ECF Bleaching of Eucalyptus Kraft Pulps Tapani Vuorinen Aalto University Department of Forest Products Technology [email protected] Presentation at 5th ICEP International Colloquium on Eucalyptus Pulp Porto Seguro, Brazil May 9-12, 2011 About our pulp bleaching research • Eucalyptus pulp bleaching – Aalto University: Anna-Stiina Jääskeläinen, Katri Toikka, Jose Medina; Andritz: Christian Järnefelt; Universidad de la República: Leonardo Clavijo, Maria Noel Cabrera • Chemical reaction mechanisms and kinetics – Aalto University: Anna-Stiina Jääskeläinen, Zhen Zhou, Immanuel Adorjan, Tuula Lehtimaa; INPG Pagora: Gerard Mortha; BOKU: Antje Potthast, Paul Kosma; VTT: Tarja Tamminen, Tiina Liitiä, Taina Ohra-aho… • Virtual pulp bleaching model Aalto University: Ville Tarvo, Susanna Kuitunen, Tuula Lehtimaa, Juhani Aittamaa, Ville Alopaeus Virtual pulp bleaching model • Phenomena based simulation – Fiber wall model; physical structure, chemical composition, Donnan phenomenon… – Heat and mass transfer – Elementary chemical reactions; kinetics, equilibria… • Links to unit processes • Links to existing technical characteristics • Ability to carry out bleaching by computation Eucalyptus pulp ECF bleaching • Past: D-E-D-D – > 30 kg active Cl per ton • Today: A/D-EOP-D-P, DHot-EOP-D-P – 20-25 kg active Cl per ton = 110-140 mmol ClO2/kg • Best today: A-EOP-D-P – < 15 kg active Cl per ton = < 85 mmol ClO2/kg • Future: Our target – < 10 kg active Cl per ton = < 55 mmol ClO2/kg Need to understand bleaching chemistry in details Recent relevant publications Ville Tarvo (2010), Modeling chlorine dioxide bleaching of chemical pulp, Doctoral Dissertation, Aalto University (http://lib.tkk.fi/Diss/2010/isbn9789526031927/). Tuula Lehtimaa (2010), Reactions of chlorine (III) and their kinetics in the chlorine dioxide bleaching of kraft pulps, Doctoral Dissertation, Aalto University (http://lib.tkk.fi/Diss/2010/isbn9789526032030/) Leonardo Clavijo (2010), Optimization of bleaching sequences A(EOP)DD and A(EOP)DP, Master’s Thesis, Universidad de la República. Ville Tarvo et al. (2010), A model for chlorine dioxide delignification of chemical pulp, J. Wood Chem. Technol. 30: 230-268. Characteristics of oxygen delignified eucalyptus kraft pulps • Kappa number 10-12 • Hexenuronic acid content 50-70 mmol/kg • Lignin content < 1 % – Equal to monomer content of < 50 mmol/kg – Phenolic lignin – Non-phenolic lignin Primary oxidation reactions of ClO2 • ClO2 reacts very slowly with non-phenolic lignin structures (e.g. benzylic structures) • Chlorine dioxide reacts easily with phenolic lignin (k = 103 M-1s-1), especially in its ionized phenolate form (k = 109 M-1s-1) – Each phenol consumes 2 equivalents ClO2 – Each phenol produces equivalently ClO2- and HOCl – Phenols are oxidized through phenoxy radicals to quinones or muconic acid derivatives (preferred) – Stoichiometric reaction applied in quantification of phenols – ArOH + 2ClO2 a OxLig + HOCl + HClO2 Hypochlorous acid and chlorine • Hypochlorous acid is in equilibrium with hypochlorite and chlorine • Conversion of HOCl to Cl2 is relatively slow at low acidity • HOCl + H3O+ + Cl- Cl2 + 2H2O – HOCl + H3O+ + Cl- a Cl2 + 2H2O • HOCl + H2O ClO- + H3O+ k = 5.104 M-2s-1 pKa ~ 7.5 Secondary reactions of HClO2 (ClO2-) • HClO2 (pKa = 2) reacts rapidly with hypochlorous acid – Cl2O2 is formed – Cl2O2 reacts very fast with ClO2- producing