n s w ere e s t a b l i s h e d more th a n s i x m ile s from th e te r m in a tio n o f t h e h ig h c o n c a v ity segm ent. D ata su p p le m e n ta l t o f i e l d m easurem ents were o b ta in e d d i r e c t l y from to p o g ra p h ic m aps. P r e s e n ta ti o n o f D ata The d a ta was i n i t i a l l y h a n d le d g r a p h i c a l l y , and m ost o f th e in f o r m a tio n f o r i n d i v i d u a l s tre a m s i s p re s e n te d i n t h i s m anner. However, a s th e sam ple p o p u la tio n and th e number o f v a r i a b l e s i n c r e a s e s , i t becomes in c r e a s i n g l y d i f f i c u l t t o show t h e r e l a t i o n s g r a p h ic a ll y . C o n se q u e n tly , th e d a ta was p ro c e s s e d by a com puter t o g e t s ta n d a rd r e g r e s s io n r e l a t i o n s f o r th e more com plex s i t u a t i o n s . MEASUREMENTS S e le c t io n o f P a ra m e te rs f o r M easurem ent S tu d ie s by L eopold and Haddock (1953)* Wblman (1955)* L eopold and M ille r (1 9 5 6 ), Hack (1 9 5 7 ), L eopold and Y/olman (1 9 5 7 ), M ille r (1 9 5 8 ), and B rush ( I 96 I ) have in d i c a t e d t h a t a s tr e a m 's l o n g i t u d i n a l p r o f i l e i s a d ju s te d t o d is c h a r g e , v e l o c i t y , sed im en t lo a d , and c h a n n e l ro u g h n e ss and shape a s w e ll a s l i t h o l o g y , r e l i e f and c lim a te . W hile many o f th e s e p a ra m e te rs can be r e a d i l y o b se rv e d i n ephem eral c h a n n e ls , th e r e l a t i v e in fr e q u e n c y o f flo w makes d i r e c t m easurem ent o f th e h y d r a u lic f e a t u r e s , d is c h a r g e , v e l o c i t y , lo a d and ro u g h n e s s, to o d i f f i c u l t f o r a co m p reh en siv e, s h o r t- te r m s tu d y . Hence means f o r a p p ro x im a tin g flo w p a ra m e te rs from th e d ry s ta g e were so u g h t. L eopold and M ille r (1956, p . 23) c i t e a s tu d y by H. H. Hudson (u n p u b lish e d ) w hich shows a c o n s ta n t r e l a t i o n e x i s t s b etw een d ra in a g e a r e a and d is c h a rg e i n ephem eral s tr e a m s : w here betw een + .7 and + .8 . Q oC A *^. The ex p o n en t v a r i e s - e l s e - - I n p e r e n n ia l s tre a m s , th e r e l a t i o n i s a g a in v e ry c o n s i s t e n t , b u t w ith an exponen t o f a b o u t +1’. 0 (L eo p o ld , Wolman and M ille r , 1964, p . 2 5 1 ). Hence d ra in a g e a r e a s h o u ld bo a good in d e x o f d is c h a r g e . T h is r e l a t i o n , how ever, i s c o m p lic a te d by two f a c t o r s . F irs t, th e c lim a te i n s o u th e a s te r n A rizo n a i s d i r e c t l y d ep en d en t on e le v a t i o n , so t h a t a stre a m flo w in g from h ig h m o u n tain s i n t o a r e l a t i v e l y lo w b a s in w i l l r e c e iv e more r a i n f a l l and p ro b a b ly more r u n o f f i n i t s h e ad w a te rs th a n i t w i l l a t low er p o i n t s alo n g i t s . p a t h . S eco n d ly , when flo w o c c u rs 5 a c r o s s t h e a l l u v i a l p o r t i o n s o f a b a s i n , w a te r i s l o s t by b o th i n f i l t r a t i o n and e v a p o r a tio n . The e f f e c t o f th e f i r s t f a c t o r w i l l b e in c lu d e d by r e l a t i n g p r e c i p i t a t i o n and e l e v a t i o n , b u t th e second i s e x tre m e ly d i f f i c u l t t o d e te rm in e from d ry s tre a m s and w i l l b e d is c u s s e d o n ly q u a l i t a t i v e l y i n t h i s p a p e r . P u b lis h e d s tu d ie s o f t h i s phenomena in c lu d e Babcock and G ushing (1 9 4 2 ), K eppel and R en ard (1962) and R enard and K eppel (1 9 6 6 ). Sedim ent lo a d s h o u ld a ls o b e r e l a t e d to d ra in a g e a r e a , a s th e m a t e r i a l a v a i l a b l e f o r t r a n s p o r t i n c r e a s e s w ith a r e a . L eopold and Haddock (1953* p . 42) i n d i c a t e t h a t i n c h a n n e ls w ith c o a rs e bed m a t e r i a l , su ch a s th o s e o f t h e s tu d y a r e a , ro u g h n e ss i s l a r g e l y a f u n c tio n o f th e s iz e o f m a t e r i a l . F i n a l l y , th e c r o s s - s e c t i o n a l shape o f t h e c h an n e l i s r e l a t e d t o ro u g h n e s s, v e l o c i t y d i s t r i b u t i o n s and th u s p ro b a b le sedim ent lo a d . Hence d ra in a g e a r e a , p r e c i p i t a t i o n , b ed m a t e r i a l s iz e and c h a n n e l shape w i l l be s u b s t i t u t e d f o r th e h y d r a u lic p a ra m e te rs . Map M easurem ents D rainage Area \ The d ra in a g e a r e a u p stre am from each o f t h e s t a t i o n s was m easured from U .S .G .3 . to p o g ra p h ic maps u s in g a com pensating p o la r p la n im e te r . T h is in s tru m e n t i s a c c u r a te t o .01 s q u a re in c h e s , o r ab o u t .01 sq u a re m ile s on 1 :6 2 ,5 0 0 maps and .001 sq u are m ile s on 1 :2 4 ,0 0 0 m aps. G e n e ra lly o n ly one o r two m easurem ents were made a s th e in s tru m e n t showed g r e a t c o n s is te n c y i n t h e v a lu e s m easu red . c a s e s ,- v a r i a b i l i t y due to m easurem ent was l e s s th a n 5^* I n m ost 6 Channel Length C hannel le n g th s w ere m easured d i r e c t l y from th e to p o g ra p h ic m aps, a llo w in g an a c c u ra c y t o ±100 f e e t on 1 :62,500 maps and ±$0 f e e t on 1 :2 4 ,0 0 0 maps. M easurem ent v a r i a b i l i t y n e v e r ex ceed s 10$ n e a r t h e d iv id e and i s g e n e r a lly l e s s th a n 2$. C hannel G ra d ie n t S tream g r a d ie n t was d e fin e d a s th e a v erag e c h a n n e l s lo p e betw een t h e p o in t on t h e c h a n n e l t h r e e t o f i v e c o n to u r l i n e s above a s t a t i o n and th e p o in t an e q u a l number o f l i n e s b elo w th e s t a t i o n . I n c lu s io n o f s e v e r a l c o n to u r i n t e r v a l s "produces an a v e ra g in g e f f e c t w hich sm ooths o u t some o f th e l o c a l v a r i a t i o n and a ls o re d u c e s th e e r r o r due t o . m easurem ent. S in c e t h e g r a d ie n t i s sim p ly f a l l , o r v e r t i c a l d ro p , d iv id e d by c h a n n e l le n g th , t h e e r r o r w i l l be a p p ro x im a te ly th e same a s , o r s l i g h t l y l a r g e r th a n , t h a t f o r c h a n n e l le n g th a lo n e . C o n cav ity The l o n g i t u d i n a l p r o f i l e o f a stre a m i s th e r e l a t i o n betw een f a l l , H, and l e n g t h , L. p r o f i l e e q u a tio n , dH/dL. G ra d ie n t i s sim p ly th e f i r s t d e r i v a t i v e o f t h e Hack (1957) d e fin e d c o n c a v ity a s th e ex p o n en t n i n th e power f u n c tio n r e l a t i n g g r a d i e n t , S, and stre am le n g th , L, S = kLn . G r a p h ic a lly , t h i s i s r e p r e s e n te d by t h e s lo p e o f th e l i n e form ed when g r a d ie n t i s p l o t t e d a g a in s t l e n g th on lo g a r ith m ic c o o r d in a te s . I n e s s e n c e , n i s a f u n c tio n o f th e r a t e o f change o f g r a d ie n t w ith l e n g t h , dS/dL , th e second d e r i v a t i v e o f t h e p r o f i l e e q u a tio n . C o n c a v ity , a s u sed i n t h i s p a p e r, w i l l r e f e r t o n , th e power f u n c tio n e x p o n e n t. The e r r o r s due t o m easurem ent o f b o th le n g th and 7 g r a d ie n t a r e th u s in c lu d e d i n c o n c a v ity . However, th e in a c c u ra c y r e s u l t i n g from f i t t i n g a l i n e t o a s c a t t e r o f p o i n t s o v e r r id e s th e s e e r r o r s and l i m i t s d e te r m in a tio n o f c o n c a v ity to t h e n e a r e s t t e n t h . R e lie f R e l i e f i s d e f in e d a s t h e d i f f e r e n c e i n e l e v a t i o n betw een a s p e c i f i e d p o in t on a stre a m and th e p o in t w here th e d ra in a g e d iv id e i s m et by e x te n s io n o f t h e s tr e a m 's lo n g e s t headw ard t r i b u t a r y . R e l i e f was m easured to t h e n e a r e s t 25 f e e t on 25 f o o t c o n to u r i n t e r v a l maps and th e n e a r e s t 50 f e e t on th o s e w ith c o n to u r i n t e r v a l s g r e a t e r th a n 25 f e e t . The a c c u ra c y o f th e map e le v a tio n s i s w e ll w ith in th e s e l i m i t s s o , i n e f f e c t , th e r e i s n e g l i g i b l e m easurem ent e r r o r in v o lv e d i n r e l i e f . F i e ld Measurements F i e l d m easurem ents w ere made a t t h e s t a t i o n s ch o sen from t h e m aps. An a tte m p t was made t o s e l e c t a r e p r e s e n t a t i v e 100 f o o t r e a c h from a s t r a i g h t s e c tio n o f t h e c h a n n e l n e a r th e map l o c a l i t y . I f pool and r i f f l e p a t t e r n s w ere fo u n d , e q u a l numbers o f each f e a t u r e w ere in c lu d e d i n th e s e c tio n . Where th e c h a n n e l a l t e r n a t e d betw een a s in g le c h a n n e l and b r a id e d r e a c h e s , th e s e c tio n chosen in c lu d e d b o th f e a t u r e s . For co n v en ien ce i n f u l l y b r a id e d r e a c h e s , th e s e c tio n w ith th e n a rro w e s t i s l a n d s was ch o sen to a llo w c o n t i n u i t y i n c h a n n e l w id th m easurem ents. S in c e th e a c t u a l f i e l d m easurem ents w ere r a r e l y made a t p r e c i s e l y th e map p o i n t , a s m a ll l o c a t i o n e r r o r i s added t o th e m easurem ent e r r o r o f c h a n n e l le n g th . . 8 Channel C r o s s - s e c t io n To m easure a ch a n n el c r o s s - s e c t i o n , one m ust f i r s t d e f in e t h a t c h a n n e l’ s banks i n a way t h a t w i l l be v a l i d f o r o th e r str e a m s. If a dominant f lo o d l e v e l , s im ila r t o th e b a n k f u ll s t a g e o f p e r e n n ia l str e a m s, e x i s t s i n a c h a n n e l, i t sh o u ld le a v e d i s t i n c t t r a c e s on t h e v e g e t a t io n and a llu v iu m o f t h e b a n k s. B ecau se o f t h e i r lo w er fr e q u e n c y , h ig h e r f lo o d s would b e r e p r e s e n te d by l e s s d i s t i n c t t r a c e s , w h ile s m a lle r , more fr e q u e n t f lo o d s would le a v e t r a c e s b elo w th e b a n k f u ll l e v e l w hich w ould be d e s tr o y e d by a b a n k f u ll f l o o d . A pronounced f lo o d l e v e l d o es e x i s t on t h e banks o f a l l t h e strea m s s t u d ie d , b u t i t becom es p r o g r e s s iv e ly h ard er t o t r a c e u p stream . I n g e n e r a l, th e m ost common marker i s th e l e v e l o f v e g e t a t i v e f lo o d d e b r is ca u g h t on brush o r wedged betw een r o c k s on t h e b an k s. S in c e t h e m a t e r ia l f l o a t s , i t m ust mark t h e w ater s u r fa c e a t some tim e d u rin g t h e f lo o d . The s i g n i f i c a n c e o f t h e f l o a t i n g d e b r is l i n e s i s su p p o rted by th e freq u en cy o f o ccu re n c e o f o th e r in d ic a t o r s a t th e same l e v e l . Abrupt ch an ges i n v e g e t a t io n d e n s it y o r ty p e occu r a t th e f lo o d - d e b r is le v e l. O ften l e s s r e s i s t a n t p la n t s su ch a s m o sses or f i n e g r a s s e s grow above t h i s l e v e l , b u t n o t b elo w i t . s i g n i f i c a n t ch a n g es h e r e a l s o . Bank m a t e r ia ls commonly show Below t h e f lo o d - d e b r is l e v e l , f i n e sand and o th e r o b v io u s f l u v i a l d e p o s it s occu r f r e q u e n t ly , w h ile above i t few can b e fou n d. In a d d it io n , t h e r e may be a c o lo r change i n th e f i n e m a te r ia l com posing t h e banks w hich a g r e e s w ith th e f lo o d d e b r is . U pstream , a s t h e s e in d ic a t o r s become l e s s fr e q u e n t, c e r t a in c a c t i appear t o b e u s e f u l m ark ers. I n p a r t ic u l a r , t h e agave seem s u n a b le t o s u r v iv e b elo w th e b a n k f u ll l e v e l . D efin ed on t h e b a s is o f t h e s e in d i c a t o r s , th e 9 b a n k f u ll l e v e l shows no p a r t i c u l a r r e l a t i o n t o t e r r a c e s . I t can o c cu r a t a t e r r a c e l e v e l , above i t , below i t , o r o c c a s io n a ll y , betw een two te rra c e s . However, a t s t a t i o n s w here th e b a n k f u ll s ta g e o c c u rs a t a t e r r a c e l e v e l , th e c o in c id e n c e re m a in s c o n s i s t e n t th ro u g h o u t t h e . re a c h s tu d ie d . Once b a n k f u ll s ta g e was d e f in e d in d e p e n d e n tly on each b an k , a l i n e was s t r e t c h e d t a u t betw een th e two p o i n t s p e r p e n d ic u la r to th e d i r e c t i o n o f flo w . As a f i n a l check on th e v a l i d i t y o f th e b a n k f u ll p o s i t i o n , th e l i n e sh o u ld b e l e v e l i n s t r a i g h t r e a c h e s . W idth was m easured to th e n e a r e s t h a l f f o o t , and d e p th was m easured t o th e n e a r e s t in c h a t one f o o t i n t e r v a l s alo n g th e l i n e . I f th e c h a n n e l was b r a id e d , th e n th e l i n e was s t r e t c h e d c o n tin u o u s ly a c r o s s a l l c h a n n e ls p e r p e n d ic u la r t o th e o v e r a l l d i r e c t i o n o f flo w . Those c h a n n e ls i n w hich flo w o c c u rre d a t b a n k f u ll s ta g e w ere m easured and t o t a l c h a n n e l w id th was th e sum o f t h e in d i v i d u a l c h a n n e l w id th s . G e n e ra lly , th r e e c r o s s - s e c t i o n s w ere m easured a t a r b i t r a r i l y ch o sen p o in ts a t t h e u p p er and lo w er ends and th e m id d le o f th e 100 f o o t r e a c h . A verage d e p th and th e w id th :d e p th r a t i o w ere com puted f o r each c r o s s - s e c t i o n . The mean v a lu e o f w id th , d e p th and w id th :d e p th r a t i o f o r th e re a c h i s sim ply th e a v erag e o f th e v a lu e s a t each p o i n t . V a ria n c e o f means made on re a c h e s where more th a n t h r e e c r o s s - s e c t i o n s were m easured i n d ic a te d a sample o f th r e e g e n e r a lly had a v a r i a t i o n o f a b o u t th e mean. I n c r e a s in g th e sam ple s i z e w ould d e c re a s e th e e r r o r , b u t n o t s i g n i f i c a n t l y u n t i l many more c r o s s - s e c t i o n m easurem ents were added. S in c e t h i s s tu d y d e a ls o n ly w ith v e ry g ro s s r e l a t i o n s , g r e a t e r a c c u ra c y was n o t deemed n e c e s s a r y , and th e sam ple s iz e was s e t a t t h r e e . 10 Bed M a te r ia l S iz e ' P a r t i c l e s i z e d i s t r i b u t i o n was d e te rm in e d u s in g th e sam pling m ethod s o t f o r t h by Wolman (195*0* A g r i d was e s t a b l i s h e d i n th e c h a n n e l bed by m aking a s e r i e s o f p a c in g t r a v e r s e s . At e v e ry second s tr id e * a sam ple was ta k e n by p ic k in g up th e f i r s t p a r t i c l e to u c h e d when th e f i n g e r s w ere e x te n d e d o v e r th e t o e o f t h e b o o t. m e d ia te a x is was m easured and r e c o r d e d . The i n t e r When one t r a v e r s e was c o m p leted , th e n e x t was ru n i n th e o p p o s ite d i r e c t i o n and p a r a l l e l t o i t . two s t r i d e s away. To m in im ize th e sam pling e r r o r due t o o r ie n te d d i s t r i b u t i o n s o f m a t e r i a l , t r a v e r s e s w ere ru n p e r p e n d ic u la r t o th e arran g em en t o f m a t e r i a l s i z e s on th e b e d . Thus i f c h a n n e l c o n f ig u r a tio n was e s s e n t i a l l y p o o ls and r i f f l e s , t h e t r a v e r s e s w ere ru n p a r a l l e l t o th e c h a n n e l b a n k s. On t h e o th e r han d , c h a n n e ls w hich w ere dom inated by g r a v e l b a r s o r b o u ld e r t r a i n s p a r a l l e l t o flo w w ere sam pled w ith t r a v e r s e s p e r p e n d ic u la r t o t h e b a n k s. T h is p ro c e d u re re d u c e d th e p o s s i b i l i t y o f w e ig h tin g t h e sam ple to w ard g r a v e l, a s an exam ple, by m aking one e n t i r e sam pling t r a v e r s e a lo n g th e le n g th o f a g r a v e l b a r . S in c e th e m a t e r i a l i n m ost s tre a m s h a s a lo g -n o rm a l d i s t r i b u t i o n , i t i s m ost c o n v e n ie n t t o re c o r d th e in te r m e d ia te a x is i n a lo g a r ith m ic c l a s s i f i c a t i o n . The W entworth p h i - s c a l e was u se d a s i t i s th e m ost common and g e n e r a lly re d u c e d t h e d i s t r i b u t i o n t o a norm al o n e. The p h i s i z e i s d e f in e d a s -lo g ? !)__ w here D i s t h e p a r t i c l e 's d ia m e te r i n m illi m e t e r s (F o lk , I 965 , p . 