C H A P T E R 15 G E N E R A L R E L A T I V I S T I C DYNAMICAL MODEL T h e r e l a t i v i s t i c t r e a t m e n t of t h e n e a r - E a r t h s a t e l l i t e orbit d e t e r m i n a t i o n p r o b l e m i n c l u d e s c o r r e c t i o n t o t h e e q u a t i o n s of m o t i o n , t h e t i m e t r a n s f o r m a t i o n s , and t h e m e a s u r e m e n t m o d e l . The t w o c o o r d i n a t e S y s t e m s g e n e r a l l y used w h e n including r e l a t i v i t y in n e a r - E a r t h o r b i t d e t e r m i n a t i o n S o l u t i o n s a r e t h e s o l a r system b a r y c e n t r i c frame of r e f e r e n c e and t h e g e o c e n t r i c or E a r t h - c e n t e r e d frame of r e f e r e n c e . A s h b y and B e r t o t t i (1986) c o n s t r u c t e d a locally inertial frame in t h e n e i g h b o r h o o d of t h e g r a v i t a t i n g E a r t h and d e m o n s t r a t e d t h a t t h e g r a v i t a t i o n a l e f f e c t s of t h e S u n , M o o n , and o t h e r p l a n e t s are basically reduced to their tidal forces, with very small relativistic corrections. T h u s t h e m a i n r e l a t i v i s t i c e f f e c t s on a n e a r - E a r t h s a t e l l i t e a r e t h o s e d e s c r i b e d by t h e S c h w a r z s c h i l d field of t h e E a r t h i t s e l f . T h i s r e s u l t m a k e s t h e g e o c e n t r i c frame m o r e s u i t a b l e for d e s c r i b i n g t h e m o t i o n of a n e a r - E a r t h s a t e l l i t e (Ries, et a l . , 1 9 8 8 ) . T h e t i m e c o o r d i n a t e in t h e inertial Dynamical T i m e ( T D T ) . T h i s t i m e c o o r d i n a t e by I n t e r n a t i o n a l A t o m i c T i m e ( T A I ) , w h o s e a t o m i c second in t h e I n t e r n a t i o n a l System E - f r a m e is T e r r e s t r i a l is r e a l i z e d in p r a c t i c e r a t e is d e f i n e d by t h e of U n i t s ( S I ) . E Q U A T I O N S O F M O T I O N FOR A N A R T I F I C I A L E A R T H The correction s a t e l l i t e Aa is Aa = - - ^ % c r \[2(ß to + 7) the S B ^ acceleration - 7V 2 ]? + r of [2(1 + SATELLITE an 7) artificial (r-v)v] Earth (1) where c = speed of l i g h t , ß , 7 = PPN p a r a m e t e r s equal to 1 in G e n e r a l Relativity, r,v,a = g e o c e n t r i c s a t e l l i t e p o s i t i o n , v e l o c i t y , acceleration, respectively, and GMe = g r a v i t a t i o n a l p a r a m e t e r of t h e E a r t h . T h e v a l u e o f GM® in t h e N e w t o n i a n t w o - b o d y a c c e l e r a t i o n and in Eq, 66 (1) s h o u l d b e t h e g e o c e n t r i c v a l u e b u t t h e d i f f e r e n c e b e t w e e n t h e b a r y c e n t r i c and g e o c e n t r i c m a s s of t h e S u n , M o o n , and p l a n e t s is not important when Computing the indirect Newtonian pertubations. T h e e f f e c t s of L e n s e - T h i r r i n g p r e c e s s i o n (frame-dragging) , g e o d e s i c (de S i t t e r ) p r e c e s s i o n , and t h e r e l a t i v i s t i c e f f e c t s of t h e E a r t h ' s oblateness have been negelcted. E O U A T I O N S O F M O T I O N IN T H E B A R Y C E N T R I C FRAME T h e n-body e q u a t i o n s of m o t i o n for t h e s o l a r s y s t e m frame of r e f e r e n c e (the i s o t r o p i c P a r a m e t e r i z e d P o s t - N e w t o n i a n system w i t h T D B as t h e t i m e c o o r d i n a t e ) a r e required t o d e s c r i b e t h e d y n a m i c s of t h e s o l a r system and a r t i f i c i a l p r o b e s m o v i n g a b o u t t h e s o l a r s y s t e m (for e x a m p l e , s e e M o y e r , 1 9 7 1 ) . These are the equations a p p l i e d t o t h e M o o n ' s m o t i o n for LLR (Newhall, W i l l i a m s , and D i c k e y , 1987) . In a d d i t i o n , r e l a t i v i s t i c c o r r e c t i o n s t o t h e laser r ä n g e m e a s u r e m e n t , t h e d a t a t i m i n g , and t h e S t a t i o n c o o r d i n a t e s a r e r e q u i r e d (see C h a p t e r 1 6 ) . SCALE EFFECT AND CHOICE OF TIME COORDINATE B e c a u s e t h e IAU d e f i n i t i o n of t h e t i m e c o o r d i n a t e in t h e b a r y c e n t r i c frame r e q u i r e s t h a t only p e r i o d i c d i f f e r e n c e s e x i s t b e t w e e n T D B and T D T (Kaplan, 1 9 8 1 ) , t h e s p a t i a l c o o r d i n a t e s in t h e b a r y c e n t r i c frame h a v e e f f e c t i v e l y b e e n r e s c a l e d t o k e e p t h e speed of l i g h t u n c h a n g e d b e t w e e n t h e b a r y c e n t r i c and t h e g e o c e n t r i c frames (Misner, 1 9 8 2 ; H e l l i n g s , 1 9 8 6 ) . T h u s , w h e n b a r y c e n t r i c (or T D B ) u n i t s of length are compared to g e o c e n t r i c (or T D T ) u n i t s of l e n g t h , a s c a l e d i f f e r e n c e , L, a p p e a r s . Noting that the mass p a r a m e t e r G M / c 2 or G m / c 2 h a s u n i t s of l e n g t h , t h e v a l u e for t h e m a s s p a r a m e t e r of a b o d y in T D B u n i t s , GM, is r e l a t e d to its v a l u e in T D T u n i t s , Gm, a c c o r d i n g to GM = (1-L) Gm. It can b e s h o w n t h a t the v a l u e of t h e s c a l e d i f f e r e n c e d o e s n o t i n c l u d e t h e c o n t r i b u t i o n of t h e g r a v i t a t i o n a l and r o t a t i o n a l p o t e n t i a l of t h e E a r t h (Guinot and S e i d e l m a n n , 1 9 8 8 ; H u a n g , et a l . , 1989) so t h a t t h e v a l u e of t h e scale d i f f e r e n c e b e t w e e n t h e t w o frames is L = 1.4808 x 10" 8 (Fukushima, et a l . , 1 9 8 6 ) . REFERENCES A s h b y , N . and B e r t o t t i , B . , 1 9 8 6 , " R e l a t i v i s t i c E f f e c t s I n e r t i a l F r a m e s , " P h y s . R e v . , D34 ( 8 ) , 2 2 4 6 . in Local F u k u s h i m a , T . , F u j i m o t a , M. K., K i n o s h i t a , H . , and A o k i , S., 1 9 8 6 , "A S y s t e m of A s t r o n o m i c a l C o n s t a n t s in t h e Relativistic Framework," Celest. Mech., 38, pp. 215-230. 67 G u i n o t , B. and S e i d e l m a n n , P. K. , 1 9 8 8 , "Time S c a l e s : T h e i r H i s t o r y , D e f i n i t i o n and I n t e r p r e t a t i o n , " A s t r o n . A s t r o p h v s . . 194, pp. 304-308. H e l l i n g s , R. W. , 1 9 8 6 , " R e l a t i v i s t i c E f f e c t s in A s t r o n o m i c a l T i m i n g M e a s u r e m e n t , " A s t r o n . J. , 91 ( 3 ) , p p . 6 5 0 - 6 5 9 . Erratum, ibid., p. 1446. H u a n g , C. , R i e s , J. C , T a p l e y , B. D. , W a t k i n s , M . M. , 1 9 8 9 , " E f f e c t s of G e n e r a l R e l a t i v i t y o n N e a r - E a r t h S a t e l l i t e O r b i t D e t e r m i n a t i o n , " m a n u s c r i p t submitted t o C e l e s t . M e c h . Kaplan, G. H., 1981, "The IAU Resolutions on Astronomical C o n s t a n t s , T i m e S c a l e and t h e F u n d a m e n t a l R e f e r e n c e F r a m e , " U . S. N a v a l O b s e r v a t o r y , C i r c u l a r N o . 1 6 3 , W a s h i n g t o n , D. C. M i s n e r , C. W . , 1 9 8 2 , "Scale F a c t o r s for R e l a t i v i s t i c E p h e m e r i s Coordinates," NASA Contract NAS5-25885, Report, EG&G, Washington Analytical Services Center, Inc. M o y e r , T. D. , 1 9 7 1 , " M a t h e m a t i c a l F o r m u l a t i o n of t h e D o u b l e precision Orbit Determination Program," JPL Technical Report 32-1527. N e w h a l l , X. X., W i l l i a m s , J. G., D i c k e y , J. O., 1 9 8 7 , " R e l a t i v i t y Modelling in Lunar Laser Ranging Data Analysis," in Proceedings of t h e I n t e r n a t i o n a l A s s o c i a t i o n of Geodesy Symposia, Vancouver, pp. 78-82. R i e s , J. C , H u a n g , C. , and W a t k i n s , M. M. , 1 9 8 8 , "The E f f e c t of G e n e r a l R e l a t i v i t y on N e a r - E a r t h S a t e l l i t e s in t h e S o l a r S y s t e m B a r y c e n t r i c and G e o c e n t r i c R e f e r e n c e F r a m e s , " P h y s . Rev. Let., 61, p. 903. 68
© Copyright 2026 Paperzz