either ClO2 and chloride or HOCl and chlorate • HClO2 + HOCl Cl2O2 + H2O • ClO2- + Cl2 Cl2O2 + HO- k = 4.102 M-1s-1 k = 9.103 M-1s-1 • Cl2O2 + ClO2- a 2ClO2 + Cl• Cl2O2 + ClO2- + H2O a ClO3- + 2HOCl Secondary reactions of HClO2 (ClO2-) • HClO2 oxidizes aldehydes to carboxylic acids • Stoichiometric reaction applied in quantification of aldehydes • Formaldehyde has been described as an bleaching booster (HOCl formation) • HClO2 + RCHO RCH(OH)OClO • RCH(OH)OClO a RCO2H + HOCl d[HClO2]/dt = -k[HClO2][RCHO] Oxidation rates of various aldehydes with HClO2 k (25°C) (M-1s-1) Ea (kJ/mol) Formaldehyde 11.0 0.8 54 5 Unhydrated formaldehyde 1.2 104 - Vanillin 0.59 0.02 44 4 Veratraldehyde 1.00 0.03 42 2 Benzaldehyde 5. 6 0.3 26 3 3.39 ( 0.08) 10-3 63 2 104 2 32 1 Glycolaldehyde 39.0 1.9 45 3 Unhydrated glycolaldehyde 4.5 102 - 5-formyl-2-furancarboxylic acid 5.2 0.2 37 2 Reactant Glucose Free aldehydes of glucose1 From: T. Lehtimaa et al., Ind. Eng. Chem. Res. 49 (2010) 2688-2693 Secondary reactions of HOCl/Cl2 • Cl2O2 formation with HClO2 • Electrophilic addition on ethylenic structures (e.g. HexA, formation of unstable AOX1) • Electrophilic aromatic substitution (formation of stable AOX and OX) • Electrophilic addition on alcohols or acids and their subsequent oxidation • Nucleophilic addition on carbonyls and their subsequent oxidation 1Unstable AOX is easily removed through SN2 reaction with strongly nucleophilic SO32- Derivatives of Cl2 (HOCl) in chlorine dioxide bleaching • General reaction (nucleophilic substitution on chlorine): Nu- + Cld+-Cld- Nu-Cl + Cl- Nucleophile Product Name H2O/HOClOClO2RCO2H ROH ArOH HOCl Cl2O Cl2O2 RCO2Cl ROCl ArOCl Hypochlorous acid Chlorine monoxide Dichlorine dioxide Acyl hypochlorite Alkyl hypochlorite Aryl hypochlorite Oxidation by HOCl - step 1 O 1a) O K1a + R + R HOCl OCl OH O 1b) OH K1b + R R HOCl H 1c) OH + HOCl Step 1 Formation of organic hypochlorites H OCl K1c R H2O R OCl + H2O Oxidation by HOCl – step 2 O H O 2a) O k2a H R Cl O + H CO2 + HCl R R1 O H R2 O Cl 2b) 2c) R1 + R1 H Cl R2 Step 2 Cleavage of organic hypochlorites H + R2 H + HCl O k2c O O O k2b R1 R2 HCl Reaction rates of HOCl with various compounds at 25 oC Substance Products k (M-1s-1) HClO2 Cl2O2 400 HexA (monomer) Complex mixture 400 Cl- Cl2 50 (pH 3) 3,4-Dimethoxytoluene Not analyzed 40 4-Methylguaiacol Not analyzed 40 Acetic acid Acetyl hypochlorite 4.5 Oxalic acid CO2 2 ClO2- ClO3- and Cl- 1.6 Formic acid CO2 0.2 2-Furoic acid Not analyzed 0.2 Glycolic acid CO2 and HCHO 0.04 Chlorination of phenols by HOCl • Phenolate ion is chlorinated rapidly by HOCl although each added chlorine atom decreases the reactivity ArO- + HOCl a ClArO-, k = 103 M-1s-1 ClArO- + HOCl a Cl2ArO-, k = 102 M-1s-1 Cl2ArO- + HOCl a Cl3ArO-, k = 101 M-1s-1 • Undissociated phenol is chlorinated relatively slowly ArOH + HOCl a ClArOH, k = 100 M-1s-1 Summary on inorganic chlorine species in chlorine dioxide bleaching Species Oxidation number Chlorate (ClO3-) Chlorine dioxide (ClO2) Chlorous acid (HClO2, pKa 2.0) Chlorite (ClO2-) Dichlorine dioxide (Cl2O2) Hypochlorous acid (HOCl, pKa 7.5) Hypochlorite (ClO-) Chlorine monoxide (Cl2O) Chlorine (Cl2) Chloride (Cl-) +5 +4 +3 +3 +2 +1 +1 +1 0 -1 Reactivity Radical Nucleophile Nucleophile Electrophile Electrophile Nucleophile Electrophile Electrophile - General reaction scheme of chlorine dioxide bleaching Cl2O2.ClO2- ClO2 