Name ________________________________________ Date __________________ Class__________________ LESSON 8-2 Reteach Trigonometric Ratios Trigonometric Ratios sin A = leg opposite ∠A 4 = = 0.8 hypotenuse 5 hypotenuse leg opposite ∠A leg adjacent to ∠A 3 = = 0.6 hypotenuse 5 leg opposite ∠A 4 tan A = = ≈ 1.33 leg adjacent to ∠A 3 cos A = leg adjacent to ∠A You can use special right triangles to write trigonometric ratios as fractions. sin 45° = sin Q = = leg opposite ∠Q hypotenuse x x 2 = So sin 45° = = 1 2 2 2 2 . 2 Write each trigonometric ratio as a fraction and as a decimal rounded to the nearest hundredth. 1. sin K 2. cos H _________________________________________ 3. cos K ________________________________________ 4. tan H _________________________________________ ________________________________________ Use a special right triangle to write each trigonometric ratio as a fraction. 5. cos 45° 6. tan 45° _________________________________________ 7. sin 60° ________________________________________ 8. tan 30° _________________________________________ ________________________________________ Original content Copyright © by Holt McDougal. Additions and changes to the original content are the responsibility of the instructor. 8-14 Holt McDougal Geometry Name ________________________________________ Date __________________ Class__________________ Reteach LESSON 8-2 Trigonometric Ratios continued You can use a calculator to find the value of trigonometric ratios. cos 38° ≈ 0.7880107536 or about 0.79 You can use trigonometric ratios to find side lengths of triangles. Find WY. cos W = adjacent leg hypotenuse cos 39° = 7.5 cm WY Substitute the given values. WY = 7.5 cos 39° Solve for WY. WY ≈ 9.65 cm Write a trigonometric ratio that involves WY. Simplify the expression. Use your calculator to find each trigonometric ratio. Round to the nearest hundredth. 9. sin 42° 10. cos 89° _________________________________________ 11. tan 55° ________________________________________ 12. sin 6° _________________________________________ ________________________________________ Find each length. Round to the nearest hundredth. 13. DE 14. FH _________________________________________ 15. JK ________________________________________ 16. US _________________________________________ ________________________________________ Original content Copyright © by Holt McDougal. Additions and changes to the original content are the responsibility of the instructor. 8-15 Holt McDougal Geometry 1 base × height. 2 1 Substitution gives Area = bc sin A. 2 8-2 TRIGONOMETRIC RATIOS a triangle is Area = Practice A a b ; c c 1. opposite; hypotenuse; 2. 18.66 m2 4. 12.05 in2 b a 2. adjacent; hypotenuse; ; c c 3. opposite; adjacent; a b ; a 3 ; 0.60 5 5. 6. 4 ; 1.33 3 7. 0.54 8. 0.68 5. Possible answer: The Pythagorean Theorem shows that x2 + y2 = c2. It also shows that (b − x)2 + y2 = a2. Expanding the latter equation gives b2 − 2bx + x2 + y2 = a2. Substituting, b2 − 2bx + c2 = a2. But x cos A = , so x = c cos A. Another c substitution gives a2 = b2 + c2 − 2bc cos A. b 4. 4 ; 0.80 5 6. 6.78 cm 9. 6.31 10. 12.46 m 11. 19.70 mm 12. 2.55 feet 13. 277 feet 3. 28.39 ft2 7. 15.18 km 8. 22.83 ft Reteach Practice B 1. 15 ≈ 0.88 17 2. 15 ≈ 0.88 17 8 ≈ 0.47 17 4. 8 ≈ 0.53 15 1. 7 ; 0.28 25 2. 7 ; 0.28 25 3. 3. 24 ; 3.43 7 4. 24 ; 0.96 25 5. 2 2 6. 1 =1 1 5. 24 ; 0.96 25 6. 7 ; 0.29 24 7. 3 2 8. 3 3 7. 1 2 8. 3 2 9. 1 10. 12. 11. 2 2 9. 0.67 10. 0.02 11. 1.43 12. 0.10 3 3 13. 39.65 m 14. 6.01 in. 15. 32.91 mm 16. 55.32 cm 3 Challenge 13. 0.90 14. 0.53 15. 0.27 16. 14.03 in. 17. 57.36 cm 18. 0.36 mi 19. 8.68 km 20. 95.41 yd 1, 2, 3, 4, 5. 21. 3.18 ft Practice C 1. Possible answer: Draw an altitude from h ∠B and call its length h. Then sin A = , c so h = c sin A. The formula for the area of Original content Copyright © by Holt McDougal. Additions and changes to the original content are the responsibility of the instructor. A12 Holt McDougal Geometry
© Copyright 2026 Paperzz