25 ) . P a r t i c l e s i z e i s th o u g h t t o b e r e l a t e d t o b o th c h a n n e l ro u g h n e ss and sed im en t lo a d . B oth w ould b e m ost c l o s e ly r e l a t e d t o t h e p a r t i c l e s 11 on th e s u r f a c e o f th e channel- b ed . VJblman’ s m ethod was ch o sen b e ca u se i t a llo w s r e l a t i v e l y q u ic k , e a s y and a c c u r a te sam pling o f t h i s v e ry f e a t u r e i n c o a rs e m a t e r i a l , and do es n o t r e q u ir e t r a n s p o r t i n g heavy sam ples t o th e l a b . R oughness m ig h t be c o n t r o l l e d m a in ly by t h e c o a rs e f r a c t i o n o f th e b ed m a t e r i a l , r e p r e s e n te d b y o r s i z e l a r g e r th a n 84$ o f th e p a r t i c l e s . t h e 8 4 th p e r c e n t i l e , On th e o th e r han d , th e m a te r ia l s iz e m ost r e p r e s e n t a t i v e o f t h a t b e in g moved d u rin g a f lo o d w ould m ost l i k e l y b e a mean s i z e , s in c e th e m a jo r ity o f m a t e r i a l on th e stre am bod i s t r a n s p o r t e d . (^16 + ^50 + Mean s i z e , d e fin e d by F o lk (1965) a s and f$Q4 w ere d e te rm in e d f o r each s t a t i o n . I t was found t h a t t h e r e was alm o st a c o n s ta n t r a t i o betw een th e two s iz e p a ra m e te rs . Only i n t h e f a r t h e s t u p stre a m re a c h e s does t h i s r a t i o ch an ge, owing t o th e p o o re r s o r t i n g o f m a t e r i a l t h e r e . I n a d d itio n , t h e d e v ia t io n s from th e r a t i o o f t h e s i z e p a ra m e te rs show no s i g n i f i c a n t r e l a t i o n s t o th e o th e r p a ra m e te rs . I t was c o n clu d ed t h a t th e two s iz e m easurem ents a r e p ro b a b ly f u n c tio n s o f th e same c o n t r o l s and a r e n o t b o th n e c e s s a ry . C o n se q u e n tly , o n ly th e more g e n e r a l mean p a r t i c l e s iz e w i l l be c o n s id e re d l a t e r i n th e p a p e r. V a r ia tio n o f means i n d i c a t e s t h a t a sam ple o f 100 p a r t i c l e s would g iv e a mean a c c u r a te t o w it h in 10$ a t m ost o f t h e s t a t i o n s m easured, w h ile a sam ple o f 50 i s a c c u r a te t o w it h in 1 8$. The in c r e a s e i n a ccu ra cy w hich w ould r e s u l t from a sam ple la r g e r th a n 100 was n o t deemed n e c e s s a r y f o r t h e g e n e r a l n a tu r e o f t h i s s tu d y . s i z e o f 100 p a r t i c l e s was g e n e r a lly u s e d . Thus a sam ple In c a s e s o f e x tre m e ly good s o r t in g , or where t h e ch a n n el bed had v e r y sm a ll a r e a l e x t e n t , o n ly 50 12 p a r t i c l e s w ere m easured. As a r e s u l t , e r r o r o f m easurem ent n e v er ex ceed s 18$ and i s g e n e r a lly a b o u t 10$. A d d itio n a l F ie ld P a ra m e te rs C hannel g r a d ie n t i n each 100 f o o t re a c h was a ls o m easured i n t h e f i e l d u s in g a B runton compass a s hand l e v e l . The r e s u l t i n g s lo p e s showed g r e a te r v a r i a t i o n th a n th e map m easu rem en ts, b u t i n g e n e r a l t h e r e was good agreem ent betw een t h e tw o. No tr e n d s w ere found betw een t h e d e v ia tio n o f f i e l d g r a d ie n t from map g r a d ie n t and th e o th e r c h a n n e l p a ra m e te rs , so t h e d e v ia t io n a p p a r e n tly r e f l e c t s o n ly th e r e l a t i v e in a c c u ra c y o f th e h a n d - le v e l m ethod. C o n se q u e n tly , map g r a d ie n t was u se d t o r e p r e s e n t th e g r a d ie n t a t each s t a t i o n . G ross e s tim a te s o f t h e d e n s i t y o f v e g e ta tiv e co v er on th e r e g io n a l s lo p e , c h a n n e l banks and bed w ere made a t each s t a t i o n . In a d d i t i o n , q u a l i t a t i v e o b s e r v a tio n s com paring th e s iz e and d i s t r i b u t i o n o f m a t e r i a l on th e banks t o t h a t on th e bed w ere re c o rd e d . P r e c i p i t a t i o n In d e x S t u d ie s i n t h e C a ta lin a M ountains by L. J . B a tta n and C. Green o f th e Department o f A tm ospheric P h y s ic s a t th e U n iv e r s it y o f A rizo n a in d ic a t e d a c l o s e r e l a t i o n b etw een p r e c i p i t a t i o n and e l e v a t io n d u rin g summer r a in s to r m s . I n s o u th e a s te r n A rizo n a , summer r a i n f a l l i s more p l e n t i f u l and in t e n s e th a n t h a t i n any o th e r se a s o n . * M onthly p r e c i p i t a t i o n i n J u ly and A ugust e x c e e d s t h r e e in c h e s on th e a v era g e a t th e s t a t i o n s s t u d ie d by Green and S e l l e r s (1 9 6 4 , p . 13) w h ile i t i s o n ly about one in c h i n t h e w in te r m onths. As a r e s u l t , m ost flo w s i n t h e stream s s t u d ie d p ro b a b ly o ccu r i n th e summer. A ll a v a il a b l e summer 13 p r e c i p i t a t i o n d a ta f o r s i t e s c lo s e t o th e s tu d y a r e a w ere p l o t t e d a g a in s t e l e v a t i o n . These d a ta in c lu d e d p r e c i p i t a t i o n in fo r m a tio n from th e U n iv e r s ity o f A riz o n a ’ s S a n ta R ita E x p e rim en ta l Range (G reen and M a rtin , 196?) and G reen and S e l l e r s ’ (1964) d a ta from th e Apache Powder Co, and E lg in , B enson, C an elo , F a irb a n k s , F o r t Huachuca, P a ta g o n ia and Tom bstone, A rizona ( F ig . 1 ) . S e v e ra l o f th e p r e c i p i t a t i o n g a g es i n t h e tow ns have b een moved th ro u g h o u t th e y e a r s to p o i n t s o f d i f f e r e n t e l e v a t i o n s , g iv in g a d d i t i o n a l r e f e r e n c e p o i n t s . T o ta l r a i n f a l l f o r J u ly and A ugust o f each y e a r was d iv id e d by 62 t o g iv e a v e ra g e d a i l y p r e c i p i t a t i o n com parable t o t h e B a tta n and G reen d a t a . The r e s u l t s w ere p l o t t e d a g a in s t e l e v a tio n on a lo g - lo g s c a le ( F i g .2 ) . T h is p l o t shows a r e l a t i o n e x i s t s such t h a t lo g p r e c i p i t a t i o n = -3 * 5 3 + *70 lo g e le v a tio n w here p r e c i p i t a t i o n i s g iv e n i n in c h e s /d a y and e le v a tio n i s i n f e e t . The c o r r e l a t i o n c o e f f i c i e n t o f ,83 h a s a s i g n if ic a n c e o f 99»5$* The d a ta a ro l i s t e d i n A ppendix I . The C a ta lin a p o i n t s a r e d is p e r s e d th ro u g h o u t t h e m o u n ta in s, so an a tte m p t was made t o d e te rm in e i f any d i f f e r e n c e i n p r e c i p i t a t i o n o c c u rre d due t o t h e l o c a t i o n w ith r e s p e c t t o th e m o u n tain m ass. P o in ts on th e n o r th and so u th s id e s o f th e ra n g e a re d i f f e r e n t i a t e d on f ig u r e 2 and t h e r e . i s no t r e n d a p p a re n t t o t h i s w r i t e r . C o n seq u en tly i t was d e c id e d t h a t e le v a tio n i s a m a jo r f a c t o r i n c o n tr o llin g , p r e c i p i t a t i o n and th e agreem ent o f tow ns around t h e s tu d y a re a w ith th e d a ta from th e C a ta lin a s and S a n ta R i t a s im p lie s t h i s i s a r e g io n a l r e l a t i o n s h i p . It w ould a p p e a r t o be a v a l i d assu m p tio n t h a t a s i m i l a r r e l a t i o n e x i s t s i n th o m ou n tain s o f th e s tu d y a r e a . 14 ELEVATION (FEET) IOOOO 4000 3000 MEAN DAILY PRECIPITATION (IN.) KEY FIG. 2. SANTA R IT A S AND COMMUNITY GAGES • CATALINAS: NORTH S ID E SOUTH S ID E © © VARIATION OF PRECIPITATION WITH ELEVATION INTHE STUDY AREA 15 A p r e c i p i t a t i o n in d e x was d e r iv e d from t h e r e l a t i o n shown i n f ig u r e 2 . The p r e c i p i t a t i o n v a lu e a t 3250 f e e t was a r b i t r a r i l y eq u ated w ith 1 .0 and a l l o th e r e l e v a t i o n s w ere g iv e n co rr esp o n d in g v a lu e s (T ab le 1 ) . The p u rp o se o f t h e in d e x was m e r e ly t o make t h e f i g u r e s e a s ie r t o h a n d le . However, t h e p rop er in d e x f o r a s t a t i o n i s n o t t h a t f o r t h e s t a t i o n ’ s e l e v a t io n . A l l r u n o f f a t a s t a t i o n comes from p o in t s o f h ig h e r e l e v a t io n and th u s h ig h e r p r e c i p i t a t i o n . T ab le 1 . E le v a t io n Zones f o r t h e P r e c ip it a t i o n In d ex V a lu es Bounding e le v a tio n s (in c lu s iv e ) P r e c ip ita tio n in d e x Bounding e le v a tio n s (in c lu s iv e ) P r e c ip it a t i o n in d e x 7000 - 6600 1 .7 4499 - 4000 1.2 6599 - 6000 1 .6 3999 - 3500 1.1 5999 - 5500 1 .5 3499 - 3100 1.0 5499 - 5000 1 .4 3099 - 2600 0 .9 4999 - 4500 1 .3 2599 - 2100 0 .8 A more v a l i d in d e x v a lu e w ould b e t h a t f o r t h e e l e v a t io n w hich d iv id e s th e a r e a d r a in in g t o a s t a t i o n i n h a l f . S in c e h a l f t h e a r e a r e c e i v e s more p r e c i p i t a t i o n and h a l f r e c e i v e s l e s s , t h i s m id -a r e a in d e x sh o u ld approxim ate th e mean in d e x f o r t h e d r a in a g e a r e a . The d iv id in g e l e v a t io n can b e e s tim a te d by e y e from t h e map t o t h e n e a r e s t 100 or 200 f e e t d ep ending on th e co n to u r i n t e r v a l . As a t e s t o f t h i s m ethod, th e a r e a w it h in a b a s in betw een each p a ir o f a c c e n te d co n to u r l i n e s was m easured. From t h e s e v a lu e s th e e l e v a t io n d iv id in g th e d r a in a g e a rea i n h a l f was computed f o r each s t a t i o n . The mean p r e c i p i t a t i o n in d e x o b ta in e d was t h e same a s t h e e s tim a te d v a lu e i n ea ch c a s e . 16 The e r r o r in h e r e n t i n th e p r e c i p i t a t i o n in d e x can n o t be e v a lu a te d h e r e . The r a i n f a l l d a ta f o r t h e v a r io u s p o i n t s w ere n ad e on d i f f e r e n t in s tr u m e n ts , by d i f f e r e n t o b s e r v e r s , a t d i f f e r e n t i n t e r v a l s o f tim e , and a l l have d i f f e r e n t p e r io d s o f r e c o r d . I n a d d itio n , no p o in ts a c t u a l l y w ith in th e d ra in a g e b a s in s s tu d ie d w ere a v a i l a b l e , and th e s im p lif y in g assu m p tio n i s b e in g made t h a t t h e p r e c i p i t a t i o n w hich e f f e c t s d is c h a rg e a t a p o in t i s e s s e n t i a l l y th e a v erag e p r e c i p i t a t i o n f o r th e e n t i r e a r e a d r a in in g t o t h a t p o i n t . However, th e in d e x i s o f such a g e n e r a l n a tu r e t h a t a d e v ia t io n o f ± .1 a llo w s a ra n g e o f o v er 1000 f e e t i n e le v a tio n . I n m ost c a s e s , t h i s sh o u ld be an a d e q u a te ra n g e o f d e v ia t io n to in c lu d e th e c o n t r o l l i n g p r e c i p i t a t i o n , and i t i s g e n e r a lly l e s s th a n a 10$ v a r i a t i o n on t h e p r e c i p i t a t i o n in d e x . GEOLOGIC AND HYDRAULIC CONDITIONS IN THE CHANNELS STUDIED S t a t io n s i n t h e w ash es a re i d e n t i f i e d w it h a s i x f ig u r e co d e, such a s W15200. The l e t t e r i s t h e f i r s t l e t t e r o f t h e name o f t h e m ountain r a n g e , i n t h i s c a s e , 'W hetstone. The f i r s t d i g i t i s a number a r b i t r a r i l y a s s ig n e d t o each stream w it h in a r a n g e , and t h e f i n a l fo u r d i g i t s a re t h e , e l e v a t io n o f t h e s t a t i o n . In c a s e s w here s t a t i o n s on t r i b u t a r i e s have b een u s e d , t h e f i n a l d i g i t w i l l b e r e p la c e d b y a "T". The r a t e s o f change o f d r a in a g e a r e a , p a r t i c l e s i z e and w id th :d e p th r a t i o w ith ch a n n el le n g t h r e f e r , a s d o e s t h e r a t e o f change o f g r a d ie n t w ith le n g t h , t o t h e exp on en t o f le n g t h , L, i n r e l a t i o n s o f t h e form A iP, Lq , and w/D oc Lr . param eter in c r e a s e s downstream . When t h e exp on en t i s p o s i t i v e , th e A ll t h e n aesu ram en ts r e f e r r e d t o i n t h i s s e c t io n a re l i s t e d i n Appendix I I . W hetstone M ountains Of th e t h r e e strea m s s t u d ie d ( F ig . 3)» W hetstone 1 d r a in s lim e s to n e and s a n d sto n e , w h ile W hetstone 2 and 3 d r a in g r a n it o id ig n e o u s rock s. The sed im en ta ry r o c k s f r a c t u r e i n t o b lo c k s up t o t h r e e m e te r s i n d ia m e te r . Along i t s lo w er r e a c h e s , W hetstone 1 flo w s th rou gh c o a r s e a llu v iu m d e r iv e d from t h e s e r o c k s w hich c o n ta in s fra g m en ts w ith a maximum s i z e o f about a m e te r . ch a n n el b a n k s. C a lic h e cem enting i s common i n th e The ch a n n el i s n ev er b r a id e d and i s en tren ch ed b etw een W15400 and W14480 w ith a maximum d ep th o f 35 f e e t a t W14780. 17 19 A. good C = CONCAVITY CHANGE 10 X = EXAGGERATION HORIZONTAL SCALE ELEVATION (F E E T ) 7000 — 0 10000 ' - 6000 5000 4000 3000 03 CHANNEL LENGTH (F E E T ) G R A D IEN T ( F T . / F T . ) ' KEY WHETSTONE I w hetstone a WHETSTONE 3 O *— I0 3 CHANNEL LENGTH (F E E T ) FIG. 4 . LONGITUDINAL PROFILES (A) AND CONCAVITIES (B) IN THE WHETSTONE MOUNTAINS © F ig . 5 . Change o f D rainage A rea, P a r t i c l e S iz e and W id th :d e p th R a tio w ith Channel L ength i n th e W hetstone M ountains A, B and C show th e v a r i a t i o n w ith c h a n n e l le n g th o f d ra in a g e a r e a , p a r t i c l e s i z e and w id th :d e p th r a t i o r e s p e c t i v e l y . The lo c a t i o n o f t h e c o n c a v ity change i s superim p o sed on A, and t h a t o f t h e downstream l i m i t o f b e d ro c k exposed i n th e c h a n n e l, l a b e l l e d "lo w est c h a n n e l b e d ro c k ", i s p la c e d on B t o show th e r e l a t i o n o f th e s e f e a t u r e s t o th e l o n g i t u d i n a l change o f d ra in a g e a r e a and p a r t i c l e s i z e . B = LOWEST CHANNEL ________ BEDROCK WHETSTONE I WHETSTONE 2 WHETSTONE 3 O DRAINAGE AREA (t. WHETSTONE 2 TRIBUTARIES CHANNEL LENGTH (F E E T ) C = CONCAVITY CHANGE IO T CHANNEL LENGTH (F E E T ) FIG. 5 . - CHANNEL LENGTH (F E E T ) CHANGE OF AREA%PA RTICLE S IZ E AND WIDTH*. DEPTH RATIO'W ITH CHANNEL LENGTH IN W HETSTONE MOUNTAINS 8 21 The g r a n it o id r o c k s g e n e r a lly f r a c t u r e t o fra g m en ts la r g e r th an t e n c e n t im e t e r s , w hich i n tu r n w ea th er t o p a r t i c l e s o f fo u r t o e ig h t m il lim e t e r s . As a r e s u l t , t h e bed m a t e r ia l shows a n o t ic e a b l e b im o d a lity tow ard t h e head o f b o th W hetstone 2 and 3* L o ca l in t r u s io n s by sm a ll d ik e s o f more m a s s iv e , f in e r - g r a in e d ro ck a re more r e s i s t a n t t o w e a th e r in g th an th e g r a n i t i c r o c k s , The a llu v iu m b elo w t h e m ou n tain s on b o th strea m s i s f in e r - g r a in e d th a n i n W hetstone 1 . B ra id in g i s t h e dom inant ch a n n el form downstream from W24200 and W34200. Entrenchm ent i s minor on W hetstone 2 , b u t i s a s much a s tw e n ty f e e t on W hetstone 3t b etw een W34720 and 1734400, and a t 1)33800 where t h e ch a n n el i s c u t t in g th rou gh a pronounced b l u f f p a r a l l e l i n g t h e San Pedro R iv e r . F ig u r e 4 , showing t h e l o n g it u d in a l p r o f i l e s and t h e r e l a t i o n o f g r a d ie n t t o ch a n n el le n g t h , i n d i c a t e s t h e l o c a t i o n o f t h e c o n c a v ity change in each w ash. F ig u r e 5 p o r tr a y s t h e lo n g it u d in a l v a r i a t i o n o f d r a in a g e a r e a , p a r t i c l e s i z e and w id th :d e p th r a t i o , w ith l i n e s drawn t o i n d i c a t e th e tr e n d s o f ch an ge. G e n e r a lly , th e r a t e s o f change a re n o t c o n s ta n t th ro u g h o u t t h e e n t i r e le n g t h o f t h e strea m . In a l l c a se s, t h e d a ta from t r i b u t a r i e s f i t s w e l l w it h in th e s c a t t e r o f p o in t s , in d ic a t i n g a s i m i l a r i t y o f r e l a t i o n s w ith th e m ain str e a m s. Mustang M ountains A l l t h r e e w ashes ( F ig . 6 ) t h a t w ere s t u d ie d i n t h e Mustang M ountains d r a in sed im en ta ry and v o lc a n ic r o c k s . Mustang 1 b e g in s i n lim e s to n e and a t Ml 3200 flo w s i n t o a llu v iu m w hich a p p ea rs t o b e an a l l u v i a l fa n . The lim e s to n e f r a c t u r e s t o f a i r l y la r g e fragm en ts and g e n e r a lly r e s i s t s w e a th e r in g . Below M15200 t h e stream c r o s s e s 22 ------- ~7n~r- - , r ^ .J v /r . CONTOUR INTERVAL SCALE 1: 6 2 ,6 0 0 50 FEET FIO. 6 . LOCATION MAP FOR STREAMS AND STATIONS IN THE MUSTANG MOUNTAINS. 