Cl- ClO3- HOCl + HClO2 RCHO… ClO2- Cl2O2 Main reactions in D-stage • Chlorine dioxide oxidizes phenolic lignin units; chlorous and hypochlorous acids are formed – ArOH + 2ClO2 a OxLig + HOCl + HClO2 • Chlorous and hypochlorous acids react with each other; either chlorine dioxide and chloride or chlorate and hypochlorous acid are formed through Cl2O2 – HOCl + 2HClO2 a 2ClO2 + Cl– HOCl + 2HClO2 a ClO3- + 2HOCl • Hypochlorous and chlorous acids oxidize HexA; chloride is formed – HexA + HOCl + HClO2 a OxHexA + 2Cl– HexA + 3HOCl a OxHexA + 3Cl- Stoichiometry of overall reactions • 2ArOH + HexA + 4ClO2 a 2OxLig + OxHexA + ClO3- + 3Cl• ArOH + HexA + 2ClO2 a OxLig + OxHexA + 2Cl• 6ArOH + HexA + 6ClO2 a 6OxLig + OxHexA + 6Cl1:2 molar ratio 30 1:4 molar ratio 25 20 1:6 molar ratio 15 Chlorate (mmol/kg) 10 5 HexA reduction (mmol/kg) 0 0 20 40 60 80 100 Chlorine dioxide (mmol/kg) 120 Stoichiometry in A-EOP-D bleaching of eucalyptus kraft pulp Data from: Leonardo Clavijo, Master’s Thesis, 2010 Stoichiometry of overall reactions • 2ArOH + HexA + 4ClO2 a 2OxLig + OxHexA + ClO3- + 3Cl• ArOH + HexA + 2ClO2 a OxLig + OxHexA + 2Cl• 6ArOH + HexA + 6ClO2 a 6OxLig + OxHexA + 5Cl0,25 0,2 D0 Dhot A/D0 D1 A-EOP-D 0,15 0,1 0,05 0 Chlorate formation (mol/mol ClO2) Chlorate formation in ECF bleaching of eucalyptus kraft pulps Data from: Jose Medina, Master’s Thesis, TKK, 2007 Stoichiometry of overall reactions • 2ArOH + HexA + 4ClO2 a 2OxLig + OxHexA + ClO3- + 3Cl• ArOH + HexA + 2ClO2 a OxLig + OxHexA + 2Cl• 6ArOH + HexA + 6ClO2 a 6OxLig + OxHexA + 6Cl120 100 80 60 40 20 0 After 1 min After 30 min ClO2 Oxidation of consumption HexA Chlorate formation Unreacted chlorite Chloride formation ECF bleaching (D0) of birch kraft pulp (values in mmol/kg) Data from: T. Lehtimaa et al., J. Wood Chem. Technol. 30 (2010) 1-18 How to evaluate bleaching sequences • Lignin and HexA contents by UVRR spectroscopy – Normalization relative to cellulose (1100 cm-1) – Lignin (aromatic) band at 1600 cm-1 – HexA (ethylenic) band at 1650 cm-1 • Kappa number (total content of lignin + HexA) • Chlorate formation – Measure of unselectivity • Final brightness • Final brightness stability – Mainly affected by HexA, lignin and carbonyl contents • AOX formation UV Raman spectra of ECF bleached (DEDD) eucalyptus kraft pulps DEDD, 25 kg aCl / t pulp 4 HexA D0 kappa factor 0,19 D0 kappa factor 0,15 D0 kappa factor 0,11 Count 3 Lignin 2 Cellulose 1 0 1900 1800 1700 1600 1500 1400 1300 Raman Shift, 1/cm 1200 1100 1000 900 UV Raman spectra of ECF bleached (DEDD) eucalyptus kraft pulps DEDD, 35 kg aCl / t pulp 4 D0 kappa factor 0,19 D0 kappa factor 0,15 D0 kappa factor 0,11 Count 3 2 HexA Lignin Cellulose 1 0 1900 1800 1700 1600 1500 1400 1300 Raman Shift, 1/cm 1200 1100 1000 900 UVRR spectra of eucalyptus kraft pulps in A/D-EOP-D-P bleaching sequence 12 O2 delig pulp (A/D)_rs 10 EP_rs D_rs Intensity (a.u.) 8 P_rs 6 4 2 0 500 700 900 1100 1300 Raman shift 1500 1700 1900 (cm-1) From: Leonardo Clavijo, Master’s Thesis, 2010 UVRR spectra of eucalyptus kraft pulps in A-EOP-D-P bleaching sequence 12 O2 delig. pulp A_120n 10 EOP_120n D1_12014n Intensity (a.u.) 8 P_12014n 6 4 2 0 500 700 900 1100 1300 Raman shift (cm-1) 1500 1700 1900 From: Leonardo Clavijo, Master’s Thesis, 2010 UVRR spectra of DEDD, ZDED and A/DED bleached eucalyptus kraft pulps 4 D0, kf 0.19 D0, kf 0.15 D0, kf 0.11 Z/D, kf ~0.19 Z/D, kf ~0.15 