Constants Planck constant Boltzmann constant Electron mass Elektron charge Proton mass Speed of light Electric constant Magnetic constant Bohr radius Bohr magneton g-factor electron Avogadro constant h h̄ = h/2π kB me −e mp c ε0 µ0 a0 µB ge NA 6.62 10−34 Js 1.05 10−34 Js 1.38 10−23 J/K 9.11 10−31 kg −1.6 10−19 C 1.67 10−27 kg 3.00 108 m/s 8.85 10−12 C/(Vm) 4π 10−7 Vs/(Am) 0.529 10−10 m 9.274 10−24 J 2.0023 6.022 1023 1/mol Formula De-Broglie λ= h ; p~ = h̄~k |~p| 1 2m |~p|2 = h̄2 2m 2 ~ k kinetic energy of free particles E= reciprocal lattice vectors ~b1 = 2π ~a2 × ~a3 ~a1 (~a2 × ~a3 ) ~b2 = 2π ~a3 × ~a1 ~a1 (~a2 × ~a3 ) ~b3 = 2π ~a1 × ~a2 ~a1 (~a2 × ~a3 ) Distance of planes Condition for elastic scattering Deflection angle Debye wave vector Debye frequency and temperature Thermal energy Debye model 2π ~ min G d = ~ ~k G θ sin( ) = − ~ ~k 2 G √ 3 kD = 6π 2 n ωD = vS kD , TD = h̄ωD /kB Eth = 9N kB T ( T 3 Z TD /T x3 ) dx TD ex − 1 0 s Dispersion linear chain Group and phase velocity ~ ; ~k = ~k 0 ∆~k = G 4D ka ω(k) = sin( ) m 2 dω ω vg = , vph = dk k Fermi-Dirac distribution f (E) = 1 exp( E−µ ) kB T Fermi wave vector √ 3 kF = 3π 2 n Fermi energy EF = Density of states free electron gas D(E) = +1 h̄2 2 k 2m F 3 Ne √ 2 EF3/2 E Dielectric function Drude model ω2 ε(ω) = 1 − 2 p , ωp = ω + iω/τ Mass action law for semiconductors np = 4 Magnetization paramagnetic material BCS temperature kB T 3 2 2πh̄ M = nµAt L( s e2 n 0 m (m∗e m∗h )3/2 e−Eg /kB T µAt B 1 ), L(x) = coth(x) − kB T x Tc = 1.14 TD exp(− 1 ) u D(EF )
© Copyright 2026 Paperzz