2 M ILE S 23 a r h y o l i t e o u tc ro p , flo w in g on t h e r h y o li te - a llu v i u m c o n ta c t. The r h y o l i t e c o n te n t o f th e bed m a t e r i a l b a r e ly re a c h e s 20$ a s t h e a llu v iu m i s e s s e n t i a l l y a l l lim e s to n e . I n t h i s a r e a t h e r h y o l i t e i s g e n e r a lly m a ss iv e , b re a k in g i n t o l a r g e fra g m e n ts , a lth o u g h i t i s som etim es h ig h ly f r a c t u r e d . The d ra in a g e a r e a o f M ustang 2 i s d o m in a n tly lim e s to n e w ith m inor s a n d s to n e . C o arse fra g m e n ts a r e p r e v a le n t. At M25050, th e m ain stream i s c u t t i n g th ro u g h a s m a ll fa n w hich o r i g i n a t e s i n one o f th e t r i b u t a r i e s t o th e n o r th . The m ain c h a n n e l ends on t h e s u r f a c e o f a s m a ll, h e a v ily v e g e ta te d fa n a t 4860 f e e t e l e v a tio n . At i t s u p p e r end, th e fa n h as a w id th o f ?4 f e e t and a mean p a r t i c l e s i z e o f 6.5 m il l i m e t e r s , s i g n i f i c a n t l y s m a lle r th a n th e 25 m illi m e t e r s fo u n d a t M24900, th e n e a r e s t s t a t i o n u p s tre a m . At a d is ta n c e o f ab o u t 225 f e e t dow nfan, th e w id th h as in c r e a s e d t o 95 f e e t and th e mean s iz e t o 35 m illi m e t e r s . M ustang 3 d r a i n s a r e a s o f lim e s to n e , r h y o l i t e and m udstone. The lim e s to n e i s t y p i c a l l y r e s i s t a n t , b u t th e r h y o l i t e ra n g e s from h ig h ly f r a c t u r e d to m a ssiv e and th e m udstone i s q u i t e weak. t r i b u t a r y e n t e r s w hich c a r r i e s p r im a r i ly lim e s to n e . At M34900, a m ajo r The l e f t bank o f th e s tre a m , t h e s id e from w hich th e m ain b ra n c h comes, i s 90$ r h y o l i t e , w h ile th e r i g h t s id e i s o n ly 60$ r h y o l i t e , w ith th e re m a in d e r b e in g lim e s to n e and s a n d s to n e . I n t h e b e d , th e b o u ld e rs a r e 60$ r h y o l i t e , w h ile th e g r a v e l i s o n ly 40$ r h y o l i t e . The p e rc e n ta g e o f r h y o l i t e i n b o th d e c r e a s e s r a p i d l y dow nstream and a t M34800 t h e b ed m a t e r i a l i s 60$ lim e s to n e and o n ly 25$ r h y o l i t e . r e s i s t a n t th a n th e r h y o l i t e . A p p a re n tly th e lim e s to n e i s more 24 ELEVATION (F E E T ) 6000 5000 C = CONCAVITY CHANGE 10 X = VERTICAL EXAGGERATION • HORIZONTAL SCALE: 9 10000' 4000 P CHANNEL LENGTH (F E E T ) G R A D IE N T ( F T . / F T . ) KEY MUSTANG l MUSTANG 2 MUSTANG 3 FIG. 7 . LONGITUDINAL PROFILES (A) AND CONCAVITIES (B) IN THE MUSTANG MOUNTAINS F ig . 8 . Change o f D rainage A rea, P a r t i c l e S iz e and W id th :d e p th R a tio -with Channel L ength i n t h e M ustang M ountains A, B and C show th e v a r i a t i o n w ith c h a n n e l le n g th o f d ra in a g e a r e a , p a r t i c l e s i z e and w id th :d e p th r a t i o r e s p e c t i v e l y . The lo c a t i o n o f th e c o n c a v ity change i s superim p o sed on A, and t h a t o f th e dow nstream l i m i t o f b e d ro c k exposed i n th e c h a n n e l, l a b e l l e d " lo w e st c h a n n e l b e d ro c k " , i s p la c e d on B t o show th e r e l a t i o n o f th e s e f e a t u r e s to th e l o n g i t u d i n a l change o f d ra in a g e a r e a and p a r t i c l e s i z e . B = LOWEST CHANNEL . BEDROCK M U STA N G l MUSTANG 2 DRAINAGE AREA ( M l 2 ) MUSTANG 3 © CHANNEL LENGTH (F E E T ) C = CONCAVITY CHANGE I04 CHANNEL LENGTH (F E E T ) FIG. 8 . CHANNEL "LENGTH (FEET) CHANGE OF AREA PARTICLE SIZE AND WIDTH: DEPTH RATIO WITH CHANNEL LENGTH IN THE MUSTANG MOUNTAINS 26 The a llu v iu m i n t h e h an k s o f t h e lo w er re a c h e s o f th e s e stre a m s i s d o m in a n tly c o a rs e lim e s to n e and commonly i s cem ented w ith c a li c h e . I t g e n e r a lly c o n ta in s more f i n e s th a n t h e bed m a t e r i a l . o c c u r s , p ro b a b ly due t o t h e l a r g e m a t e r i a l s i z e . on M ustang 2 . No b r a id in g E ntrenchm ent i s m inor M ustang 1 i s i n c i s e d t e n f e e t a t Ml 5100 and Ml4700, b u t v e ry l i t t l e e ls e w h e re , and t h e bed o f M ustang 3 i s f i v e t o t e n f e e t below th e r e g io n a l s u r f a c e th ro u g h o u t m ost o f i t s le n g th . F ig u re 7 p o r t r a y s th e c o n c a v ity change on t h e p r o f i l e s and on th e g r a d i e n t - l e n g t h r e l a t i o n s . The l o n g i t u d i n a l v a r i a t i o n s o f p a ra m e te rs a r e shown on f i g u r e 8 . A g ain , th e r a t e o f change o f each p a ra m e te r g e n e r a lly changes a b r u p tly a t some p o in t alo n g th e channel p r o f ile . S ie rrita s On t h e S i e r r i t a s tre a m s (F ig . 9 ) c a u tio n was ta k e n t o a v o id s e l e c t i n g s t a t i o n s i n a r e a s a f f e c t e d by th e damming o f s to c k ta n k s . The f i l l i n g w hich o c c u rs u p stream i s g e n e r a lly o b v io u s i n t h e f i e l d . O verflow from th e ta n k w i l l b e s e d im e n t- fre e and w i l l te n d t o remove th e f i n e s t bed m a t e r i a l and d e c r e a s e w id th :d e p th r a t i o and stre am g r a d ie n t by tr e n c h in g . I f no o v e rflo w o c c u r s , th e c h a n n e l dow nstream w i l l r e c e iv e w a te r o n ly from p r e c i p i t a t i o n b elo w t h e dam. S tream s h ead in g below th e m o u n ta in s, a n alo g o u s t o th o s e h ead in g b elo w th e dams, show s i m i l a r p a r t i c l e s i z e s and g r a d i e n t s b u t s l i g h t l y s m a lle r w id th :d e p th r a t i o s th a n t h e i r c o u n te r p a r ts h ead in g i n th e m o u n ta in s. Thus, th e t a n k s ’ e f f e c t on th e m easured p a ra m e te rs a p p e a rs t o b e s m a ll. In e ith e r s i t u a t i o n below th e dam, t h e e f f e c t s o f th e ta n k d is a p p e a r r a p i d l y LOCATION MAP FOR STREAMS AND STATIONS IN TH E 3IE R R IT A MOUNT/ 28 dow nstream and a r e g e n e r a lly gone a f t e r th e f i r s t m ajo r t r i b u t a r y e n tr y . Im m ed ia te ly below th e ta n k on S i e r r i t a 1 a t 4?00 f e e t , t h e c h a n n e l c u ts t e n t o tw e n ty f e e t i n t o b e d ro c k . S14525 i s lo c a t e d betw een t h i s i n c i s i o n and t h e f i r s t m a jo r dow nstream t r i b u t a r y . Throe s t a t i o n s w ere m easured a t th e ju n c tio n w ith t h i s t r i b u t a r y , one above th e i n t e r s e c t i o n on th e m ain s tre a m , S144MT, a n o th e r on th e t r i b u t a r y , S1444T, and t h e t h i r d on th e m ain s tre a m b elo w t h e ju n c tio n , S i4440. , P a r t i c l e s i z e in c r e a s e s from S I4525 t o S144MT, and th e n d e c r e a s e s below t h e ju n c tio n , w h ile t h e m a t e r i a l i n th e undammed t r i b u t a r y , i s th e same s iz e a s a t S i4525. Had rem o v al o f f i n e s o c c u r re d , i t sh o u ld have b een more e f f e c t i v e a t S i4525 th a n S144MT and a r e v e r s a l o f th e s i z e s found would be e x p e c te d . F u rth e rm o re , t h e d ro p i n w id th :d e p th r a t i o betw een S i4750 and Si 4525 r e f l e c t s t h e i n f l u e n c e o f t h e b e d ro c k o u tc ro p s and n o t th e manmade dam, f o r i t h a s s i m i l a r v a lu e s on th e u n d is tu r b e d t r i b u t a r y and t h e main stre a m above t h e ju n c t i o n . Thus th e e f f e c t o f th e ta n k do es n o t e x te n d dow nstream i n t h i s c h a n n e l. In d e e d , th e e f f e c t s o f s h o r t- te r m f e a t u r e s su ch a s t h e ta n k s n a y n o t b e g r e a t enough to be n o tic e d a t a l l i n t h e g r o s s r e l a t i o n s so u g h t i n t h i s s tu d y . The lo c a t i o n s o f th e o th e r ta n k s a r e shown on f i g u r e 9* The S i e r r i t a . c h a n n e ls a r e flo w in g a c r o s s a b e d ro c k p ed im en t. Bedrock c ro p s o u t i n th e c h a n n e l w a lls and on th e i n t e r f l u v e s w e ll down stre a m from th e l a s t c h a n n e l o u tc r o p s . No e f f e c t on p a r t i c l e s iz e and o th e r f e a t u r e s was n o tic e d . B edrock i s g e n e r a lly p h a n e r i t i c ig n e o u s . S i e r r i t a 1 and 2 flo w th ro u g h a r e a s mapped by L o o ten s ( I9 6 5 ) a s p r im a r i ly q u a r tz m o n zo n ite and 29 g r a n o d io r it e . Some f i n e r u n i t s in c lu d e w elded t u f f b r e c c i a s , f i n e le u c o g r a n it e s and to u rm a lin e g r a n i t e s . A ll f r a c t u r e t o fra g m e n ts up t o a h a l f m o to r, b u t th e c o a r s e - g r a in e d ro c k s w e a th e r r a p i d l y t o f o u r to e ig h t m illi m e t e r fra g m e n ts , w h ile t h e o th e r s a r e more r e s i s t a n t . The b ed ro ck i s d o m in a n tly c o a r s e le u c o g r a n it e (L o o te n s , 19&5) i n S i e r r i t a At S35000 t h i s stre a m i s s t r u c t u r a l l y c o n t r o l l e d , flo w in g p a r a l l e l t o a m ajo r j o i n t sy stem . B ra id in g i s t h e dom inant c h a n n e l form b etw een S14250 and Si 4000, from S25000 t o S24000 and a t 534250. E lse w h ere t h e r e i s g e n e r a lly o n ly one c h a n n e l. " No e n tre n ch m e n t o c c u rs a lo n g S i e r r i t a 2 . S i e r r i t a 1 , on th e o th e r h an d , i s u n d e rg o in g a c t i v e tr e n c h in g a t p r e s e n t a t S15000, p ro b a b ly b e c a u se a d d i t i o n a l sed im en t r e s u l t i n g from a l o c a l b u rn h a s f i l l e d th e c h a n n e l. I n c i s i o n o f te n t o tw e n ty f e e t h a s o c c u rre d i n b ed ro ck betw een 314-750 and 814-525, w ith th e stre am re m a in in g d e e p ly e n tre n c h e d t o S i4250. S i e r r i t a 3 shows i n c i s i o n o f f i f t e e n f e e t a t S34-500, w hich d e c r e a s e s i n b o th d i r e c t i o n s . As i n t h e o th e r r a n g e s , t h e p r o f i l e s and c o n c a v ity , to g e th e r w ith lo n g i t u d i n a l r a t e s o f change o f p a ra m e te rs have b e en drawn ( F ig s . 10 and 1 1 ). S i e r r i t a 5 i 6 and 7i t h r e e s m a lle r d ra in a g e s h ead in g below t h e m ountain f r o n t , w ere exam ined t o d e te rm in e how such s tre a m s w ould r e l a t e t o th o s e h e ad in g i n th e m o u n ta in s (F ig . 9 ) . d a ta a r e p l o t t e d on f i g u r e s 10b, and 1 1 a, b an d c . These I n d i v i d u a l l y , e ac h s t a t i o n f i t s r e l a t i v e l y w e ll i n t o t h e s c a t t e r o f p o i n t s on each p l o t , e x c e p t on g r a d ie n t v e rs u s l e n g th w here th e y a r e rem oved. w i l l be e x p la in e d i n a s u b se q u e n t s e c t i o n . T h is anom aly 30 6000 ELEVATION (FEET) . 5000 4000 3000 C = CONCAVITY CHANGE IOX = VERTICAL EXAGGERATION HORIZONTAL S C A L E : 10000 ? 2000 CHANNEL LENGTH (FEET) SIERRITA I TRIBUTARY / ___________ / < T / A __________________ GRADIENT (F T / F T ) m : KEY - - ! , «• ~ T SIE R R IT A I S IE R R IT A 2 SIE R R IT A 3 S IE R R IT A 5 -7 T - 1 1 1 I0 2 » i i i i i i i . . . I0 3 . . ! ? . ) I0 4 CHANNEL LENGTH (FEET) FIG. 10. LONGITUDINAL PR O F IL E S (A) AND CONCAVITIES ( 0 ) IN TH E S IE R R IT A MOUNTAINS © T ' F ig . 11. Change o f D rain ag e A rea, P a r t i c l e S iz e and W id th :d e p th R a tio w ith Channel L ength i n th e S i e r r i t a s A, B and C show th e v a r i a t i o n w ith ch an n e l l e n g th o f d ra in a g e a r e a , p a r t i c l e s i z e and w id th :d e p th r a t i o r e s p e c t i v e l y . The l o c a t i o n o f th e c o n c a v ity change i s superim posed on A, and t h a t o f th e dow nstream l i m i t o f b e d ro c k exposed i n th e c h a n n e l, l a b e l l e d “lo w e st c h a n n e l b e d ro c k ", i s p la c e d on B t o show th e r e l a t i o n o f th e s e f e a t u r e s to th e l o n g i t u d i n a l change o f d ra in a g e a re a and p a r t i c l e s i z e . B = L O W E ST CH A N N EL BEDROCK SIERRITA I SIERRITA 2 SIERRITA 3 AREA (M l SIERRITA 5 -7 - / / \\ CHANNEL LENGTH (F E E T ) C = CONCAVITY CHANGE . •CHANNEL LENGTH (F E E T ) FIG. II. CHANGE OF AREA 'CHANNEL LENGTH (F E E T ) PARTICLE SIZE AND WIDTH: DEPTH RATIO WITH CHANNEL LENGTH IN THE SIERRITA MOUNTAINS 32 A ll t h r e e s tre a m s flo w i n a l l u v i a l m a t e r i a l d e riv e d from g r a n itic ro c k s. S tream s 5 and 6 do have some b e d ro c k c ro p p in g o u t i n th e w a lls o f th e stre a m v a l l e y , p a r t s o f . t h e S i e r r i t a p ed im en t. B ra id in g o c c u rs o n ly a t S63500, However, none o c c u rs i n t h e stre a m b e d . and o n ly a t th e same s t a t i o n i s bank m a t e r i a l v e ry d i f f e r e n t from b ed m a t e r i a l , b e in g n o tic e a b ly c o a r s e r . I f th e s e fo u r s t a t i o n s were c o n s id e re d a s b e in g on a s in g le stre a m , th e c o n c a v ity and r a t e s o f change o f d ra in a g e a r e a , p a r t i c l e s iz e and w id th :d e p th r a t i o w ith c h a n n e l le n g th w ould b e s i mi l a r t o t h e dow nstream segm ents o f t h e o th e r s tre a m s . C o n cav ity w ould be - . 1 . Summary o f Downstream R e la tio n s The change i n c o n c a v ity ( F ig s . 4 , 7 and 10) and t h e ch an g es i n th e r a t e o f v a r i a t i o n o f p a ra m e te rs w ith c h a n n e l l e n g th ( F ig s . 5» 8 and 11) a lr e a d y have b e en n o te d . o f th o s e f e a t u r e s . T a b le 2 sum m arizes t h e m ost im p o rta n t The c o n c a v ity o f th e p r o f i l e o f e ac h stre am ch an g es from h ig h u p stre am t o low dow nstream . I n e i g h t o f t h e n in e c a s e s , t h i s change c o in c id e s c l o s e l y w ith a change i n t h e d r a in a g e a re a -c h a n n e l le n g th r e l a t i o n (T ab le 2 ) . D rain ag e a r e a in c r e a s e s more r a p i d l y w ith le n g th i n th e h ig h - c o n c a v ity segm ents th a n i n th e low ( F ig s . 5a » 8a and 1 1 a ). The one anom alous c a s e , M ustang 3# r e s u l t s from th e e n tr a n c e o f a m ajo r t r i b u t a r y a b o u t o n e - h a lf m ile dow nstream from th e c o n c a v ity change, c a u s in g t h e h ig h e r r a t e o f in c r e a s e o f a r e a t o be m a in ta in e d dow nstream beyond t h e c o n c a v ity ch an g e. The r a t e o f d e c r e a s e o f p a r t i c l e s iz e dow nstream a ls o shows a te n d e n c y f o r change ( F ig s . 5 b , 8 b , and 1 1 b ). I n e i g h t o f th e n in e 33 T able 2 . Summary o f L o c a tio n s o f M ajor Changes i n th e L o n g itu d in a l V a r ia tio n o f P a ra m e te rs and T h e ir R e la tio n s t o B edrock' The l e t t e r s p and q r e f e r t o th e e x p o n en ts i n A /X -lP and 04 Stream C o n c a v ity : u p stre a m dow nstream L o c a tio n Of c o n c a v ity change ( f e e t from d iv id e ) L o c a tio n o f change of p ( f e e t from d iv id e ) L o c a tio n o f lo w e s t channel b e d ro c k ( f e e t from d iv id e ) L o c a tio n o f change of q ( f e e t fro i d iv id e ) 4200 4200 4100 No change 4200 4200 4600 4400 6000 9000 5950 5700 13500 _ 12500 15000 15000 11000 11000 6550 6500 10000 10500 15250 16000 12000 13000 12700 12700 7500 7200 4300 4000 11000 •11000 7500 7000 - 1 .9 M ustang 1 . -.6 t -2 .4 M ustang 2 i i - .4 • -1 .0 M ustang 3 i • -1 .2 W hetstone 1 . -.6 , -1 .2 W hetstone 2 t - .7 r -1 .2 W hetstone 3 1 r - 1 .1 S ie rrita 1 l -.3 r-1.0 S ie rrita 2 1 - .8 r-1.0 S ie rrita 3 L - .2 34 s tre a m s , p a r t i c l e s i z e d e c r e a s e s more slo w ly a n d /o r more c o n s i s t e n t l y below t h e l a s t o u tc ro p o f b e d ro c k dow nstream th a n i t d o es above i t . The n i n t h s tre a m . M ustang 1 , shows e s s e n t i a l l y no d i f f e r e n c e i n p a r t i c l e s iz e .d e c r e a s e above and below t h e l a s t b e d ro c k . The r a t e o f d e c re a s e below th e b ed ro ck te n d s t o b e s m a lle r i n g r a n i t i c c h a n n e ls th a n i n th o s e d r a in in g s e d im e n ta ry and v o lc a n ic ro c k s . The c o in c id e n c e o f t h e p a r t i c l e s i z e and c o n c a v ity ch an g es depends on th e l o c a t i o n o f t h e l a s t o u tc ro p r e l a t i v e t o th e c o n c a v ity change (T ab le 2 ) . T hese two p o i n t s c o in c id e i n f o u r o f t h e n in e c h a n n e ls , M ustang 1 , 2 and 3» and S i e r r i t a 1 . Of t h e re m a in in g f i v e , th r e e s tre a m s , W hetstone 2 and S i e r r i t a 2 and 3» change c o n c a v ity b elo w th e l a s t b e d ro c k . The l a s t o u tc ro p o c c u rs dow nstream from t h e c o n c a v ity change on b o th W hetstone 1 and 3» a lth o u g h t h e d is ta n c e s e p a r a tin g th e two p o in ts i n W hetstone 1 i s l e s s th a n 1000 f e e t . T h is d is ta n c e c o u ld e a s i l y r e p r e s e n t o n ly t h e e r r o r i n h e r e n t i n t h e l o c a t i o n o f t h e c o n c a v ity b re a k . The l o c a t i o n o f a s t a t i o n w ith in t h e p o s s ib le ra n g e o f lo c a t i o n h a s p ro b a b ly o n ly a c c e n te d th e in a c c u ra c y t h a t e x i s t s e lse w h e re a s w e ll. C o n sid e ra b le v a r i a t i o n o f c o n c a v ity o c c u rs w ith in b o th th e h ig h -c o n c a v ity and th e lo w -c o n c a v ity seg m en ts, b u t th e two s o t s o f v a lu e s have no o v e rla p (T a b le 2 ) . P a r t o f th e v a r i a t i o n , p a r t i c u l a r l y t h a t o f t h e h ig h - c o n c a v ity segm ent, r e s u l t s from l i t h o l o g i c d i f f e r e n c e s . I n th e stre a m s i n s e d im e n ta ry r o c k s , t h e h ig h e s t c o n c a v itie s c o rre sp o n d t o th e m ost r e s i s t a n t l i t h o l o g y , lim e s to n e , w h ile th e lo w e s t o c c u rs i n th e stre a m w ith s u b s t a n t i a l r h y o l i t e . The c o n s is te n c y o f c o n c a v itie s i n th e g r a n i t i c c h a n n e ls p ro b a b ly i n d i c a t e s th e s i m i l a r i t y o f l i t h o l o g i e s . , 35 W ith th e e x c e p tio n s o f M ustang 2 and W hetstone 3» w id th :d e p th r a t i o i n c r e a s e s dow nstream t o a maximum v a lu e w ith in t h e lo w -c o n c a v ity segment," below w hich i t d e c r e a s e s ( F ig s . 