x - Humble ISD

Name
LESSON
5-3
Date
Class
Reteach
Solving Quadratic Equations by Graphing and Factoring
Solve the equation ax 2 ⫹ bx ⫹ c ⫽ 0 to find the roots of the equation.
2
2
Find the roots of x ⫹ 2x ⫺ 15 ⫽ 0 to find the zeros of f x ⫽ x ⫹ 2x ⫺ 15.
x 2 ⫹ 2x ⫺ 15 ⫽ 0
Factor, then multiply
to check.
x ⫹ 5 x ⫺ 3 ⫽ 0
Solve each
equation for x.
Set each factor
equal to 0.
x ⫹ 5 ⫽ 0 or x ⫺ 3 ⫽ 0
x ⫽ ⫺5 or x ⫽ 3
To check the roots, substitute each root into the original equation:
Equation:
x 2 ⫹ 2x ⫺ 15 ⫽ 0
x 2 ⫹ 2x ⫺ 15 ⫽ 0
Root:
x ⫽ ⫺5
x⫽3
Check:
⫺5 2 ⫹ 2 ⫺5 ⫺ 15
3 2 ⫹ 2 3 ⫺ 15
25 ⫺ 10 ⫺ 15 ⫽ 0 ✓
9 ⫹ 6 ⫺ 15 ⫽ 0 ✓
The roots of the equation
are the zeros of the function.
2
The roots of x ⫹ 2x ⫺ 15 ⫽ 0 are ⫺5 and 3.
2
The zeros of f x ⫽ x ⫹ 2x ⫺ 15 are ⫺5 and 3.
Find the zeros of each function by factoring. Set the function equal to
0, factor, set each factor equal to 0, and then solve each equation.
2
1. f x ⫽ 4x ⫺ 24x
2. f x ⫽ x 2 ⫹ 4x ⫹ 3
4x 2 ⫺ 24x ⫽ 0
x 2 ⫹ 4x ⫹ 3 ⫽ 0
4x x ⫺
x ⫹ 3 x ⫹ 1 ⫽ 0
4x
6 ⫽0
⫽ 0 or x ⫺
6
⫽0
x⫹
x ⫽ 0 or x ⫽ 6
⫽ 0 or x ⫹
1
⫽0
x ⫽ ⫺3 or x ⫽ ⫺1
3. f x ⫽ x 2 ⫺ 5x ⫹ 4
4. f x ⫽ 3x 2 ⫹ 12x
2
3x ⫹ 12x ⫽ 0
2
⫺ 4 x ⫺ 1 ⫽ 0
3x x ⫹ 4 ⫽ 0
x ⫺ 5x ⫹ 4 ⫽ 0
x
3
x ⫺ 4 ⫽ 0 or x ⫺ 1 ⫽ 0
3x ⫽ 0 or x ⫹ 4 ⫽ 0
x ⫽ 4 or x ⫽ 1
x ⫽ 0 or x ⫽ ⫺4
Copyright © by Holt, Rinehart and Winston.
All rights reserved.
a207c05-3_rt.indd 22
22
Holt Algebra 2
12/20/05 3:14:52 PM
Process Black
Name
LESSON
5-3
Date
Class
Reteach
Solving Quadratic Equations by Graphing and Factoring
(continued)
Some quadratic equations have special factors.
2
2
Difference of Two Squares: a b a b a b Perfect Square Trinomials:
2
2
2
a 2ab b a b 2
2
2
a 2ab b a b Always write a quadratic equation in standard form before factoring.
16 and 25 are perfect squares.
Use the difference of two
squares to factor.
2
16x 25
2
16x 25 0
4x 2
5 2 0
4x 5 4x 5 0
4x 5 0 or 4x 5 0
Set each factor
equal to 0.
5
5 or x __
x __
4
4
Try to factor a perfect square trinomial if the coefficient of x and the
constant term are perfect squares.
4x 2 and 9 are
perfect squares.
2
4x 12x 9 0
2x 2
2 2x 3 3 2 0
2x 3 2x 3 2x 3 2 0
2x 3 0
The factors are
the same.
3
x __
2
Find the roots of each equation by factoring.
5. 4x 2 49
6. x 2 16 8x
0
4x 2 49 2
x 2
2x
x 8x 16 2
2
7 0
x 2 2 4 x 4 2 0
7 2x 7 0
2x 7 0 or 2x 7 0
7 or x __
7
x __
2
2
Copyright © by Holt, Rinehart and Winston.