A/D, kf 0.11, t = 2 min 3 Count H 2 L C 1 0 1900 1800 1700 1600 1500 1400 1300 1200 1100 1000 900 Raman Shift, 1/cm Effects of A-stage delay and active Cl charge on eucalyptus pulp (A-EP-D) D1 120/12 D1 120/16 D1 120/20 D1 60/12 D1 60/16 D1 60/20 D1 45/12 D1 45/16 D1 45/20 3.1 2.9 4.5 2.9 2.9 3.0 2.8 3.0 2.9 ClO2 consumed (kgactCl/BDT) 12.0 16.0 20.0 12.0 16.0 20.0 12.0 16.0 18.6 Kappa Number 1.8 0.9 0.9 2.2 1.4 1.0 3.7 2.4 1.7 ISO Brightness (%) 73.0 81.8 84.4 75.8 78.4 80.7 72.4 76.4 78.7 Viscosity (mL/g) 662 676 747 712 719 733 796 776 784 Viscosity Drop (%)1 31 30 23 26 25 24 18 20 19 TOC (g/BDT): 1851 2276 3016 2162 2670 2885 1947 3211 3353 ClO3- content (g/BDT) 937 2501 2821 1009 1385 2370 746 1501 2385 AOX content (g/BDT) 21.4 33.0 45.4 34.8 38.4 33.3 26.2 31.9 35.0 Yield (%) 98.9 97.9 99.7 99.8 99.7 99.8 98.4 99.9 99.0 Final pH: Brightness stability of ECF bleached eucalyptus kraft pulps • Most important contributors: – Residual lignin content – Residual HexA content – Carbonyl group content (overbleaching) Oxidation of bleached (A/D-E-D-P) eucalyptus pulp with HOCl pH = 5 50 °C -5 (3.0 0.30)10 80 0,8 65 °C (8.0 0.51)10 0,6 70 -5 Ref.kraft 0,4 80 °C (2.5 0.32)10 0,2 -4 0,0 0 15 30 45 60 Reaction time (min) CO content, umol/g ln[HOCl] 1,0 60 50 C 65 C 80 C hemi.extr. 50 40 Hemi.extrcted 30 20 10 0 0,00 0,02 0,04 0,06 0,08 0,10 0,12 0,14 0,16 Active Cl2 consumption, g/l From: Z. Zhou et al., Holzforschung 65 (2011) 289-294 Effect of carbonyl content on brightness reversion of ECF bleached eucalyptus pulp reference pulp (xylan 12%) hemicellulose-reduced pulp (xylan 7%) PC, 48h ageing 16 14 12 10 8 a Brightness reversion is only caused by carbonyl groups! 6 4 Original pulp 2 0 0 10 20 30 40 50 60 70 80 90 Carbonyl content, mol/g From: Z. Zhou et al., Holzforschung 65 (2011) 289-294 AOX and OX formation by HOCl • The overall effect of various reactions of HOCl on AOX formation is complex to understand • Generally following observations can be made – Less AOX is formed when less active Cl is used – Smaller usage of active Cl does not necessarily mean lower OX formation – At higher pH less unstable AOX is formed – pH does not affect so much stable AOX and OX formation Effect of final pH on AOX formation in D0 stage of eucalyptus kraft pulp bleaching Cumulative AOX and final OX formation in eucalyptus pulp bleaching Prestage D0-EP-DND Act. Cl (kg/t) 29.8 AOX OX kg/t (mmol/kg) kg/t (mmol/kg) 0.63 (18) 0.16 (5) DHT-EP-DND 26.4 0.42 (12) 0.08 (2) A/D-EP-DND 26.2 0.28 (8) 0.13 (4) A-EP-DND 19.5 0.10 (3) 0.11 (3) Data from: Jose Medina, Master’s Thesis, TKK, 2007 Future outlook • In principle it is still possible to decrease ClO2 use by 50 % compared to the best current ECF bleaching sequences (< 15 kg active Cl per ton) • This requires the following targets to be reached – Eliminate chlorate formation (average 20 % conversion): potential for 30 % increase in efficiency – Block the secondary reactions of HexA: potential to save 2-5 kg active Cl per ton of pulp depending on the prior removal of HexA (A-stage) – Prevent formation of stable AOX: potential to save 12 kg active Cl per ton of pulp Acknowledgements • Financial support: TEKES (Finnish Funding Agency for Technology and Innovation) Forestcluster Ltd (Strategic Centre for Science, Technology and Innovation) Andritz, Botnia, Kemira, Stora Enso, UPM [email protected]
© Copyright 2026 Paperzz