5 c , 8c and 1 1 c ). W hetstone 3 i s anom alous i n t h a t t h e p r o f i l e becom es convex w here i t a p p e a rs t h e maximum v a lu e w ould o c c u r . Thus a more g e n e r a l f e a t u r e i s t h a t w id th :d e p th r a t i o a c t u a l l y te n d s t o d e c r e a s e w ith d im in is h in g g r a d ie n t i n th e dow nstream segm ent. T h is f e a t u r e i s p ro b a b ly r e l a t e d t o a n in c r e a s in g sed im en t c o n c e n tr a tio n dow nstream a s d is c h a r g e i s l o s t t o in filtra tio n . E i t h e r a s m a lle r w id th :d e p th r a t i o , s te e p e r g r a d i e n t , o r b o th , i s n e c e s s a ry t o c a r r y th e lo a d . W id th :d e p th r a t i o i s l e s s c o n s i s t e n t i n t h e lo w -c o n c a v ity segm ent, p a r t l y due t o t h e o c c u re n c e o f b r a i d i n g . T h is c h a n n e l form does n o t o c c u r i n t h e s e d im e n ta ry c h a n n e ls w ith c o a r s e bank m a t e r i a l . P r e c i p i t a t i o n a l s o d e c r e a s e s r e g u l a r l y dow nstream . T h is f e a t u r e , how ever, r e s u l t s from p r e c i p i t a t i o n ’ s r e l a t i o n t o e le v a tio n and th e f a c t t h a t th e s tre a m s flo w d o w n h ill. INTERRELATIONS AMONG PARAMETERS LEADING TO A NATURAL SUBDIVISION OF DATA I t w ould be v a lu a b le t o d e te rm in e w h e th er t h e d a ta can be grouped i n a more u s e f u l m anner th a n by i n d i v i d u a l s tre a m s . One means t o t h i s end i s to lo o k f o r f a c t o r s w hich re d u c e t h e s c a t t e r on t h e p l o t s o f v a r i a b l e s , p a r t i c u l a r l y th o s e in c lu d in g stre a m g r a d i e n t , th e p rim a ry m easure o f th e stre a m p r o f i l e in v o lv e d . The p l o t s o f g r a d ie n t a g a in s t l e n g t h ( F ig s . 4 b , 7b and 10b) and d r a in a g e a r e a a g a in s t le n g th (F ig s . 5a» 8 a and 1 1 a) i n d i c a t e t h a t i f t h e d a ta i s s e p a r a te d on th e b a s i s o f c o n c a v ity seg m en ts, some o f t h e s c a t t e r w i l l d is a p p e a r . F ig u re s 12a and 12b show th e s c a t t e r i s q u i t e l a r g e on th e g r a d i e n t - p a r t i c l e s i z e and g r a d ie n t- w id th :d e p th r a t i o r e l a t i o n s . Im posing l i t h o l o g y by d i f f e r e n t i a t i n g s e d im e n ta ry and v o lc a n ic p o i n t s from g r a n i t i c p o i n t s c u ts t h e s c a t t e r a lm o st i n h a l f on each p l o t . S e p a ra tio n i n t o c o n c a v ity seg m en ts, w here concave s ta n d s f o r h ig h c o n c a v ity and s t r a i g h t f o r lo w -c o n c a v ity , a d d s a s l i g h t im provem ent. The g r a d ie n t- d r a in a g e a r e a r e l a t i o n (F ig . 1 3 a) shows a s c a t t e r w hich i s n o t e lim in a te d by a p p l i c a t i o n o f e i t h e r l i t h o l o g y o r c o n c a v ity segm ents. I n f a c t , t h e g r a n i t i c p o i n t s form a b and i n th e c e n t e r , e n c lo s e d by p o i n t s from s e d im e n ta ry -v o lc a n ic c h a n n e ls . i s a f u n c tio n o f r e l i e f . T h is phenomena W hetstone 1 , w ith t h e g r e a t e s t r e l i e f , h a s t h e s t e e p e s t g r a d ie n t f o r a g iv e n a r e a , w h ile th e M ustang s tre a m s , w ith th e lo w e s t r e l i e f s , show t h e g e n t l e s t s lo p e f o r a g iv e n a r e a . I t was found by t r i a l and e r r o r t h a t g r a d ie n t v a r i e s m ost c l o s e l y w ith A/R , w here R i s th e t o t a l r e l i e f f o r th e p r o f i l e segm ent i n w liich a p o in t i s 36 3? KEY GRADIENT ( F T ./ F T ,) SEDIMENTARY © CONCAVE O STRAIGHT O GRANITIC CONCAVE STRAIGHT o TRIBUTARIES CONCAVE T STRAIGHT 10 MEAN PARTICLE S IZ E (MM) w id t h : d e p t h FIG. 12 r a t io RELATION OF MEAN PARTICLE SIZE (A ) AND WIDTH: DEPTH RATIO ( B) TO CHANNEL GRADIENT. DOTTED L IN E S SEPARATE LITHOLOGIES i i k i 1111 i 1 i i i i ii n GRADIENT ( F T /F T J © * T © © T • • • - . © © o e 0 - • • » 0 y * * © O* T T ' t> ° e® 9 e .T ° - e * A * . ° * » ° ° °© * ' ' ? : O © o • • » 1 1 t ! f1 I0'2 I0*1 |, GRADIENT (FT ./FT .) DRAINAGE AREA (M l?) © » oo I0*7 O Cp 1C6 AREA‘.R E L IE F 2 RATIO (Ml2. / F T 2 ) KEY SEDIMENTARY CONCAVE STRAIGHT FIG. 13. GRANITIC; o o CONCAVE STRAIGHT TRIBUTARIES 6 0 CONCAVE STRAIGHT T T RELATION OF DRAINAGE AREA (A) AND AREA: R ELIEF2 RATIO (B) TO CHANNEL GRADIENT 39 lo c a te d * F ig u r e 13b shows t h e im proved f i t , and a ls o th e e f f e c t o f im posing th e p r o f i l e segm ents on th e r e l a t i o n , f o r th e pro n o u n ced bend i n t h e s c a t t e r f i e l d c o in c id e s w ith th e change i n c o n c a v ity . The 'e f f e c t o f r e l i e f on th e a r e a - g r a d ie n t r e l a t i o n i s s t r i c t l y g e o m e tric . T ab le 3 shows t h a t th e r e l i e f :l e n g t h r a t i o s a r e q u i t e s i m i l a r f o r t h e same segm ent on d i f f e r e n t s tre a m s . Thus t h e p r o f i l e s a r e concave-upw ard a r c s below t h e h y p o te n u se s o f s i m i l a r r i g h t t r i a n g l e s (F ig . Vi-). R/L = r ' / l 1 F ig . 1 4 . R e la tio n o f C hannel G ra d ie n t a t a G iven D is ta n c e from th e D iv id e to B a sin R e l i e f and L ength The f i g u r e shows t h a t a t a g iv e n d is ta n c e "x" from th e d iv id e , th e g r a d ie n t i n th e s tre a m w ith th e g r e a t e r r e l i e f , (A ), w i l l be s te e p e r b e ca u se th e ch o sen p o s i t i o n i s r e l a t i v e l y h ig h e r i n t h e p r o f i l e . The s i t u a t i o n i s th e same when t h e a r e a i s s u b s t i t u t e d f o r le n g th , a s a r e a in c r e a s e s w ith l e n g th a t a c o n s ta n t r a t e i n each c o n c a v ity segm ent. The r e l a t i o n o f w id th :d e p th r a t i o t o p a r t i c l e s i z e ( F ig . 15) i n d i c a t e s a s e p a r a tio n o f p o i n t s due t o l i t h o l o g y . However, t h i s s e p a r a tio n i s m e re ly a r e s u l t o f t h e c o a r s e r m a t e r i a l and l a c k o f b r a id in g e x i s t i n g i n s e d im e n ta ry s tre a m s , f o r th e s c a t t e r i s n o t re d u c e d by im posing l i t h o l o g y on t h e p l o t . A c tu a lly , th e r e l a t i o n o f uo T a b le 3* R e l i e f :le n g t h R a tio s o f t h e C o n c a v ity Segm ents H ig h -c o n c a v ity segm ent L o w -co n cav ity segm ent S tream T o ta l L ength (fe e t) T o ta l R e lie f (fe e t) R e lie f: L en g th R a tio T o ta l L ength (fe e t) M ustang 1 4200 1025 .2 4 12100 350 .029 M ustang 2 4200 1075 .2 6 8200 275 .0 3 4 M ustang 3 6000 1050 .1 8 13700 350 .025 W hetstone 1 13500 2500 .1 9 66500 1400 .021 W hetstone 2 11000 1550 .1 4 39300 1100 .0 2 9 W hetstone 3 10000 1550 .1 6 42000 1250 .030 S ie rrita 1 12000 1250 .1 0 69200 1800 .026 S ie rrita 2 7500 1100 .1 5 78300 1900 .0 2 4 S ie rrita 3 11000 1150 .1 0 73600 1750 .0 2 4 S ie rrita 5 ——— ——— 9500 250 .0 2 9 S ie rrita 6 ———— ——— 13300 350 .0 2 6 16000 400 .025 S ie rrita 7 ——~ — T o ta l R e lie f (fe e t) R e lie f: L ength R a tio 41 PARTICLE S IZ E (MM) TTT I l i t ! w id t h : d e p t h r a t io KEY SEDIMENTARY FIG. 13. T R IB U T A R IE S GRANITIC CONCAVE O CONCAVE • CONCAVE T STRAIGHT o STRAIGHT o STRAIGHT T RELATION [BETWEEN MEAN PARTICLE SIZ E AND. WIDTH: DEPTH RATIO 42 th e s e p a ra m e te rs a p p e a rs t o b e c o n tin o u s a c r o s s l i t h o l o g i c b o u n d a rie s . I n tr o d u c tio n o f p r o f i l e segm ents p ro d u ced l i t t l e e ffe c t e ith e r. Three s t a t i o n s on t r i b u t a r i e s above th e b re a k i n c o n c a v ity on t h e i r tr u n k s tre a m s , and f i v e on th o s e below i t a r e shown on f i g u r e s 12a, 12b, 1 3 a, 13b and 15. A ll a r e i n g r a n i t i c b e d ro c k a r e a s . O nly i n th r e e in s ta n c e s do th e y show a m arked d i f f e r e n c e from th e o th e r s ta tio n s . On p l o t s o f g r a d ie n t and w id th :d e p th (F ig . 1 2 a ), g r a d i e n t and a r e a (F ig . 13a) and w id th :d e p th and p a r t i c l e s i z e (F ig . 15)» th e t r i b u t a r i e s w hich e n t e r b elo w th e m o u n tain f r o n t f a l l o u t o f th e norm al s c a tte r f ie ld . A d d itio n o f r e l i e f moves th e n i n t o th e main f i e l d o f g r a d ie n t v e rs u s A/R2 (F ig . 1 3 b ). The re m a in in g two p l o t s i n d i c a t e th e s e s tre a m s have a somewhat s m a lle r w id th :d e p th r a t i o th a n th e s tre a m s w hich head i n th e m o u n ta in s. The t h r e e s t a t i o n s on t r i b u t a r i e s e n te r in g above t h e c o n c a v ity change f a l l w ith in t h e s c a t t e r on a l l p l o t s . I t a p p e a rs t h a t th e r e l a t i o n s w hich e x i s t among th e p a ra m e te rs a r e th e same on m ain stream and t r i b u t a r y w ith t h e e x c e p tio n o f th o s e in v o lv in g w id th :d e p th r a t i o on t r i b u t a r i e s w h o lly below t h e m o u n ta in s. C o n se q u e n tly , t h e s c a t t e r on p l o t s c a n n o t be a t t r i b u t e d t o a d i f f e r e n c e i n b a s in s iz e o r o r d e r , and th e r e l a t i o n s w hich e x i s t among p a ra m e te rs a r e n o t due sim p ly t o th e o v e r a l l s i m i l a r i t y o f t h e stre a m s sam pled. The t r i b u t a r y d a ta w i l l h e n c e fo rth he in c lu d e d w ith t h e o th e r s t a t i o n s . The s c a t t e r o f t h e p l o t s i s re d u c e d p r im a r i ly by th e i n t r o d u c tio n o f l i t h o l o g y and p r o f i l e seg m en ts. R e l i e f shows an im p o r ta n t e f f e c t , b u t s in c e t h e f i e l d o f p o s s ib le r e l i e f s i s i n f i n i t e , any u s e f u l s e p a r a tio n o f p o i n t s w ould in v o lv e a r b i t r a r y g ro u p in g . No n a t u r a l g ro u p in g i s a p p a r e n t, so r e l i e f i s n o t c o n s id e re d a v a l i d p a ra m e te r 43 f o r c l a s s i f y i n g th e d a t a . I n a d d itio n , th e re a re in d ic a tio n s th a t c o n c a v ity i s a more s e n s i t i v e in d e x o f l i t h o l o g y th a n i s th e c l a s s i f i c a t i o n o f ro c k ty p e u s e d h e r e . However, th e stre a m s ch o sen f o r t h i s s tu d y happen t o flo w th ro u g h ro c k s w hich f i t b e s t i n t o t h e two v e ry b ro a d l i t h o l o g i e s u s e d . S u b d iv id in g t h e s e d im e n ta ry ro c k s i n t o lim e s to n e , s a n d sto n e and m udstone, f o r i n s t a n c e , would, a p p a r e n tly produce b e t t e r r e l a t i o n s , b u t w ould r e q u i r e many a d d i t i o n a l sam ple s i t e s i n each l i t h o l o g y . The g e n e r a l n a tu r e o f t h i s s tu d y d id n o t w a rra n t d e t a i l e d a n a l y s i s o f th e e f f e c t o f l i t h o l o g y on p r o f i l e s and th e sam pling done i s in a d e q u a te t o e x te n d i t t o t h a t en d . Thus t h e tw o fo ld d i v i s i o n o f l i t h o l o g y i s a l l t h a t w i l l b e u n d e rta k e n . I n c o n c lu s io n , t h e d a ta show a n a t u r a l f o u r f o l d s u b d iv is io n , th e h ig h -c o n c a v ity and lo w -c o n c a v ity p r o f i l e segm ents o f s e d im e n ta ry v o lc a n ic s tre a m s , a b b r e v ia te d s e d im e n ta ry concave and se d im e n ta ry s t r a i g h t , a s w e ll a s g r a n i t i c concave and g r a n i t i c s t r a i g h t . In tro d u c tio n o f t h i s c l a s s i f i c a t i o n o f d a ta t o lo g - l o g p l o t s o f t h e p a ra m e te rs m easured s i g n i f i c a n t l y re d u c e s s c a t t e r . A ppendix I I p ro v id e s a d e t a i l e d l i s t o f t h e d a ta u s e d i n t h i s s e c t i o n . CONCEPT OF THE EPHEMERAL STREAM PROFILE The d a ta p r e s e n te d th u s f a r show t h a t c h a n n e l g r a d ie n t i s , i n f a c t , r e l a t e d t o d ra in a g e a r e a , c h a n n e l l e n g t h , p a r t i c l e s i z e and w id th : d e p th r a t i o a s w e ll a s t o l i t h o l o g y and r e l i e f . p la y i n d e te rm in in g t h e shape o f t h e p r o f i l e ? What r o l e d o es e a c h Does p r e c i p i t a t i o n have any e f f e c t ? - Are th e s e r e l a t i o n s v a l i d i n o th e r m o u n tain ra n g e s? To s e rv e a s an answ er t o th e s e q u e s tio n s , a m odel o f th e l o n g i t u d i n a l p r o f i l e w i l l bo d e v elo p e d from th e r e l a t i o n s o b se rv e d i n th e t h r e e m o untain r a n g e s . T h is m odel w i l l b e u s e d t o p r e d i c t p r o f ile .