Precalculus Sem 1 Formula Sheet Formulas Slope formula m = (y2 – y1)/(x2 – x1) Point-Slope formula y – y1 = m(x – x1) Quadratic Formula 𝑥𝑥 = −𝑏𝑏±√𝑏𝑏2 −4𝑎𝑎𝑎𝑎 2𝑎𝑎 Compound Interest Exponential Growth/Decay y = Cax (a > 0, a ≠ 1) Continuously Compounded Interest N = N0(1 + r)t or N= N0ekt or A = Pert Pythagorean Theorem x2 + y2 = r2 Distance Formula Standard Form Equation of a Circle (x − h)2 + (y − k)2 = r 2 Standard Form Equation of a Quadratic Function Vertex Form Equation of a Parabola y = ax2 + bx + c y = a(x − h)2 + k or x = a(y − k)2 + h Parabola a ( x − h ) =( y − k ) where a = 2 Focus: ( h, k ± c ) 1 4c a ( y − k ) =( x − h) where a = 2 Focus: ( h ± c, k ) Directrix: x= h ± c Directrix: y= k ± c Standard Form Equation of an Ellipse , c2 =a2-b2 or Ellipses ( x − h) a2 2 (y −k) + b2 1 4c 2 = 1 ( x − h) b2 2 (y −k) + a2 2 = 1 2 a, b, c relationship: c= a 2 − b2 Foci: ( h ± c, k ) 2 a, b, c relationship: c= a 2 − b2 Foci: ( h, k ± c ) Major axis vertices: ( h ± a, k ) Major axis vertices: ( h, k ± a ) Minor axis vertices: ( h, k ± b ) Minor axis vertices: ( h ± b, k ) Standard Form Equation of a Hyperbola Hyperbolas ( x − h) a2 2 (y −k) − 2 b2 1 = (𝑥𝑥−ℎ)2 𝑎𝑎 2 − (𝑦𝑦−𝑘𝑘)2 𝑏𝑏2 = 1 or (y −k) a2 2 (𝑦𝑦−𝑘𝑘)2 𝑎𝑎 2 − ( x − h) − (𝑥𝑥−ℎ)2 𝑏𝑏2 = 1, c2 =a2+b2 2 b2 = 1 2 a, b, c relationship: c= a 2 + b2 Foci: ( h ± c, k ) 2 a, b, c relationship: c= a 2 + b2 Foci: ( h, k ± c ) Vertices: ( h ± a, k ) Vertices: ( h, k ± a ) b a ± ( x − h) + k Asymptotes: y = Rotation Equations x = x' cos + y' sin a b ± ( x − h) + k Asymptotes: y = and y = -x' sin + y' cos Fundamental Trigonometric Identities Reciprocal Identities cscx=1/sinx secx=1/cosx Quotient Identities cotx=cosx/sinx tanx=sinx/cosx cotx=1/tanx Identities for Negatives sin(−x)=−sinx cos(−x)=cosx tan(−x)=−tanx Pythagorean Identities sin2x+cos2x=1 1+tan2x=sec2x 1+cot2x=csc2x Sum Identities sin(A+B)=sinAcosB+cosAsinB cos(A+B)=cosAcosB−sinAsinB tan(A+B)=(tanA+tanB) / (1−tanAtanB) Difference Identities sin(A−B)=sinAcosB−cosAsinB cos(A−B)=cosAcosB+sinAsinB tan(A−B)=(tanA−tanB)/(1+tanAtanB) Double Angle Identities sin2a=2sinacosa cos2a =cos2a−sin2a =2cos2a−1 =1−2sin2a tan2a=(2tan a)/(1−tan2a) Power Reducing Identities Half Angle Identities
© Copyright 2025 Paperzz