solve aH1L=54, aHnL=-34 aHn-1L for aHnL Input interpretation : aH1L solve 5 4 aHnL - 3 4 for aHnL aHn - 1L Result : aHnL - 5 - 1 4 n 3n-1 Generated by Wolfram|Alpha (www.wolframalpha.com) onJuly23, 2011 fromChampaign, IL. © WolframAlphaLLC—A Wolfram Research Company 1 sum -5 H-14L^n 3^H-1 + nL, n=1..infinity Infinite sum : ¥ â- 5 n =1 1 n 4 3 -1+n 5 7 » 0.714286 Partial sums : 1.2 æ æ 1.0 æ 0.8 0.6 æ æ 0.4 æ 0.2 2 3 4 5 6 Convergencetests: By the alternating series test , the series converges . Partial sum formula : m 1 n -1+n â- 5 n =1 4 3 - 5 7 - 3 4 m -1 Generated by Wolfram|Alpha (www.wolframalpha.com) onJuly23, 2011 fromChampaign, IL. © WolframAlphaLLC—A Wolfram Research Company 1 sum -5 (-1/4)^n 3^(-1 + n), n=1..infinity - Wolfram|Alpha 1 of 1 http://www.wolframalpha.com/input/?i=sum++-5+(-1/4)^n+3^(-1+++n)... x Infinite sum: More digits Partial sums: More terms Convergence tests: Partial sum formula: Computed by Wolfram Mathematica Computation timed out. Experimental feature: Try again with more time » send Give us your feedback: About Products Mobile Apps Forum Business Solutions Participate Contact For Developers Resources & Tools Blog Connect © 2011 Wolfram Alpha LLC—A Wolfram Research Company Terms Privacy Entity Index 23.7.2011 19:42
© Copyright 2026 Paperzz