- form i n two a d d i t i o n a l m o u n tain r a n g e s , th e C a t a lin a and Tucson M ountains, t o t o s t i t s g e n e r a l i t y . T hese two ra n g e s w ere ch o sen f o r t h e i r l i t h o l o g i e s and p ro x im ity t o T ucson, b u t a ls o b e ca u se th e y e x te n d to e le v a tio n s w e ll below th o s e found i n th e t h r e e ra n g e s s tu d ie d . As a r e s u l t , t h e p r e c i p i t a t i o n i n t h e lo w e r re a c h e s sh o u ld be s u b s t a n t i a l l y lo w er th a n i n th e o r i g i n a l n in e s tre a m s . Review o f P e r t i n e n t Work on L o n g itu d in a l P r o f i l e s A com plete re v ie w o f t h e developm ent o f th o u g h t on l o n g i t u d i n a l p r o f i l e s was p r e s e n te d by W oodford (1 ). The id e a s w hich have b e en in c o r p o r a te d i n t h i s p a p e r s t a r t w ith S h u l i t s (1 9 ^ 1 ), who d e v elo p e d an e q u a tio n f o r th e p r o f i l e r e l a t i n g i t t o t h e dow nstream d e c r e a s e i n p a r tic le s iz e . M ackin (1948) co n ten d e d p a r t i c l e s i z e was n o t t h e s o le c o n tr o l on g r a d i e n t , b u t t h a t r a t h e r d is c h a r g e , sed im en t lo a d and p a r t i c l e s iz e a r e a l l im p o r ta n t. 45 However, stre a m g r a d ie n t h a s two im p o rta n t d im e n sio n s, i t s a b s o lu te v a lu e , th e a c t u a l s lo p e a t a p o i n t , and i t s c o n c a v ity , th o r e l a t i o n betw een th o s lo p e a t a p o in t and s lo p e s a t p o i n t s up and dow nstream . The c o n t r o l s on e a c h d im en sio n "need n o t be c o m p le te ly i n t e r r e l a t e d , so i t i s im p o r ta n t t o lo o k a t b o th . U sing d a ta from gag in g s t a t i o n s th ro u g h o u t t h e w e s te rn U n ite d S t a t e s , L eopold and Haddock (1953) co n clu d e d t h a t t h e a b s o lu te s lo p e i s im posed on a c h a n n e l by th e e v e n ts w hich d e te rm in e th e v e r t i c a l and h o r i z o n t a l d is ta n c e s th ro u g h w hich i t m ust flo w . The p r o f i l e w hich c o n n e c ts th e two f ix e d end p o in ts i s an a d ju s tm e n t t o t h e d is c h a r g e , sed im en t lo a d , p a r t i c l e s iz e and r e l a t i v e e r o d i b i l i t y o f b a n k s and b e d . L a te r w o rk e rs have e s s e n t i a l l y a g re e d w ith t h i s p o in t o f v iew . Wolraan (1955) a rg u e d t h a t i n B randyw ine C reek , P e n n s y lv a n ia , s lo p e c o u ld n o t be a d ju s te d sim p ly t o c a r r y th e p a r t i c l e s iz e s u p p lie d , b ecau se v e l o c i t y i n c r e a s e s dow nstream , i n d i c a t i n g o th e r f a c t o r s a r e a d ju s t in g a l s o . He c o n c lu d e d t h a t g r a d ie n t on any g iv e n ro a c h i s p r im a r i ly a f u n c tio n o f th e d is c h a r g e and sed im en t lo a d s u p p lie d t o t h a t re a c h . Hack (1957) found i n t h e Shenandoah V a lle y t h a t S = 18( m/A)®*^, where S i s c h a n n e l g r a d ie n t i n f e e t / m i l e , M i s m edian p a r t i c l e d ia m e te r i n m il l i m e t e r s , and A i s d ra in a g e a r e a i n s q u a re m ile s . d is c h a rg e i n h i s r e l a t i o n . A rea r e p r e s e n t s I n a d d itio n , th e c o n c a v ity o f a p r o f i l e i s g r e a t e r when th e p a r t i c l e s i z e d e c r e a s e s dow nstream th a n when i t re m a in s c o n s ta n t. He f e l t , how ever, t h a t s lo p e was n o t e n t i r e l y a f u n c tio n o f p a r t i c l e s iz e and d ra in a g e a r e a , n o tin g p a r t i c u l a r l y t h a t stre a m s i n a r e a s o f s i m i l a r g e o lo g y a d ju s te d t h e i r p r o f i l e s i n th e same m anner. M ille r (1 9 5 8 ), i n h i s s tu d y o f h ig h m o u n tain p e r e n n ia l stre a m s i n 46 New M exico, p o in te d o u t t h a t a c o m b in a tio n o f g e o lo g ic f a c t o r s may have more c o n tr o l on s lo p e th a n h y d r a u lic f a c t o r s . B rush (1 9 6 1 ), i n h i s work w ith p e r e n n ia l s tre a m s i n P e n n s y lv a n ia , d e c id e d t h a t b e d ro c k in f l u e n c e s a c h a n n e l’ s s lo p e and i t s p o s i t i o n i n s p a c e . He co n clu d e d t h a t b e d ro c k i s one p a ra m e te r a b s e n t from Hack’ s r e l a t i o n . The s t u d i e s o f L eopold and M ille r (1956) i n ep h em eral c h a n n e ls b elo w t h e m o u n tain f r o n t i n New Mexico showed r e l a t i o n s among h y d r a u lic and g e o m e tric p a ra m e te rs s im ila r t o th o s e found i n p e r e n n ia l s tre a m s . They i n d i c a t e d t h a t f o r a g iv e n r a t e o f in c r e a s e o f v e l o c i t y o r d e p th dow nstream , c o n c a v ity w ould be h ig h e s t when ro u g h n e ss d e c r e a s e d m ost r a p i d l y dow nstream . More r e c e n t l y , Schuram (1963* 1968) h a s em phasized t h a t a stre a m may a ls o a d j u s t i t s l o n g i t u d i n a l p r o f i l e l a t e r a l l y by c h an g in g t h e s in u o s it y o f i t s c o u r s e .. S trea m s w ith a h ig h e r r a t i o o f su sp en d ed lo a d t o bed lo a d , a r a t i o c o n t r o l l e d by c h a n n e l sh ap e , w i l l te n d t o b e more sin u o u s th a n th o s e w ith low r a t i o s . The in c r e a s e d s i n u o s i t y in c r e a s e s c h a n n e l l e n g t h , th u s d e c r e a s in g th e g r a d ie n t and a f f e c t i n g th e p r o f i l e . C o n tro ls on th e L o n g itu d in a l P r o f i l e The p r e s e n t s tu d y i n d i c a t e s t h a t w h ile s i m i l a r r e l a t i o n s e x i s t i n ephem eral c h a n n e ls d r a in in g from th e m o u n ta in s t o th e a l l u v i a l v a l l e y s a s do e ls e w h e re , t h e p i c t u r e o f t h e l o n g i t u d i n a l p r o f i l e i s c o m p lic a te d by th e e x is te n c e o f t h e c o n c a v ity c h an g e . L ith o lo g y , r e l i e f , b a s e l e v e l and c lim a te a r e im posed upon e a c h stre a m sy stem . The im p o rtan c e o f th e f i r s t two h a s a lr e a d y b een i n f e r r e d from f i g u r e s . 12, 13 and I 5 . L ith o lo g y , o r more g e n e r a lly g e o lo g y , w hich a ls o in c lu d e s s t r u c t u r a l e f f e c t s such a s f r a c t u r i n g , c o n t r o l s t h e p a r t i c l e s i z e • 4? a v a il a b le f o r t r a n s p o r t , t h e r e s i s t a n c e o f m a t e r i a l t o e ro s io n an d , t o some e x t e n t , c h a n n e l s h a p e . T hese t h r e e f a c t o r s , to g e th e r w ith t h e o u tc ro p p a t t e r n , a r e t h e p rim a ry c o n t r o l s o f c h a n n e l ro u g h n e s s. T e c to n ic s c o n t r o l t h e v e r t i c a l and h o r i z o n t a l d is ta n c e s th ro u g h w hich each stre a m m ust move by im p o sin g th e h e ig h ts o f and d is ta n c e s betw een m o u n tain r a n g e s . A r a n g e 's h e ig h t above t h e s u rro u n d in g v a l l e y s i s a c t u a l l y , i t s t o t a l h e ig h t m inus t h e th ic k n e s s o f th e a l l u v i a l f i l l on i t s fla n k s . B oth a r e f u n c tio n s o f t e c t o n i c s . The amount o f f i l l coming from each ra n g e b o rd e rin g a v a l l e y , a g a in a t e c t o n i c f u n c tio n , d e t e r m ines th e l o c a t i o n o f t h e th ro u g h -flo w in g s tre a m w hich s e r v e s a s l o c a l b a se l e v e l i n e ac h v a l l e y . The l o c a t i o n o f th e l o c a l b a se l e v e l to g e th e r w ith t h e d is ta n c e betw een ra n g e s c o n t r o l s o v e r a l l stre a m le n g th . The r e l i e f : l e n g t h r a t i o s th u s d e te rm in e d a r e l i s t e d i n T a b le 3* C lim ate i s a f u n c tio n o f e l e v a tio n , a s p r e c i p i t a t i o n i n c r e a s e s and te m p e ra tu re d e c r e a s e s w ith in c r e a s in g h e ig h t. The amount o f m o is tu re , to g e th e r w ith p r e v a i l i n g te m p e ra tu re , c o n t r o l s w e a th e rin g and th u s sed im en t p r o d u c tio n . d is c h a r g e . P r e c i p i t a t i o n a ls o p ro v id e s th e stre a m w ith Thus b o th t h e amount o f m a t e r i a l a v a i l a b l e f o r t r a n s p o r t and t h e amount o f w a te r a v a i l a b l e t o t r a n s p o r t i t , t h e sed im en t lo a d and d is c h a r g e , can b e e x p e c te d t o v a ry w ith e l e v a tio n . N orm ally, th e n , r e l i e f and b a s e - l e v e l l o c a t i o n c o n tr o l a b s o lu te s lo p e by im posing two end p o i n t s on a stre a m , w h ile c o n c a v ity r e f l e c t s th e a d ju stm e n t o f t h e p r o f i l e t o l i t h o l o g y and c lim a te . I t i s u n lik e ly t h a t s i n u o s it y i s an im p o rta n t f a c t o r i n th e c o n c a v ity o f t h e p r o f i l e s s tu d ie d a s t h e c o a r s e n e s s o f t h e bed m a t e r i a l and w id th o f th e c h a n n e ls • 48 im ply bed lo a d i s th e dom inant lo a d ty p e ev ery w h ere. The p r o f i l e s s tu d ie d , how ever, have a t h i r d im p o r ta n t p o i n t , t h e c o n c a v ity ch an g e. S ig n if ic a n c e o f th e P o in t o f C o n ca v ity Change The fre q u e n c y o f t r i b u t a r y e n tr y i n t o th e m ain stre a m ch an g es a t th e c o n c a v ity ch an g e. A p a ra m e te r c a l l e d th e c u m u la tiv e t r i b u t a r y d e n s it y was d e v elo p e d by d iv id in g t h e number o f t r i b u t a r i e s b etw een t h e d iv id e and e ac h s t a t i o n by t h e c h a n n e l l e n g th t o t h e s t a t i o n i n th o u sa n d s o f f e e t , g iv in g t h e a v e ra g e number o f t r i b u t a r y e n t r i e s p e r th o u san d f e e t . F ig u re 16 shows t h i s p a ra m e te r p l o t t e d a g a in s t c h a n n e l le n g th i n two s e l e c t e d s tre a m s . Mote t h a t th e r e l a t i o n u p stre am from th e c o n c a v ity b re a k i s h ig h ly v a r i a b l e , b u t ..w ith a g e n e r a l t r e n d to w ard in c r e a s in g d e n s it y dow nstream . Below th e c o n c a v ity ch an g e, th e t r i b u t a r y d e n s it y shows a c o n s i s t e n t d e c r e a s e . N ote a l s o th e c lo s e p ro x im ity o f th e c o n c a v ity b re a k t o t h e s t a r t o f t h e f i n a l d e c li n e o f c u m u la tiv e tr ib u ta r y d e n s ity . T a b le 4 shows t h a t t h e c o in c id e n c e o f th e s e two p o in ts i s a g e n e r a l f e a t u r e . The d e v ia t io n s a r e g e n e r a lly w ith in th e l i m i t s o f a c c u ra c y o f t h e l o c a t i o n o f b o th p o i n t s . T h is id e a i s s u p p o rte d by th e te n d e n c y f o r t h e g r e a t e s t e r r o r s - t o o c c u r on th o s e s tre a m s whore th e s t a t i o n s a r e m ost w id e ly sp a c e d . The in c r e a s e d d i s ta n c e betw een p o i n t s re d u c e s th e a c c u ra c y i n l o c a t i n g th e c h a n g e s. The change i n t r i b u t a r y d i s t r i b u t i o n im p lie s a change i n d ra in a g e p a t t e r n and d e n s i t y and b a s i n s h a p e . Below th e c o n c a v ity change, t h e t r i b u t a r i e s te n d t o ru n more p a r a l l e l t o th e m ain c h a n n e l and th u s t o i n t e r s e c t i t l e s s f r e q u e n tly . The b a s i n , i n t u r n , i s more e lo n g a te p a r a l l e l t o t h e m ain c h a n n e l below th e c o n c a v ity change th a n i t T ab le 4 . C om parison o f t h e A c tu a l C hannel L ength from D iv id e t o C o n ca v ity C h an g e 'w ith Those P r e d ic te d from C um ulative T r ib u ta r y D e n s ity A ll d is ta n c e s a r e i n f o e t . Stream L ength from d iv id e t o c o n c a v ity change L ength p r e d ic te d from . trib u ta rie s D iff e re n c e (p e r c e n t of re a l d is ta n c e ) D is ta n c e betw een bounding s ta tio n s 14. 2410 Mustang 1 4200 *4800 M ustang 2 4200 4300 2 .4 970 Mustang. 3 6000 6000 0. 2000 W hetstone 1 13500 12000 11. 4070 W hetstone 2 11000 8600 22. 4140 W hetstone 3 10000 10000 0. 2930 S ie rrita 1 12000 14000 17. 5630 S io rrita 2 7500 4800 36. 3250 S ie rrita 3 11000 8500 23. 6830 ICT CHANNEL LENGTH (F E E T ) MUSTANG 2 * SIERR1TA 3 CONCAVITY CHANGE FIG. 16. ® C RELATION OF CUMULATIVE TRIBUTARY DENSITY TO CHANNEL LENGTH AND CONCAVITY CHANGE 50 i s above i t . The d ra in a g e d e n s i t y a ls o te n d s t o b e lo w e r i n t h e down stre a m segm ent. T hese f e a t u r e s i n d i c a t e t h a t th e lo w -c o n c a v ity segm ent o f th e m ain c h a n n e l w i l l have lo n g e r re a c h e s i n w hich th e o n ly a d d itio n s t o d is c h a rg e and sed im en t lo a d w i l l come from d i r e c t p r e c i p i t a t i o n i n t o th e c h a n n e l and o v e rla n d flo w . in c r e a s e g r e a t l y , As a r e s u l t , d is c h a r g e and lo a d w i l l n o t L eopold, Wolman and M ille r (1 9 6 4 , p . 244) i n d i c a t e t h a t S cx. (T*95 i n a dow nstream d i r e c t i o n i n ep h em eral c h a n n e ls , w here S i s c h a n n e l g r a d ie n t and.Q i s d is c h a r g e . Thus when d is c h a r g e re m a in s c o n s ta n t, th e c h a n n e l w i l l te n d t o m a in ta in t h e same g r a d i e n t . The e f f e c t o f b a s i n shape on stre a m p r o f i l e s i s a ls o r e f l e c t e d i n th e r e l a t i o n o f d ra in a g e a r e a and c h a n n e l l e n g t h . The change i n t h i s r e l a t i o n a t th e b re a k i n c o n c a v ity h a s a lr e a d y b e e n i n d i c a t e d . T a b le 5 shows t h a t d ra in a g e a r e a in c r e a s e s more r a p i d l y i n th e h ig h -c o n c a v ity p r o f i l e segm ents. I f t h e r e l a t i o n s b etw een d r a in a g e a r e a and d is c h a r g e , and d ra in a g e a r e a and sed im en t lo a d rem ain c o n s ta n t, th e n b o th d is c h a rg e and sedim ent lo a d in c r e a s e more r a p i d l y i n th e h ig h -c o n c a v ity seg m en ts. S in c e p r e c i p i t a t i o n h a s a c o n s ta n t r e l a t i o n w ith e l e v a t i o n , t h e u p stre a m p r o f i l e segment, w ith i t s h ig h e r s lo p e , w i l l e x p e rie n c e a more r a p i d d e c re a s e i n p r e c i p i t a t i o n dow nstream th a n th e lo w e r p r o f i l e segm ent. Thus th e d e c re a s e i n p r e c i p i t a t i o n w ould te n d to c o u n te ra c t" t h e " in c r e a s e i n a r e a downstream and re d u c e t h e r a t e o f in c r e a s e o f d is c h a r g e . In a d d itio n , i t w ould te n d t o d e c r e a s e t h e d i f f e r e n c e i n d is c h a rg e r e l a t i o n s betw een th e two seg m en ts. However, th e m ag n itu d e o f t h e a r e a in c r e a s e p re d o m in a te s o v e r t h e p r e c i p i t a t i o n d e c r e a s e t o such an e x te n t t h a t th e d is c h a rg e s h o u ld s t i l l i n c r e a s e more r a p i d l y th a n sed im en t lo a d a s i s th e g e n e r a l c a s e (L eopo ld and H addock, 1953, P* 2 2 ). The c h a n n e l , 51 a d ju s t s w ith a d e c r e a s in g g r a d i e n t , c r e a tin g c o n c a v ity . I n th e lo w - c o n c a v ity r e a c h , th e i n c r e a s e o f d is c h a r g e i s p ro b a b ly o f f s e t b y i n f i l t r a t i o n i n t o th e c h a n n e l b e d , c r e a t i n g an in c r e a s in g sed im en t c o n c e n tr a tio n dow nstream . S tream g r a d ie n t w ould h av e t o d e c r e a s e l e s s r a p i d l y i n o r d e r t o t r a n s p o r t th e m a t e r i a l (M ackin, 1 9 4 8 ). The more c o n s ta n t s lo p e i s r e f l e c t e d by th e lo w e r c o n c a v ity . The r a t e o f change o f p a r t i c l e s i z e w ith c h a n n e l l e n g t h , q , i s d i f f e r e n t above and b elo w th e c o n c a v ity change i n e i g h t o f th e n in e s tre a m s (T ab le 5)» I n e a c h c a s e q i s more n e g a tiv e i n th e u p stre a m seg m ent th a n i t i s dow nstream . Thus ro u g h n e ss i s d e c r e a s in g more r a p i d l y i n t h e u p stream segm ent, w hich a c c o rd in g to L eopold and M ille r (1956) and Hack (1957) s h o u ld r e s u l t i n a h ig h e r c o n c a v ity , a s i t d o e s. T a b le 5 shows th e r e l a t i o n s among c o n c a v ity and r a t e s o f change o f a r e a and p a r t i c l e s i z e . T hese d a t a i n d i c a t e t h a t t h e v a r i a t i o n s o f th e c o n c a v itie s o f th e lo w -c o n c a v ity segm ents a r e e x p la in e d b y d ra in a g e a r e a and p a r t i c l e s i z e . I n g e n e r a l, t h e g r e a t e r c o n c a v itie s a r e a s s o c i a t e d w ith more r a p id ch an g es o f a r e a o r p a r t i c l e s i z e . The h ig h - c o n c a v ity segm ents show l e s s r e l a t i o n t o p a r t i c l e s i z e , b u t p a r a l l e l more c lo s e ly d r a in a g e - a r e a i n c r e a s e s an d , a s s t a t e d e a r l i e r , l i t h o l o g y . The r e l a t i o n o f w id th :d e p th r a t i o t o l e n g t h a ls o te n d s t o change a t th e b re a k i n c o n c a v ity . F ig u r e s 5C» 8c and 11c show t h a t th e r a t e o f change o f w id th :d o p th r a t i o i s h i g h l y . v a r i a b l e , p a r t i c u l a r l y i n th e low c o n c a v ity seg m en ts. A r e l a t i o n b etw een w id th :d e p th r a t i o and c o n c a v ity e x i s t s i n th e h ig h - c o n c a v ity seg m en ts, b u t n o t dow nstream . The g e n e r a l d e c re a s e dow nstream i n th e lo w -c o n c a v ity segm ents p ro b a b ly r e f l e c t s d e c r e a s in g d is c h a r g e . 52 T able 5* Com parison o f P r o f i l e C o n c a v ity , R ate o f D rain ag e A rea I n c r e a s e and R a te o f P a r t i c l e S iz e D ecrease C o n ca v ity i s t h e ex p o n en t i n t h e r e l a t i o n b etw een c h a n n e l l e n g th and- s tre a m g r a d i e n t , S = kLm. The r a t e s o f a r e a and p a r t i c l e s i z e ch an g es a r e t h e c o rre sp o n d in g e x p o n en ts i n th e r e l a t i o n s o f th o s e p a ra m e te rs w ith c h a n n e l le n g t h , A = jLP and D ^ = h i # . H ig h -c o n c a v ity segm ent Stream - C o n c a v ity R ate o f R ate o f (m) a re a p a rtic le change s iz e (p ) change ' L o w -co n cav ity segm ent C o n ca v ity R ate o f R ate o f (m) a re a p a rtia l change s iz e (p ) change (q) (q) - 1 .5 -.6 + 2 .4 - .8 -.4 - 1 .0 + 1 .6 + .5 - .6 + 1 .4 - 1 .2 W hetstone 1 - 1 .2 + 1 .6 -2 .1 - .6 +1.1 - 2 .0 W hetstone 2 -1 .2 + 1 .9 - 1 .3 - .7 W hetstone 3 - 1 .2 + 1 .8 - .9 - .1 + .8 -.4 S ie rrita 1 -1 .1 + 1 .5 - .5 -•3 + .8 - .8 S ie rrita 2 - 1 .0 + 1 .8 - 1 .3 - .8 + 1 .2 -.4 S ie rrita 3 - 1 .0 + 1 .4 - 1 .3 - .2 + .9 -.5 M ustang 1 -1 *9 + 1 .8 : M ustang 2 -2 .4 M ustang 3 + 1 .2 . - 1 .5 -.4 -.8 53 Summary Each o f t h e s tre a m s s tu d ie d flo w s b etw een two im posed end p o i n t s , th e d iv id e and th e m outh. The p r o f i l e w hich h a s d e v e lo p e d t o c o n n e c t th e s e p o i n t s c o n s i s t s o f two segm ents a d ju s t e d t o d i f f e r e n t s e t s o f c o n d itio n s and c o n n e c te d a t th e p o in t o f c o n c a v ity ch an g e. The lo c a t i o n o f t h e c o n c a v ity ch an g e, w hich r e p r e s e n t s th e downstream te rm in u s o f t h e h ig h - c o n c a v ity , o r u p s tre a m , segm ent, i s d e te rm in e d i n each c a s e b y a change i n t h e r a t e o f in c r e a s e o f d ra in a g e a r e a . A b so lu te c h a n n e l g r a d ie n t i s d e te rm in e d by t h a t p a r t o f th e b a s i n 's t o t a l r e l i e f and l e n g t h c o n ta in e d above and below t h e c o n c a v ity ch an g e. The c o n c a v ity i n e a c h p r o f i l e segm ent r e p r e s e n t s t h e a d ju stm e n t o f c h a n n e l g r a d ie n t t o d is c h a r g e , sed im en t lo a d and ro u g h n e s s , w hich a r e f u n c tio n s o f c lim a te and l i t h o l o g y . They a r e r e p r e s e n te d p r im a r i ly by d ra in a g e a r e a and p a r t i c l e s i z e , and t o a l e s s e r e x te n t by w id th :d e p th r a t i o and p e rh a p s p r e c i p i t a t i o n . Roughness-,• o r p a r t i c l e s i z e , i s c o n tr o lle d by t h e l i t h o l o g y and l o c a t i o n o f b e d ro c k . I t d e c r e a s e s more r a p id ly above th e f i n a l b e d ro c k o u tc ro p i n th e c h a n n e l th a n i t d o es below i t . D isc h a rg e and sed im en t lo a d r e l a t e t o d ra in a g e a r e a , w hich te n d s to in c r e a s e more r a p i d l y i n th e u p p e r p r o f i l e segm ent. The g r e a t e r r a t e s o f change o f a r e a and p a r t i c l e s i z e i n th e u p stre a m segm ent c a u se a g r e a t e r c o n c a v ity t h e r e . A g r e a t e r change i n c o n c a v ity r e f l e c t s l a r g e changes i n a r e a and s i z e r e l a t i o n s . DBVELOR'IENT OF EMPIRICAL EXPRESSIONS FOR THE PROFILES I f t h e p ro p o se d m odel i s c o r r e c t , a .r e la tio n - b e tw e e n g r a d ie n t and d ra in a g e a r e a , r e l i e f , p a r t i c l e s i z e , w id th :d e p th r a t i o and p r e c i p i t a t i o n sh o u ld e x i s t w hich r e p r e s e n t s a m a th e m a tic a l e x p re s s io n o f th e p r o f i l e and w i l l a c t u a l l y p r e d i c t p r o f i l e s e ls e w h e re . The b e s t f i t e q u a tio n s w ere so u g h t u s in g a s ta n d a r d m u ltip l e r e g r e s s io n ap p ro ach (S n ed eco r, 1 9 5 6 ). The s t a t i s t i c a l c o m p u ta tio n s w ere done on a CDC 6400 com puter u s in g a program w r i t t e n b y C h a rle s K. H uszar o f t h e U n iv e r s ity o f A rizo n a Computer C e n te r. The program i s d e s ig n e d t o m in im ize th e sum o f s q u a re s o f d e v ia t io n s p a r a l l e l t o t h e a x is o f t h e d e p en d en t v a r i a b l e r a t h e r th a n p e r p e n d ic u la r t o t h e l i n e o f b e s t f i t . W hile th e l a t t e r te c h n iq u e w ould have b e en more u s e f u l f o r t h i s p ro b lem , no a p p r o p r ia te program was a v a i l a b l e , and t h e w r i t e r ’ s com puter e x p e rie n c e d id n o t w a rra n t an a tte m p t a t d e v e lo p in g o n e . The m ethod u s e d , how ever, i s s a t i s f a c t o r y a s lo n g a s i t i s u se d c o n s i s t e n t l y . The r e l a t i o n s w hich r e s u l t e d from d i r e c t r e g r e s s i o n a n a ly s is o f th e raw d a ta w ere u n s a t i s f a c t o r y f o r two r e a s o n s . F i r s t , th e r e l a t i o n betw een d ra in a g e a r e a and t h e s q u a re o f r e l i e f (F ig 13b) m ust be im posed on t h e d a t a , f o r i t w i l l n o t n e c e s s a r i l y r e s u l t from th e l e a s t s q u a re s a n a l y s i s . S e c o n d ly , th e s tre a m s sam pled w ere to o s i m i l a r i n p r e c i p i t a t i o n v a lu e s t o a llo w developm ent o f a g e n e r a l r e l a t i o n c o n ta in in g t h a t p a ra m e te r. I n o th e r w o rd s, mil n in e stre a m s sam pled s t a r t e d ro u g h ly i n th e same h ig h p r e c i p i t a t i o n zo n e, flow ed th ro u g h 54 55 s e v e r a l zones o f lo w e r p r e c i p i t a t i o n and ended i n s i m i l a r low p r e c i p i t a t i o n z o n es. As a r e s u l t , r e g r e s s i o n e q u a tio n s show o n ly t h a t f o r th e stre a m s sam pled, s te e p g r a d i e n t s te n d t o o c c u r i n h ig h p r e c i p - ' i t a t i o n z o n e s. T h is i s s t r i c t l y a r e f l e c t i o n o f t h e g eo m etry o f th e stream p r o f i l e , w here s te e p e r g r a d i e n t s o c c u r a t h ig h e r e l e v a t i o n s , and does n o t i n d i c a t e p r e c i p i t a t i o n ’ s t r u e e f f e c t . The n in e sam ple s tre a m s m ust be compared l a t e r t o s tre a m s i n v e r y d i f f e r e n t p r e c i p i t a t i o n zones t o d e te rm in e t h i s e f f e c t . As a r e s u l t o f th e s e f i n d i n g s , o n ly fo u r v a r i a b l e s w ere u s e d i n th e r e g r e s s io n a n a ly s e s , g r a d i e n t , S , a r e a : r e l i e f ^ r a t i o , A/R^, p a r t i c l e s i z e , D ^ , and w id th :d e p th r a t i o , W/D, The e q u a tio n s , t h e c o r r e l a t i o n c o e f f i c i e n t s and t h e i r s i g n i f i c a n c e f o r e ac h o f th e f o u r d a ta s u b d iv is io n s fo llo w : S e d im e n ta ry co n cav e: S = ( 6 .6 x 10~ 5)R .80± .3*tT ]^.20± .22(,.f/D) .1 h i:.2 8 a .4 0 ± .1 ? r. = .800 F = 1 8 .7 (9 9 .5 * ) S e d im e n ta ry s t r a i g h t : S = ( l . h x 10""3)R*35b 1 08 A.1 9 ± .0 7 r = .7 9 5 (9 7 .5 2 ) , F = 9 -3 (9 9 .5 2 ) G r a n itic c o n ca v e : s = (7.6 x i o~^)r^*025> i " : r = .940 (9 9 2 ). _ _ _ 1o(yr/p). _ F = 4 6 .0 (9 9 .5 2 ) 14 56 G r a n itic s t r a i g h t : S = ( 1 .6 x 1 o - ^ R ’ 42* - 1* ^ ’ 062^ ^ 6 r = .5 8 8 (9 9 ^ ) , F = 5 .7 6 " (9 9 ^ ) V fi.dth:depth r a t i o was e lim in a te d from t h e s t r a i g h t segm ents b e ca u se i t was s t a t i s t i c a l l y i n s i g n i f i c a n t , p ro b a b ly due t o th e g r e a t v a r i a b i l i t y .in th e s e seg m e n ts. I n g e n e r a l, th e re m a in in g v a r i a b l e s exceed a s i g n if ic a n c e l e v e l o f 90$, i n d i c a t i n g t h a t t h e r e i s o n ly one chance i n t e n t h a t a random v a r i a b l e c o u ld re d u c e t h e d e v ia t io n o f S a s much a s th e y d o . The m u l t i p l e c o r r e l a t i o n c o e f f i c i e n t s ( r ) i n d i c a t e th e c h an n e l g r a d ie n t i s c l o s e l y r e l a t e d to t h e s e p a ra m e te rs . In a d d itio n , th e F r a t i o s (S n e d e c o r, 1956 and Owen, 1962) show t h e s ig n if ic a n c e l e v e l o f a l l th e s e e q u a tio n s e x ce e d s 99$* The F r a t i o i s th e r a t i o o f th e mean s q u a re o f t h e d ep en d e n t v a r i a b l e , i n t h i s c a s e S , t o th e mean s q u a re o f t h e d i f f e r e n c e s b etw een r e a l S and t h e S p r e d ic te d b y th e r e g r e s s i o n . Thus a h ig h r a t i o i n d i c a t e s t h e r e g r e s s io n h a s a good f i t . D e v ia tio n s o f t h e g r a d ie n t s p r e d ic te d by t h e e q u a tio n s from t h e r e a l o n es g e n e r a l ly a re t h e r e s u l t o f d i f f e r e n c e s i n c o n c a v it y . Stream s w ith h ig h e r th a n a v era g e c o n c a v ity have s t e e p e r g r a d ie n t s upstream and g e n t le r on es downstream th a n t h o s e p r e d ic t e d . S in c e c o n c a v ity d if f e r e n c e s a re r e l a t e d t o l i t h o l o g y and b a s in sh a p e , m ost o f t h e d e v ia t io n s from t h e e q u a tio n s a r e f u n c t io n s o f t h e s e two f a c t o r s . E xtrem ely la r g e d e v ia t i o n s r e s u l t a t s t a t i o n s w here u n u su a l f e a t u r e s su ch a s bed rock o u tc r o p s , a c t i v e t r e n c h in g , and u n u su a l ch a n n el w a ll 57 p r o p e r t i e s l i k e c a l i c h e cem en tin g te n d t o p ro d u c e u n u s u a l w id th :d e p th r a tio s or p a r tic le s iz e s . V e g e ta tio n seemed t o have no c o n s i s t e n t e f f e c t on th e d e v i a t i o n s . I n a d d i t i o n , w h ile d r a in a g e a r e a g e n e r a lly in c r e a s e s w ith le n g th , i t d o e s so i n l a r g e in c re m e n ts a t e ac h m ajo r trib u ta ry . As a r e s u l t , a s t a t i o n im m e d ia te ly b elo w a t r i b u t a r y ju n c tio n w i l l have a d ra in a g e a r e a w hich i s u n u s u a lly h ig h f o r i t s lo c a tio n . A s t a t i o n j u s t u p stre a m w ould b e u n u s u a lly lo w . When t h e s e v a lu e s a r e s u b s t i t u t e d i n t h e g e n e r a l e q u a tio n w hich assum es a u n ifo rm r a t e o f i n c r e a s e , th e y p ro d u c e a d d i t i o n a l d e v i a t i o n s . I f p r e c i p i t a t i o n e f f e c t s g r a d i e n t , a s tre a m w hich flo w s th ro u g h zones o f lo w e r p r e c i p i t a t i o n th a n th o s e i n c o rre sp o n d in g p o s i t i o n s on a n o th e r stre am s h o u ld te n d t o h ave a s te e p e r p r o f i l e . T h is e f f e c t w ould b e a p p a re n t i f t h e d e v ia t io n s showed t h e m odel p r e d ic te d g r a d ie n ts to o g e n tle f o r t h e lo w e r p r e c i p i t a t i o n stre a m and to o s te e p f o r th e h ig h e r one. No such r e l a t i o n t o p r e c i p i t a t i o n was fo u n d , how ever. I n a d d i t i o n t o e q u a tio n s (1 ) t o ( 4 ) , a s u i t e o f f u n c tio n s r e l a t i n g e ac h v a r i a b l e t o t h e d i s t a n c e from th e d iv id e , L, was o b ta in e d f o r each s u b d iv is io n (T a b le 6 ) . The c o e f f i c i e n t n i n th e e q u a tio n s S = kLn r e p r e s e n t s th e a v e ra g e c o n c a v ity f o r e ac h p r o f i l e segm ent. N ote t h a t i n each c a s e t h i s a v e ra g e c o n c a v ity i s much lo w e r th a n t h a t w hich one w ould e x p e c t from t h e v a lu e s i n T a b le 5* The r e a s o n f o r t h i s a p p a re n t in c o n s is te n c y i s t h e u s e o f d i f f e r e n t m ethods t o o b ta in th e b e s t f i t e q u a tio n s . R e c a ll t h a t th e com puter m in im iz e s th e s q u a re s o f d e v ia tio n s p a r a l l e l t o an a x i s . On th e o th e r hand, t h e b e s t f i t l i n o s d e te rm in e d g r a p h ic a ll y by eye r e p r e s e n t a m in im iz a tio n o f s q u a re s o f 58 d e v ia tio n s p e r p e n d ic u la r t o th e b e s t f i t l i n e . The d i f f e r e n c e betw een th e two l i n e s i n c r e a s e s a s sam ple s i z e d e c r e a s e s o r s c a t t e r i n c r e a s e s . I n s i t u a t i o n s w here a v e r y s m a ll number o f d a ta p o in ts a r e a v a i l a b l e , such a s i n d e te rm in in g c o n c a v ity •f o r a p r o f i l e segm ent w ith o n ly fo u r t o e ig h t p o i n t s , th e l i n e f i t by eye i s p ro b a b ly j u s t a s v a l i d a r e l a t i o n a s t h a t f i t b y co m p u ter. T h is m ethod a llo w s some i n t e r p r e t a t i o n o f th e s c a t t e r b a s e d on t h e r e l a t i o n o f one p r o f i l e segm ent t o th e o th e r i n a s tre a m , th e c o n s id e r a tio n o f a b e r r a n t p o i n t s r e l a t e d t o u n u s u a l c h a n n e l f e a t u r e s and t h e r e a l i z a t i o n t h a t t h e r e l a t i o n o f g r a d ie n t t o le n g th becomes i n c r e a s i n g l y p o o r to w ard t h e d iv id e a s t h e e r r o r i n m easurem ent o f b o th p a ra m e te rs i n c r e a s e s . D ata p o i n t s c an b e w eig h ted a c c o rd in g ly a s . t h e l i n e i s draw n, w h ile t h e com puter i s u n a b le to i n t e r p r e t in f o r m a tio n i t h a s n o t r e c e iv e d . v a lu e s have b een u s e d on i n d i v i d u a l s tre a m s . C o n se q u e n tly , g r a p h ic a l When more sam ple p o i n t s a r e a v a i l a b l e , a s i n t h e f o u r f o l d s u b d iv is io n , t h e c o m p u te r's r e s u l t s a r e more a c c u r a te and, i n t h e c a s e o f m u l t i p l e c o r r e l a t i o n , e a s i e r t o o b ta in . Thus a l l e q u a tio n s r e l a t i n g o n ly t h e f o u r s u b d iv is io n s a r e com puter d e r iv e d . Each v a r i a b l e on t h e r i g h t s id e s o f e q u a tio n s (1 ) t o (4 ) can be r e p la c e d w ith an e x p r e s s io n i n te rm s o f le n g th (T a b le 6 ) . R e lie f i s c o n s ta n t f o r each s tre a m , and when i t s v a lu e i s s u b s t i t u t e d f o r R i n an e q u a tio n , an e x p re s s io n i s p ro d u c e d f o r g r a d ie n t i n te rm s o f c h a n n e l le n g th , p r e d ic te d e n t i r e l y by th e l o n g i t u d i n a l v a r i a t i o n s o f t h e o th e r p a ra m e te rs . For exam ple, i n t h e s e d im e n ta ry concave s u b d iv is io n , W idth: d e p th " W id th :d e p th ra tio G ra d ie n t 8 H (A II A Is x— x-z 11 CO O H G) If < 1 1^ 1 ! 0 CO L II tti •%> a K-• co On V\ k* in If 11 qe o CM IT» 4 11 M n = 14 P a r tic le s iz e vn ii 11 # CO ^3* o S e d im e n ta ry s t r a i g h t D rain ag e a r e a R i s th e c o r r e l a t i o n c o e f f i c i e n t . The s u b s c r i p t s oni i t s v a lu e in d ii c a te th e s ig n ific a n t c e . 2 = 99$, 1 = 93 $ ;and 0 i s l e s s th a n 9'5$. The number o f sam ples i n e ac h su b d iv is io n i s g iv e n by ia. R e g re ssio n i E q u a tio n s R e la tin g Dr a in a g e A rea, A, P a rt » ic le S iz e , R a tio , w/E i, and G ra d ie n t, S , t o C hannel L en g th , L P r o f i l e segm ent T a b le 6 . 59 N % »■ ; to ii ti VO • -d* % 11 Q „• c N VO H5 U Cv. § cj If | j VO CX} o in x— • (\1 K ^ n 11 < On in s (N- VO o H 11 <5 -sa a 1 i : r- •o c o U cm i" A O II to NO in ~ x- <Ni. 11 o • 11 05 CM o X in N N cn U ^ It H 05 j $R CM in 8 11 ON s On • II (ti 1 11 CO On LB A vr\ T-* II A z-x in o £ 11 < r- • 11 05 S ° ^7 II ti CM O x— CM • [N. co A in cn • 4 ii P J « ^ o cm x ^ X— 11 « s a 60 lo g S = - 1 .? 8 - .iH)log(A/R2 ) + .a O lo g E ^ + ,1*H og(w /D ). S u b s t i t u t i n g from T ab le 5 p ro d u c e s : lo g S = - I .78 + ,801ogR - ,4 0 ( - 8 .0 2 + 2.031ogL ) + .2 0 ( 4 .0 6 - .7 llo g L ) + ,1 4 ( .5 5 + .441ogL) lo g S = - .0 8 + .801ogR - .931ogL S = -.8 3 R * 80 L” *9 3 (5) For t h e re m a in in g t h r e e s u b d iv is io n s , t h e e q u a tio n s a r e : S ed im en tary s t r a i g h t S = -.2 9 R , 5 8 L*-e.50 ( 6) G r a n itic concave S = -.1 1 R 1 , 02L“ *8^ (7 ) G r a n itic s t r a i g h t S = -.0 3 8 R * 2f2L~*33 D e s p ite d i f f e r e n c e s i n t h e v a r i a t i o n o f a r e a s r e l i e f 2 r a t i o and p a r t i c l e s i z e m t h l e n g th i n th e s e d im e n ta ry and g r a n i t i c concave segm ents, th e e x p o n en ts o f l e n g th i n e q u a tio n s (5 ) and (7 ) a r e s i m i l a r . These e x p o n en ts a r e t h e c o n c a v ity o f t h e p r e d ic te d p r o f i l e s . Thus t h e concave segm ents i n g e n e r a l have s i m i l a r sh ap e s r e g a r d l e s s o f l i t h o l o g y , b u t th e manner i n ■which th o s e c o n c a v itie s a r e a t t a i n e d d i f f e r s . The exponent o f le n g th f o r s e d im e n ta ry concave seg m en ts, - . 9 3 , g e t s -.8 1 from a r e a , - . 1 4 from p a r t i c l e s i z e and + .0 2 from w id th :d e p th . +87$ , +15£ and -2 ^ r e s p e c t i v e l y . These a r e I n t h e g r a n i t i c concave seg m en ts, t h e same t h r e e p a ra m e te rs c o n t r i b u t e - . 8 6 , -.1 5 and + .1 2 t o t h e ex p o n en t - . 89 , +96$ , +17? and - 13$ r e s p e c t i v e l y . 61 The s t r a i g h t p r o f i l e segm ents a r e n o t a s s i m i l a r , r e f l e c t i n g th e c o n s is te n t d if f e r e n c e s i n c o n c a v ity w hich s e d im e n ta ry and g r a n i t i c c h a n n e ls show dow nstream . I n th e s e d im e n ta ry s tre a m s , l e n g t h 's exponent o f -.5 0 i s t h e sum o f - .2 9 from a r e a (5 8 /0 and -.2 1 from p a r t i c l e s i z e (4 2 $ 0 . On th e o th e r h a n d , p a r t i c l e s i z e shows much l e s s e f f e c t i n t h e g r a n i t i c s tre a m s w here i t c o n t r i b u t e s o n ly -.0 3 (9 /0 t o th e exponent o f - . 3 3 . The re m a in in g - .3 0 (91$) i s c o n t r o l l e d by d ra in a g e a r e a . T a b le ?• C om parison o f R e a l and P r e d ic te d C o n c a v itie s P ro file segm ent P r e d ic te d c o n c a v ity A verage re a l c o n c a v ity D iff e re n c e S e d im e n ta ry concave -.9 3 - 1 .0 ' -7 $ S e d im e n ta ry s t r a i g h t - .5 0 -.5 6 -1 1 $ G r a n itic concave - .8 9 G r a n itic s t r a i g h t - .3 3 - 1 .0 -1 1 $ -.3 2 +3$ T ab le ? com pares th e c o n c a v i t i e s p r e d i c t e d b y l o n g i t u d i n a l v a r i a t i o n s o f p a ra m e te rs i n e q u a tio n s (5 ) t o (8 ) w ith a v e ra g e v a lu e s f o r com puter d e riv e d c o n c a v i t i e s o f t h e i n d i v i d u a l w ashes i n each s u b d iv is io n . I n each c a s e t h e d i f f e r e n c e i s w ith in th e l i m i t s o f a c c u ra c y o f th e m easu rem en ts, w hich w ould a llo w f o r a v a r i a t i o n o f 10 to 20$. The e q u a tio n f o r t h e p r o f i l e , r e l a t i n g e l e v a t i o n and l e n g t h , i s sim ply th e i n t e g r a l o f th e g r a d i e n t - l e n g t h e x p r e s s io n . se d im e n ta ry concave a s an ex am p le, t h e c a l c u l a t i o n s a r e : A gain, u s in g 62 s = -.83R*8()i f 93 (5 ) dH/dL » -.83R , 80L"*93 H « -.83R*80j i r ,93dL H = «11.9 r *8 ol *°7 + C (9) The e q u a tio n s f o r th e re m a in in g s u b d iv is io n s a r e : S ed im en tary s t r a i g h t H = -.SSR*^3! / ^ 0 + c (10) G r a n itic concave H « -R1*02!* 11 + C (11) G r a n itic s t r a i g h t H = -*05?R*^2L*8^ + C (12) The i n t e g r a t i o n c o n s ta n t c a n b e d e te rm in e d f o r a g iv e n p r o f i l e segment by s u b s t i t u t i n g th e v a lu e s o f H, L and R from one o f t h e end p o i n t s . TEST OF THE PROFILE EQUATIONS Two stre a m s from b o th th e C a t a lin a and Tucson M ountains w ere chosen f o r t e s t i n g t h e m odel ( F ig . 1 7 ). B oth c h a n n e ls i n t h e C a ta lin a s d r a in r e g io n s o f C a t a lin a G n e is s , a c o a r s e - g r a in e d ro c k re s e m b lin g g r a n i t e i n c o m p o sitio n and some w e a th e rin g p r o p e r t i e s . The Tucson M ountain w ashes flo w th ro u g h a r e a s o f v a r i e d l i t h o l o g y , in c lu d in g r h y o l i t e , s a n d s to n e , m udstone and lim e s to n e , t h e same l i t h o l o g i e s found i n th e fo u r o r i g i n a l s e d im e n ta ry -v o lc a n ic s tre a m s . The u n i t s i n Tucson 3 a r e r e l a t i v e l y s o f t an d , u n l i k e th e s e d im e n ts i n t h e M ustangs and W h etsto n es, w e a th e r t o san d s i z e fra g m e n ts . The Tucson 2 b a s in , on th e o th e r h an d , i s c ro s s e d by s e v e r a l r h y o l i t i c d ik e s , w hich have c au se d some l o c a l motam orphism . T h is f a c t o r , t o g e th e r w ith a to u g h e r sa n d s to n e u n i t , c r e a t e s more r e s i s t a n t b ed m a t e r i a l . Map and f i e l d d a t a f o r th e s e fo u r stre a m s a re l i s t e d i n A ppendix I I . P r o f i l e s w ere c o n s tr u c te d f o r e ac h stre a m u s in g e q u a tio n s (9 ) t o (1 2 ) . The p o s i t i o n o f t h e change i n c o n c a v ity was d e f in e d on th e b a s i s o f t h e c u m u la tiv e t r i b u t a r y d e n s it y d is c u s s e d e a r l i e r . The p o in t w here th e d e n s i t y began i t s f i n a l d e c r e a s e dow nstream was u s e d , and i s shown on F ig u re s 18 and 19 a s th e " p r e d ic te d b re a k " . In th re e o f th e fo u r c a s e s t h i s l o c a t i o n m ethod was v e r y a c c u r a t e , w h ile i n t h e f o u r t h , C a ta lin a 1 , th e in a c c u r a c y a p p a r e n tly d id n o t e f f e c t t h e r e s u l t s . The c a l c u l a t i o n s in v o lv e d w i l l be d e m o n stra te d on C a t a lin a 2. The c u m u la tiv e t r i b u t a r y d e n s it y i n d i c a t e d t h a t th e c o n c a v ity b re a k 63 3 FIG . 17. LOCATION MAP FOR STREAMS AND STATIONS IN CATALINA AND TUCSON MOUNTAINS. P 65 o c c u rs 11500 f e e t , L, from t h e d iv id e a t an e l e v a t i o n o f 2960 f e e t , H. S in c e th e d iv id e i s 6000 f e e t h ig h , t h e u p p e r p r o f i l e segm ent h a s a r e l i e f o f 3040 f e e t , R. H = -R1 ,0 2 L*11 + C (1 1 ) H = -3 6 1 0 1 /11 + C At th e c o n c a v ity b re a k , 2960 = -3 6 1 0 (1 1 5 0 0 )* 11 + C 2960 = -10150 + C c = 13110 Thus f o r t h e concave segm ent, H = -3 6 1 0 1 /11 + 13110 S u b s t i t u t i o n o f a.num ber o f a r b i t r a r y c h a n n e l le n g th s b etw een 0 and 11500 f e e t and c a l c u l a t i o n o f t h e c o rre s p o n d in g e l e v a t i o n s w i l l g iv e s u f f i c i e n t d a ta t o p l o t th e p r o f i l e . The com puted p r o f i l e s have n o t been u se d betw een 0 and 1000 f e e t l e n g t h , how ever, s in c e g r a d i e n t , dfl/dL, ap p ro a ch e s i n f i n i t y o r v e r t i c a l a s L a p p ro a c h e s z e r o . T h is i s n o t th e c a s e i n t h e n a t u r a l c h a n n e ls , a s a c o n s i s t e n t c o n c a v ity i s n o t m a in ta in e d t h i s c lo s e t o t h e d i v i d e . I t was a ls o n e c e s s a ry t o d e f in e b o th computed p r o f i l e segm ents a s p a s s in g th ro u g h th e c o n c a v ity b re a k i n o rd e r t o in s u r e a c o n tin u o u s p r o f i l e . F or th e s t r a i g h t segm ent o f C a t a lin a 2 , r e l i e f i s 660 f e e t , and th e c h a n n e l le n g th and e l e v a t i o n a t t h e c o n c a v ity b re a k a r e I I 500 and 2960 f e e t r e s p e c t i v e l y . H = -.0 5 ? R * if2L *67 + C S u b s t i t u t i n g f o r R, L and H p ro d u c e s : (1 2 ) 66 2960 = -4 6 5 + C C = 3425 T hus: •H = -.8 8 L * 67 + 3425 A gain, s u b s t i t u t i o n o f a r b i t r a r y le n g t h s and c o m p u ta tio n o f e le v a tio n s p ro d u c e s th e p o i n t s f o r t h e p r o f i l e p l o t t e d i n f i g u r e 18. The re m a in in g p r e d i c t e d p r o f i l e s w ere o b ta in e d i n th e same m anner. F ig u r e s 18 and 19 show c lo s e s i m i l a r i t i e s b etw een t h e com puted and a c t u a l p r o f i l e s . The maximum v e r t i c a l and h o r i z o n t a l s e p a r a tio n s i n e a c h segm ent a re a ls o shown. These d i s t a n c e s a r e a c t u a l l y c u m u la tiv e e r r o r s , b u t th e y n e v e r ex ceed 15$ i n t h e co n cav e seg m en ts, w e ll w ith in th e e r r o r from m easurem ents a lo n e . The e r r o r s te n d t o be l a r g e r i n t h e s t r a i g h t seg m en ts, g o in g up t o 20$, w hich i s p ro b a b ly beyond sim p le m easurem ent e r r o r . I n e a c h c a s e , how ever, t h e d e v ia t io n from th e m odel can b e e x p la in e d on th e b a s i s o f t h e l i t h o l o g y , b ed m a t e r i a l o r b a s in sh a p e . C a t a lin a 1 , w hich shows t h e p o o r e s t f i t i n th e concave segm ent, i s i n g n e is s below numerous s te e p c l i f f s . L arge b ed m a t e r i a l i s m a in ta in e d f a r dow nstream , and t h e r a t e o f p a r t i c l e s i z e d e c r e a s e i s t h u s lo w . a r e s u l t , c o n c a v ity i s lo w e r th a n e x p e c te d i n t h e m o d el. In th e s t r a i g h t seg m en ts, t h e p r e d i c t e d p r o f i l e i s g e n t l e r and l e s s concave th a n th e r e a l one i n C a t a lin a 1. F i e l d i n v e s t i g a t i o n s c o n firm e d t h a t th e p a r t i c l e s iz e d e c r e a s e s more r a p i d l y i n t h e s t r a i g h t segm ent th a n i s u s u a l f o r g r a n i t i c s tre a m s , due t o th e m a in te n a n c e o f l a r g e b ed m a t e r i a l f a r dow nstream i n t h e co n cav e segm ent o f C a t a lin a 1 . The As 67 CA TALINA I M‘ • REAL PROFILE o PREDICTED PROFILE 4 X = VERTICAL EXAGGERATION _ 600C - MAXIMUM ERROR V ERTICA L 17% H O RIZONTAL 2 5 % 4000MAX. ERROR VERT. 15% HORIZ. 1 2 % PREDICTED L BREAK 30C C - 5000 10000 15000 CHANNEL LENGTH 20000 25000 CATALINA 2 • REAL PROFILE GOOD* ” PREDICTED PR O FILE 4X = VERTICAL EXAGGERATION 5000 _ MAXIMUM ERROR VERTICAL 7% HORIZONTAL 6 % 3000- MAX. ERROR VERT. 10 % HORIZ. 4 . 5 % PREDICTED BREAK 2000 5000 lOOOO 15000 20000 .CHANNEL LENGTH FIG . 18. COMPARISON OF REAL AND PREDICTED PROFILES IN CATALINA MOUNTAINS 25000 68 TU CSO N 2 3500 • REAL PROFILE ® PREDICTED PR O FIL E ELEVATION (FEET) . 0X = V E R T IC A L E X A G G E R A T IO N MAXIMUM ERROR VERTICAL 12 .5 HORIZONTAL 18% M AX.ERROR x 2500 VERT. H0R1Z. 14% 94% 5000 • 10000 15000 20000 m CHANNEL LENGTH (FEET) 4000 TU C SO N 3 * REAL PR O FIL E ° PREDICTED P R O F IL E ELEVATION (FEET) 8 X = VERTICAL EX A G G ERA TIO N MAXIMUM ERROR VERTICAL 1 2 .5 % HORIZONTAL 18 % 3000 PREDICTED X BREAK MAX. ERROR 2500 VERT. HORIZ, 0 .3 % 7 .7 % 5000 10000 15000 20000 CHANNEL LENGTH (FEET) F IG . 19. C O M PA R ISO N BETW EEN R EA L AND PR ED IC TED P R O F IL E S IN TH E T U C SO N M OUNTAINS 69 computed p r o f i l e f o r C a t a lin a 2 shows l i t t l e d e v ia t io n from th e a c t u a l p r o f i l e , b e ca u se th e s tre a m shows a r a t e o f p a r t i c l e s i z e d e c r e a s e s im ila r to th e g r a n i t i c s tre a m s i n t h e W h etsto n es and S i e r r i t a s , Tucson 3 a ls o shows a c lo s e r e l a t i o n b etw een r e a l and p r e d i c t e d p r o f i l e s i n th e concave segm en t, due t o a r a t e o f p a r t i c l e s i z e d e c r e a s e s i m i l a r to t h e o th e r s e d im e n ta ry s tre a m s . M ost o f t h e d e v ia t io n betw een th e Tucson 2 r e a l and p r e d i c t e d p r o f i l e s r e s u l t s from t h e s tre a m ’ s flo w in g a lo n g th e f l a n k o f a h i l l b etw een 2950 and 2600, T h is s i t u a t i o n c r e a t e s an u n u s u a lly lo w r a t e o f a r e a i n c r e a s e w hich r e s u l t s i n th e low c o n c a v ity i n t h a t p a r t o f t h e segm ent. B oth Tucson M ountain s tre a m s a r e l e s s concave th a n t h e p r e d i c t e d p r o f i l e s i n t h e i r dow nstream segm ents due t o a low r a t e o f p a r t i c l e s i z e d e c r e a s e com pared t o th e o th e r s e d im e n ta ry s tre a m s . The Tucson s tre a m s flo w a t e l e v a t i o n s a lm o st t o t a l l y below a l l • s t a t i o n s on th e o r i g i n a l n in e s tre a m s . Thus i f p r e c i p i t a t i o n i s a f a c t o r , i t sh o u ld have some e f f e c t on t h e p r o f i l e s o f th e s e s tre a m s . A lo w e r p r e c i p i t a t i o n s h o u ld r e s u l t i n a s m a lle r d is c h a r g e f o r a g iv e n d ra in a g e a r e a , w hich i n t u r n w ould r e q u i r e a s te e p e r g r a d ie n t t o tra n s p o rt m a te ria l. However, e x a c tly t h e o p p o s ite i s t h e c a s e . On b o th p r o f i l e s , t h e g r a d ie n t p r e d i c t e d from th e m odel i s s te e p e r th a n t h e r e a l g r a d ie n t. A p p a re n tly p r e c i p i t a t i o n h a s no e f f e c t on t h e p r o f i l e s , o r i f i t h a s an e f f e c t , i t i s so m ino r t h a t th e s tu d y was n o t p r e c i s e enough t o d e te c t i t . I t c o u ld i n f a c t b e overshadow ed by t h e o th e r f a c t o r s a f f e c t i n g g r a d ie n t. I t i s a ls o p o s s i b l e t h a t th e t o t a l summer 70 p r e c i p i t a t i o n d o e s n o t r e l a t e - t o h y d r a u lic f a c t o r s su ch a s d is c h a r g e . A more im p o rta n t p a ra m e te r m ig h t b e a v e ra g e sto rm i n t e n s i t y , w hich c o u ld i n f a c t be r e l a t i v e l y c o n s ta n t th ro u g h o u t t h e s tu d y a r e a . d a ta w ere a v a i l a b l e t o e v a lu a te t h i s p o s s i b i l i t y . In s u ffic ie n t However, i f t h i s w ere th e c a s e , storm d is c h a r g e s p e r u n i t a r e a w ould b e t h e same a t a l l e l e v a tio n s . The o n ly e f f e c t o f t h e g r e a t e r t o t a l p r e c i p i t a t i o n a t h ig h e r e le v a tio n s th e n w ould b e t o te n d t o in c r e a s e r a t e s o f w e a th e rin g . The t e s t h a s t h u s shown t h a t e q u a tio n s (9 ) th ro u g h (1 2 ) d e r iv e d from th e l o n g i t u d i n a l v a r i a t i o n s o f d ra in a g e a r e a , p a r t i c l e s i z e and w id th :d e p th r a t i o can b e u s e d t o p r e d i c t p r o f i l e s when r e l i e f , l i t h o l o g y and t r i b u t a r y d i s t r i b u t i o n a r e known. F u rth e rm o re , i t h a s v e r i f i e d t h e p ro p o se d m odel o f th e s e e p h em eral s tre a m p r o f i l e s a s two segm ents a d ju s te d t o d i f f e r e n t s e t s o f c o n d itio n s . D e v ia tio n s o f t h e p r e d i c t e d p r o f i l e s from t h e r e a l on es c a n b e e x p la in e d by u n u s u a l l o n g i t u d i n a l changes o f th e p a r t i c l e s i z e . P r e c i p i t a t i o n , a s m easu red b y 't h e in d e x r e l a t i n g i t t o e l e v a t i o n shows no d i s c e r n i b l e e f f e c t . CONCLUSIONS The l o n g i t u d i n a l p r o f i l e s o f ep h em eral s tre a m s d r a in in g from th e m ou n tain s to th e a l l u v i a l v a l l e y s i n s o u th e a s te r n A riz o n a a r e a d ju s te d t o fo u r m ajo r in d e p e n d e n t v a r i a b l e s , r e l i e f , .l o c a l b a s e l e v e l , l i t h o l o g y and c lim a te . R e l i e f and l o c a l b a s e l e v e l , th e m outh o f t h e s tre a m , d e te rm in e th e v e r t i c a l d ro p a c h a n n e l m ust u n d erg o and th e d is ta n c e i n w hich i t m ust do i t . on th e sy stem . I n e s s e n c e , t h i s im p o ses t h e maximum c h a n n e l s lo p e The p a th t h e c h a n n e l fo llo w s t o c o n n e c t t h e d iv id e and t h e m outh, th e p r o f i l e , i s a d ju s t e d t o th e l i t h o l o g y and c lim a te , w hich d e te rm in e th e d is c h a r g e , sed im en t lo a d and ro u g h n e s s . T hese h y d r a u lic f e a t u r e s have b een a p p ro x im a te d i n t h e d ry s ta g e by d ra in a g e a r e a , bed m a te r ia l s iz e and w id th :d e p th r a t i o . P r o f i l e a d ju s tm e n t t a k e s t h e form o f two segm ents o f d i f f e r e n t c o n c a v ity c o n n ec te d a t th e p o in t o f c o n c a v ity c h an g e . The l o c a t i o n o f t h i s p o in t i s d e te rm in e d by a change i n th e r a t e o f i n c r e a s e o f d ra in a g e a r e a w ith c h a n n e l l e n g t h , w hich i s r e f l e c t e d by a change i n th e number o f t r i b u t a r i e s e n te r in g p e r u n i t d is ta n c e and d ra in a g e d e n s i t y . The d i f f e r e n t c o n c a v itie s r e f l e c t t h e e x is t e n c e o f two d i f f e r e n t s e t s o f h y d r a u lic r e l a t i o n s i n e ac h c h a n n e l. A more r a p i d in c r e a s e o f d ra in a g e a r e a and d e c re a s e o f p a r t i c l e s i z e to g e th e r w ith a g e n e r a l in c r e a s e o f w id th :d e p th r a t i o p ro d u ce a h ig h e r c o n c a v ity i n th e u p stre am segm ent th a n downstream w here th e r a t e s o f change o f a r e a and p a r t i c l e s i z e a r e s m a lle r and w id th :d e p th r a t i o i s v e ry i n c o n s i s t e n t o r d e c r e a s e s . ■71 In 72 each c a s e , d ra in a g e a r e a , w hich r e p r e s e n t s d is c h a r g e and sed im en t lo a d , i s t h e dom inant c o n t r o l . E q u a tio n s w ere d e v e lo p e d r e l a t i n g g r a d ie n t t o d r a in a g e a r e a , r e l i e f , p a r t i c l e s i z e and w id th :d e p th r a t i o i n e a c h o f th e f o u r s u b d iv is io n s : S e d im e n ta ry concave S = ( 6 .6 x 1 0 -5 ) R » ^ ( W / D ) " 14± . 28 (D a .4 0 ± .1 ? S e d im e n ta ry s t r a i g h t S = ( 1 .4 x 1 0"3 )Re38d:,1Z,'Ehm*2 6 1 ,0 8 ( 2) G r a n itic s t r a i g h t ,.5 1 ± .0 5 A G r a n itic s t r a i g h t S = ( 1 .6 x 10 -3 )R '4 % t' 1 4 ^ . 062±. 0$6 (4 ) a .2 1 ± .0 7 Each p a ra m e te r, e x c e p t r e l i e f , was th e n r e p la c e d by an e q u a tio n r e l a t i n g i t t o c h a n n e l l e n g t h i n a p a r t i c u l a r s u b d iv is io n . An e x p re s s io n f o r g r a d ie n t i n te rm s o f le n g th and r e l i e f r e s u l t e d . I t was u s e d t o p r e d i c t p r o f i l e s i n m o u n tain ra n g e s o th e r th a n th o s e from w hich th e o r i g i n a l d a ta was c o l l e c t e d by s u b s t i t u t i o n o f t h e known r e l i e f and a r b itr a r y channel le n g th s . V a r ia tio n b etw een t h e r e a l and p r e d ic te d p r o f i l e s was g e n e r a lly w ith in th e l i m i t s o f a c c u ra c y im posed by th e 73 e r r o r o f m easu rem en ts. M ost o f t h e v a r i a t i o n was e x p la in e d by l i t h o l o g i c , o r p a r t i c l e s i z e , d i f f e r e n c e s , w h ile th o v a r i a t i o n o f p r e c i p i t a t i o n among th e ra n g e s showed no a p p a re n t e f f e c t . T here may n o t b e enough v a r i a t i o n i n p r e c i p i t a t i o n to a llo w d e t e c t i o n o f an e f f e c t , o r r a i n f a l l i n t e n s i t i e s may b e s i m i l a r th ro u g h o u t t h e e le v a tio n ra n g e s tu d ie d . S u f f i c i e n t d a ta f o r a d e c is io n w ere n o t a v a i l a b l e . Thus t h e p r o f i l e s i n th e ep h em eral c h a n n e ls s tu d ie d a r e a d ju s te d t o d is c h a r g e , sed im en t lo a d and ro u g h n e ss a s i s t h e c a s e i n p e r e n n ia l s tre a m s and i n th e ep h em eral s tre a m s s tu d ie d by L eopold and M ille r (1 9 5 6 ). The change i n c o n c a v ity w hich o c c u rs i s p r im a r i ly a f u n c tio n o f a change i n th e r a t e s o f d is c h a r g e i n c r e a s e and ro u g h n e ss d e c r e a s e . REFERENCES Babcock, H. M ., and C u shing, E. I I ., 1 $42, R echarge t o g ro u n d w ater from f lo o d s i n a . t y p i c a l d e s e r t w ash, P in a l C ounty, A riz o n a : Am. Geophys. U nion T r a n s ., v . 23 , p . 4 9 -5 6 . B a tta n , L o u is J . , and G reen, C h r is tin e R ., D ata on summer p r e c i p i t a t i o n . i n t h e S a n ta C a t a lin a M o u n tain s, Pima C ounty, A riz o n a , (u n p u b lis h e d ). B ru sh , L ucion M ., J r . , 1961, D rain ag e b a s i n s , c h a n n e ls and flo w c h a r a c t e r i s t i c s o f s e l e c t e d s tre a m s i n c e n t r a l P e n n s y lv a n ia : U. S . G co l. S urvey P r o f . P ap er 282-F , p . 145-181. F o lk , R o b ert L . , 1965» P e tro lo g y o f S ed im en tary R o ck s: A u s tin , T ex as, 159 p . H e m p h ill’ s , G re en , C h r is tin e R ., and M a r tin , S . C la rk , I 967 , An e v a lu a tio n o f p r e c i p i t a t i o n , v e g e ta tio n and r e l a t e d f a c t o r s on th e S a n ta R ita E x p e rim e n ta l Range: U n iv e r s ity o f A riz o n a I n s t i t u t e o f A tm ospheric P h y s ic s T e c h n ic a l R e p o rts on M eteo ro lo g y and C lim a to lo g y o f A rid R e g io n s, n o . 1?» p . 1 -8 2 , __________________ __ , and S e l l e r s , W illiam D. ( e d i t o r s ) , 1964, A rizo n a C lim a te : U n iv e r s ity o f A riz o n a P r e s s , T ucson, 503 P» Hack, John T . , 1957* S tu d ie s o f l o n g i t u d i n a l stre a m p r o f i l e s i n V ir g in i a and M aryland: U. S . G eo l, S u rv ey P r o f . P ap er 294-B , 97 p . H u szar, C h a rle s K ., A g e n e r a liz e d s te p w is e m u l t i p l e r e g r e s s i o n a n a l y s i s : U n iv e r s ity o f A riz o n a Computer C e n te r, Tucson ( d i t t o e d i t i o n f o r lim ite d d is tr ib u tio n ) . K eppel, R o b e rt V ., and Reward, K. G ., 1962, T ra n s m is sio n l o s s e s i n ephem eral stre a m b e d s : J o u r n a l o f P ro c e e d in g s o f Amer. Soc. o f C i v i l E n g in e e rs , v . 8 8 , no . HY3, p . 5 9 -6 8 . L eopold, Luna B ., and H addock, Thomas, J r , , 1953, The h y d r a u lic geom etry o f stre a m c h a n n e ls and some p h y s io g ra p h ic im p lic a tio n s : U. S. G e o l. Survey P r o f . P ap er 252, 57 P* ____________, and M i l l e r , John P . , 1956, E phem eral s tre a m s h y d r a u lic f a c t o r s and t h e i r r e l a t i o n t o t h e d r a in a g e n e t : U. S . G eo l. S urvey P r o f . P ap er 282-A , p . 1 -3 7 . 74 75 _________________ , Wolman, M. G ordon, and l-S ille r, Jolin P . , 1964, F l u v i a l P ro c e s s e s i n Geom orphology: W. H. Freem an and C o ,, San F r a n c is c o , 522 p . L o o te n s, D ouglas J . , 1965, S t r u c t u r e and p e tro g ra p h y o f t h e e a s t s id e o f t h e S i e r r i t a M o u n tain s, Pima C ounty, A riz o n a : u n p u b lis h e d d o c t o r a l t h e s i s , U n iv e r s ity o f A riz o n a , 224 p . M ackin, J . H oover, 1948, C oncept o f t h e g ra d e d r i v e r : A m erica B u l l . , v , 5 9 , p . 4 6 3 -5 1 2 . G e o l, S oc. M i l l e r , Jo h n P . , 1958, High m o u n ta in s tre a m s ; t h e e f f e c t s o f g eo lo g y on c h a n n e l c h a r a c t e r i s t i c s and b ed m a t e r i a l : New M exico S t a t e B ureau o f M ines and M in e ra l R e s o u rc e s, Memoir 4 , 51 P» Owen, D onald B ., 1962, Handbook .o f S t a t i s t i c a l T a b le s : A ddison-W esley P u b lis h in g C o ., I n c . , R ead in g , M a s s a c h u s e tts , 580 p . R en ard , K enneth G ., and K eppel, R o b e rt V ., 1966, H ydrographs o f ephem eral s tre a m s i n t h e s o u th w e s t: J o u r n a l o f P ro c e e d in g s o f Amer. S oc. o f C i v i l E n g in e e rs , v . 92, n o . HY2, p . 3 3 -5 2 . Schumm, S ta n le y A ., 1963, S in u o s ity o f a l l u v i a l r i v e r s on th o G re a t P l a i n s : G e o l. S oc. A m erica B u l l . , v . 7 4 , p . 1089-1100. ____________________ , 1968, R iv e r a d ju stm e n t to a l t e r e d h y d ro lo g ic re g in o n - H urrum bidgee R iv e r and p a lc o c h a n n e ls , A u s t r a l i a : U. S. G eo l. S urvey P r o f . P ap er 598, p . I - 65 . S n e d e co r, G eorge ¥ . , 1956, S t a t i s t i c a l M ethods: P r e s s , Ames, Iow a, 534 p . Iow a S t a t e C o lle g e S h u l i t s , Sam uel, 1941, R a tio n a l e q u a tio n o f r iv e r - b e d p r o f i l e : Geophys. U nion T r a n s ., v . 22, p . 6 2 2 - 631 . Am. Wolman, M. G ordon, 1954, A m ethod o f s a m p lin g . c o a r s e r i v e r - b e d m a t e r i a l : Am. G eophys. U nion T r a n s ., v . 35 , n o . 6 , p . 9 5 1-956. ________ , 1955, The n a t u r a l c h a n n e l o f Brandyw ine C reek , P e n n s y lv a n ia : U. S . G e o l. S urvey P r o f . P ap er 2 ? 1 , $6 p . W oodford, A. 0 » , 1951, S tream g r a d i e n t s and M onterey S ea V a lle y : G e o l. S oc. A m erica B u l l . , v . 62, p . 799-852 A P P E N D IX I PRECIPITATION DATA USED TO DERIVE THE PRECIPITATION INDEX» S ta tio n Name Mean D ailySummer R a in fa ll ( in c h e s ) E le v a tio n (fe e t) S a n ta R i t a E x p e rim e n ta l Range S ta tio n Name .1 0 .13 .0 9 .0 8 .1 2 3920 4520 3300 3080 3880 18 130 131 140 149 D e s e rt Rim E rio p o d a F lo r id a S t a t i o n F o re st S ta tio n G ra v e lly R iv e r .0 9 .10 .1 4 .1 2 .0 9 3400 3740 4300 4160 3040 Huefano Hughes S t a t i o n M u h len b erg ia N o rth e a s t N orth w est .10 .0 8 .0 9 .0 9 .0 8 3880 P a rk e r S t a t i o n Road R obinson R odent R u elas Ranch .1 2 .1 0 .1 3 .1 0 .11 4320 S outhw est W ater R e te n tio n W ater S p rin g W hitehouso .1 0 .0 9 .1 0 .1 2 3360 3660 3720 3880 3440 3280 2960 .0 9 .10 .1 0 .11 .0 9 4260 3800 3480 3480 3540 152 155 161 163 164 .1 0 .0 8 .0 8 .0 8 .0 9 4020 3240 3190 3160 166 169 173 184 185 .1 0 .11 .0 9 .1 0 .0 9 3960 4100 - 3690 3720 3490 192 205 .0 8 .1 0 .0 9 ' .0 9 .1 0 3300 3040 3450 ■ 3600 . 3720 229 .1 4 I 87 - 188 191 3640 4200 3560 4560 76 E le v a ti (fe e t) (G reen and M a rtin , 1967) Box Brown Ranch C h o lla S t a t i o n D e s e rt D e s e rt G ra ss 3120 Mean D a ily Summer R a in fa ll (in c h e s ) . 3120 4200 77 Mean D a ily Summer R a in fa ll ( in c h e s ) S ta tio n Name E le v a tio n (fe e t) C a ta lin a M ountain E x p erim en t 1 2 3 4 5 ‘ Mean D a ily Summer R a in fa ll ( in c h e s ) E le v a tio n (fe e t) (B a tta n and G reen , u n p u b lis h e d ) .1 8 .1 8 .1 6 .1 7 .1 4 .9 1 5 0 4450 5800 16 17 18 19 20 .1 6 .1 2 .1 2 .11 .11 7050 4680 4820 3840 3950 21 22 23 24 25 .1 0 .0 ? .1 8 .1 5 .0 9 4960 .0 7 .0 9 .0 9 .0 7 .08 3740 3650 3350 3025 27 28 . 29 .0 9 .0 9 .0 8 2920 .0 7 .0 9 .11 .1 0 .1 6 4200 4500 6 7 8 9 10 11 12 13 14 15 5000 2960 Community R ain Gages Apache Powder Co. C anelo F a irb a n k F o r t Ruachuca P a ta g o n ia Tombstone S ta tio n Name .10 .1 4 .10 .1 2 .1 4 .1 3 9000 7920 8400 5980 3400 8400 6800 2720 2?00 2740 * (G reen and S e l l e r s , 1965) 3690 4985 336? 4664 4044 4540 Benson Benson E lg in E lg in E lg in .0 9 .0 9 .1 3 .1 0 .1 3 3575 3640 4900 478O . 4730 A P P E N D IX I I FIELD AND MAP DATA FOR THE MUSTANGS, WHETSTONES AND SIERRITAS The a b b r e v ia ti o n s u s e d t o h ead t h e colum ns a r e : - E le v . A rea E le v . A rea A/R^ L S W D W/D Djnui D34 A/R2 - e le v a tio n o f s ta t io n i n f e e t - d ra in a g e a r e a i n s q u a re m ile s - d ra in a g e a r e a : r e l i e f 2 r a t i o x 10° - c h a n n e l le n g th from th e d iv id e i n f e e t - c h a n n e l g r a d ie n t i n f e e t / f e e t - c h a n n e l w id th i n f e e t - c h a n n e l d e p th i n f e e t - c h a n n e l w id th :d e p th r a t i o - mean b e d p a r t i c l e s i z e i n m illi m e t e r s - 8 4 th p e r c e n t i l e o f b ed m a t e r i a l i n m i lli m e t e r s L S W D W/D Dg^ P M ustang 1 5600 5500 5300 .0 0 4 .010 .016 .0 2 4 5200 .033 5100 .086 .1 3 7 5400 5000 4900 4800 4700 4625. --------------------------.0 2 4 --------.0 8 2 .1 3 0 .363 2 .5 9 . 417 --------. 633 4.52 1 .3 0 9 .2 9 .58 680 890 1080 1390 -------- ------ -------.4 9 ' - — ............................... .4 3 -------- ------ -------.27. 15. .9 1?. 1830 2580 3770 6180 .20 .092 .062 .033 9180 . 033 12960 . 020 1 6270 . 020 -------........... -------133. -------- ---........... ...... -------- ---1024. 1.5 .................................................................................. 12.5 2 .6 4 ;9 40. 147. 1 .4 18. 1 .5 12 . 37. 85 . 1 .4 2 2 .5 1 .4 17. 20 . 43 . 1 .4 -------26 . 13. ------ 1 .2 .? -------23 . 19 . -------17 . 5 .0 -------60 . 13. ---1 .4 1 .3 M ustang 2 5800 5700 5500 5400 .0 0 4 — - — . 010 ---------.0 1 3 ---------. 01? .015 5300 .0 3 3 5200 5100 5050 .064 .167 .405 --------- .055 .1 4 4 5.34 680 .6 4 5 .53 840 1240 1450 .4 9 .36 I 750 .27 2310 .12 3470 "059 4440 .037 ' ............ ................. ...... ........... .......... -------- ---------- ------ .................. ...................... — — ..... .......................................................... — 6.0 .6 3 9 .5 97. 355. 1*5 -------- ------6.0 .4 ? 1 9 .5 1 .5 19.0 1 .4 78 -------13. 13. 15 . -------53. 60 . 30 . -------166. 256 111 . ---1 .4 1 .4 1 .4 79 E le v . A rea o o o O O VO .547 .665 A/R2 L 7 .2 4 8 .8 0 6160 8660 10160 .681 S .033 .030 .027 W D w/ d 4m d84 P 2 7 .5 1 1 .5 1 .7 .5 7 18. 20 . 21 . 25. 43. 64. 1 .4 1 .4 20 . 21 8 . 1 .5 13. 25. 355. 1 .5 M ustang 3 5800 .008 5700 .020 5600 5500 •.097I .0 6 9 5400 5300 .0 8 6 .1 1 3 .129 .167 5200 51 oo 5000 4900 1.67 4800 4?00 1 .8 9 2 .1 0 .018 .078 .151 .540 1 3 .6 ' 1 5 .4 17.1 750 1125 .3 4 .2 3 1625 2250 .21 .13 3000 3660 10.5 1 .2 5 1 2 .5 1.1 4370 .1 5 .1 6 .1 3 5245 .080 1 3 .0 .8 5 16. 37. 159. 1 .5 7245 .032 10459 14935 19685 .028 1 9 .5 2 3 .5 1 8 .5 1 .2 .9 3 1 .3 16. 32. 15. 23. 13. 11. 97. 37. 30. 1 .4 1 .4 1 .4 53. 333. 1 .7 69. 1 .7 W). 74. 49. 69. 1 .6 1 .6 1 .6 1 .5 1 .5 1 .5 1 .4 1 4 ?. 1 .6 1 .5 1 .5 1 .4 .020 .019 8 .6 W hetstone 1 6800 6600 6400 • 01 .0 ^ .0 8 .1 4 6200 6000 5800 5600 .1 9 • 57 .6 3 .8 6 .1 3 3 3650 4620 5350 6000 5400 4?80 1 .0 5 1.81 3 .1 9 4 .0 ? .168 .289 1 .6 8 2 .1 7 §O §O O§ 7200 5 .2 7 5 .5 9 1 0 .2 9 2 .7 8 5200 5000 490 1060 1710 2630 .0 9 2 2.96 5 .4 5 .5 5 .3 5 .2 5 .21 .2 0 .25 1 6 .0 2.11 8 .0 .15 1 6 .5 1 .6 4 10 . 7790 9990 14060 204?0 . 10 .0 6 2 .0 4 2 .0 3 4 23.0 23.0 26.0 1 .6 5 1 .1 0 1 .0 4 1 .0 0 14. 16. . 26. 29. 26030 30310 37540 .031 31.0 2 0 .5 3 4 .0 .7 .9 1 .0 5 45. 23. 32.- 6 .0 .019 .021 4 .0 26. 48. 43. 19. 18. 30. 65. 15. 15. 4 .5 5 .0 209 . 11 . 11 . .2 9 2 8 .5 8 .0 11. 19. 20. 21. 7.5 W h etsto n e 2 OOOO OOOO VAx—O 00 xnv'vvrv.d- .0 4 .2 4 .30 .71 .0 1 7 .100 .1 2 6 .2 9 6 1710 .2 6 7.5 4150 5075 .11 1 0 .5 2 0 .5 -8005 .11 .0 4 3 — 31.5 .4 0 .6 0 .71 .4 7 80 D W/D E le v . Area a/ r 2 L S W 4600 4400 4200 4000 1.41 1 .7 8 1 .9 6 2 .8 8 1.11 1.41 1 »55 12145 17675 .045 .035 37-5 8 8 .0 5 1 .5 4 2 .5 • 43 -55 .3 2 .3 8 88. 160. 160 . 115. 4 .5 7 .0 .2 5 • 52 18. 17. T r ib u ta r y 1 5700 .02 5400 .0 3 5200 •.0 V 7 f T r ib u ta r y 2 4600 . 23 . 2.27 .008 .013 23685 32135 1220 2030 2690 .026 .022 .41 .33 .21 d3 4 - 4 .0 3 .5 2.0 1 .5 19. 35. 6.0 5 .5 4 .0 3 .5 P 1 .4 1 .4 1 .4 1 .3 256 . 1.6 21 8 . 1 .5 ' .998 7650 .0 4 2 20.0 .4 5 45. 3 .5 5 .0 1 .3 W hetstone 3 5800 .01 1220 5600 .0 3 1790 1r 7 V 45 . 27f 2850 3900 .12 .11 1 4 .5 .9 16. 5 .0 64. 1 .5 5690 .067 1 5 .0 .8 5 18. 3 .0 16. 1 .5 76.0 .8 95. 1 .5 3 .0 1 .4 4 1 .0 6 0 .0 9 5 .5 9 3 .0 .49 .2 9 .1 4 .1 4 88. 210. 700. 665 . 1.0 2 .5 2 .5 2 .0 1 -5 1 .4 1 .3 1 .3 1 .3 13. 22. "46. 17. 23 . 9.5 5400 .07 5200 .09 .033 5000 .19 4800 4?20 4600 .6 9 1.22 1.31 .6 2 2 4400 4200 4000 3800 1.78 2 .2 6 2 .4 8 5 .6 8 .907 1 .1 5 1 .2 6 .090 9760 7 1 • o?6 v^u 2.90 12690 .037 16100 .0 2 8 24230 31060 37070 42620 .0 2 8 .028 .0 3 4 .035 1 .0 1.0 1.0 S ie rrita 1 5250 .0 4 .15 .3 5 .096 .230 .65 .416 .685 4000 1 .0 7 .71 1 .8 8 2 .5 5 3750 3425 3 .3 7 4 .7 5 5000 4750 4525 4440 44 mt 4250 .4 5 4 .578 .7 8 9 1 .4 ? 9 T r ib u ta r y 1 4440 .3 6 .026 1470 2610 4320 8960 .2 2 8 .0 .23 13.0 .0 7 9 . 044- 2 0 .0 9 -5 .6 3 .61 .4 6 .7 3 9770 9770 .0 4 5 .045 15300 .032 23750 .0 3 3 1 9 .5 1 2 .0 4 2 .0 37-5 .6 8 .6 6 .2 3 • 51 34150 48950 .0 2 4 .023 3 6 .0 7150 .0 6 4 1 0 .0 8 .0 12. 74. 37. 44. 69. 1 .5 1 .4 1 .4 1 .4 30. 18. 185. 74, 12. 24. 2 .0 3 -5 69. 89. 3 .5 6 .5 1 .4 1 .4 1 .3 1 .3 1 .0 8 34. 1.0 3 .0 1 .2 .6 8 15. 316. 1 .4 15. / 81 E le v . A rea a/ r 2 L S W D W/D 4mm D84 P 97. 85. 10. 1 .5 1 .5 1 .4 S ie rrita 2 5500 5250 4925 4750 .02 .11 .56 4500 4250 4000 3825 .8 5 1 .2 2 2 .1 6 3 .0 2 3750 3 .3 9 .017 .091 .207 970 2270 4710 7960 .3 4 .1 3 .081 nAR 4 .5 7 .5 2 2 .5 .3 9 .4 4 .2 2 12. 20. 110. 21. 21. 4 .5 .213 .305 .540 .755 11370 16570 23560 31060 .060 .0 4 2 .0 2 8 .020 3 4 .0 3 9 .0 1 2 8 .5 56 .O .2 3 .2 8 .3 4 155. 140. 420. 87. 3 .0 3 .5 2 .0 2 .5 35610 021 12. 16. 4 .5 .8 2 .66 5 .0 7 .5 4 .5 4 .5 1 .4 1 .3 1 .3 1 .2 S ie rrita 3 4750 4500 .0 2 .0 5 .2 0 .6 2 .038 .151 4250 4000 3750 3500 1 .4 5 1 .7 6 2 .7 5 3 .5 6 5250 5000 890 .4 6 9 2190 3320 838O .2 0 .2 3 .1 0 .0 6 2 .4 7 3 • 575 .8 9 8 1 .1 6 15210 .0 2 7 23320 32760 43320 7 .0 .4 2 10.0 .47 1 7 .5 .3 7 23. 23. 50. .030 .025 7 3 .0 2 9 .5 2 3 .5 .0 2 2 27.0 .2 2 .1 8 .2 4 .2 4 400. 165. 100. 98. 4 .0 3 .0 2 .5 2 .5 6 .0 4 .5 5 .2 4 .5 1 .3 1 .3 1 .2 1 .2 .2 6 85. 3 .0 5 .0 1.1 .2 ? .3 2 76. 110. 1 .5 2 .0 3 .0 4 .5 1.1 1.1 .41 56. 1 .5 3 .0 1.1 49. 91. 20. 1 .4 1 .4 1 .4 S ie rrita 5 3550 2 . 5I .1 9 6800 .0 2 4 2 0 .5 S ie rrita 6 3500 3400 .3 4 .5 9 2.78 8800 4 .8 2 13300 3325 .6 3 .019 .021 19.0 3 3 .0 S ie rrita 7 3 .9 4 16000 .0 2 3 2 1 .5 C a ta lin a 1 6800 6400 5600 4800 —————— ————— — —————— ———— —— —————— —————— ————— ———— —— 1230 #29 287O •2o 4810 «33 7790 •26 ——— —— ————— —.——— —— ——— 82 E le v . A rea 4000 ______ 3600 3200 3100 1.25 2800 2720 2640 2560 --------1.61 ------------------------—------ A/R2 .076 mm * » mm mm mm mm .098 ——mm mm mm mm mm mm mm mm mm mm mm D W/D *Wn 19. .81 24. 64. 660 . 1 .5 18. .8 0 21 . 24. 190. 1 .4 23.0 .5 9 40. 5 .5 28. 1.1 29.0 .91 34. 5 -5 46. 1.0 29.0 .8 4 25 . 8 .5 23. .9 L S W 11170 13310 17210 .1 8 .1 4 .0 8 2 18645 .070 23600 26250 30200 35800 .056 p .018 .0 1 7 .017 C a t a lin a 2 4400 4000 —————— 2560 1.91 -! • 1 On 1 o> 1 1 ! 1 1 1 1 3000 2800 2760 2600 ! 1 1 1 1 3600 3200 3.98~ 5.22 3080 .40 4200 6480 9840 .27 .1 4 11360 .11 15280 .0 2 9 16920 23120 . 021 25740 .021 .11 .030 Tucson 2 3250 3000 2900 2800 --------------------------------- --------- 2080 .1 6 3120 .13 4680 .096 6240 . 043 .031 .031 2650 9360 10530 10920 2600 12500 2700 2675 •» •• — -— » 2525 2500 2.52 --------- ™ 1 4 .0 ---- 1 .027 .019 16650 .018 -------- ------ 18750 .017 29.0 .79 -------35 . ........ .......................... — 19580 . 018 ---- --------- -----------9.5 16 . .9 -------- -------- — 83 E le v . a/ r 2 L S D34 D W/D 6.0 .4 0 15. 46. 316 . 1.0 1 4 .5 .5 9 25. 30. 91 . 1.0 ---- —- ———— 10.5 —- W P Tucson 3 3000 i i 11 •0 11 1 G t1 3500 3250 2950 .136 800 1025 2600 3080 .4 8 .2 7 •.113j .077 2900 4160 .063 2800 2700 2650 5200 8310 .0 4 3 9890 .0 2 4 2600 2550 12500 .021 ' ———— 14580 18200 .0 1 4 2500 .031 .012 — —— — — 5 .0
© Copyright 2026 Paperzz