All rights reserved.
a207c05-3_rt.indd 23
0
x
4 2 0
x
4 0
x4
23
Holt Algebra 2
12/15/05 4:36:46 PM
Process Black
,%33/.
x‡Î
*À>V̈ViÊ
3OLVING1UADRATIC%QUATIONSBY'RAPHINGAND&ACTORING
x‡Î
4ELLWHETHEREACHSTATEMENTISTRUEORFALSE
&INDTHEZEROSOFEACHFUNCTIONBYUSINGAGRAPHANDATABLE
&ALSE
4RUE
1UADRATICFUNCTIONSHAVEONLYONEZERO
!ZEROOFAFUNCTIONISTHEVALUEOFXTHATMAKESFSXD
4HEPOINTSSDANDSDCOULDBETHEZEROSOFA
GIVENQUADRATICFUNCTION
FSXDX X
&ALSE
X
FSXD
5PWARD
&INDTHEYINTERCEPT
X
FSXD
Y
X
£Ê>˜`Êx
Y
&INDTHEZEROSOFEACHFUNCTIONBYFACTORING
HSXDX X
TE
&INDTHEVERTEX
FSXDX X
GSXDX X
0LOTTHEVERTEXANDTHEYINTERCEPT#OMPLETE
THETABLEANDUSETHEVALUESTODRAWTHEGRAPH
7HATARETHEZEROSOFTHEFUNCTION
Î
X
x]Ê{
&INDTHEROOTSOFEACHEQUATIONBYFACTORING
XX X ÚÚ
ÊÓÊ
&INDTHEZEROSOFEACHFUNCTIONBYFACTORING
ä°x]Ê{
AND
GSXDX X
ÓÊ>˜`ÊÎ
)NWHATDIRECTIONDOESTHEPARABOLAOPEN
X
FSXD
&INDTHEZEROSOFFTXEX XBYUSINGATABLEANDAGRAPH
*À>V̈ViÊ
3OLVING1UADRATIC%QUATIONSBY'RAPHINGAND&ACTORING
--"
ä°Çx]Êä°Çx
Î
FSXDX X
X X
7RITEAQUADRATICFUNCTIONINSTANDARDFORMFOREACHGIVENSETOF
ZEROS
SX
AND
DSX D SX D ORSX D X ORX A 3ETTHEFUNCTIONEQUALTO
B &ACTOR
C 3ETEACHFACTOREQUALTO
D 3OLVEEACHEQUATIONFORX
FSXDX
4HEQUADRATICFUNCTIONTHATAPPROXIMATESTHEHEIGHT
OFAJAVELINTHROWISHSTDT WHERETIS
THETIMEINSECONDSAFTERITISTHROWNANDHISTHE
JAVELINSHEIGHTINFEET(OWLONGWILLITTAKEFORTHE
JAVELINTOHITTHEGROUND
TXETXE
XX
#OPYRIGHT©BY(OLT2INEHARTAND7INSTON
!LLRIGHTSRESERVED
,%33/.
x‡Î
(OLT!LGEBRA
*À>V̈ViÊ
3OLVING1UADRATIC%QUATIONSBY'RAPHINGAND&ACTORING
x‡Î
&INDTHEROOTSOFXXTOFINDTHEZEROSOFFSXDXX
3OLVEEACH
EQUATIONFORX
3ETEACHFACTOR
EQUALTO
SXDORSXD
XORX
Y
4OCHECKTHEROOTSSUBSTITUTEEACHROOTINTOTHEORIGINALEQUATION
3OLVE
&INDTHEZEROSOFHSXDX XBYGRAPHING
??
SXDSXD
&ACTORTHENMULTIPLY
TOCHECK
XX
XX
??
??
3OLVETHEEQUATIONAX BXCTOFINDTHEROOTSOFTHEEQUATION
X
œÌʏ}iLÀ>ÊÓ
,iÌi>V…
3OLVING1UADRATIC%QUATIONSBY'RAPHINGAND&ACTORING
,%33/.
GSXDXX
LœÕÌÊǰxÊÃ
#OPYRIGHT©BY(OLT2INEHARTAND7INSTON
!LLRIGHTSRESERVED
&INDTHEZEROSORROOTSOFEACHFUNCTIONOREQUATION
FSXDX X
FTXEÊÊÊXÊÓÊÊÇXÊÊn
3OLVE
!QUADRATICFUNCTIONHASZEROSEQUALTOAND
B -ULTIPLYTHEFACTORSTOGIVETHEQUADRATICFUNCTION
FTXEÊÊÊXÊ ÊÊxXÊÊ£{
3OLVE
A 7HATISTHEFACTOREDFORMOFTHEFUNCTION
AND
Ó
X
%QUATION
XX
XX
2OOT
X
X
#HECK
SDSD
SDSD
✓
✓
4HEZEROSOFFSXDXXAREAND
7RITEAQUADRATICFUNCTIONINSTANDARDFORMWITH
ZEROSAND
FTXEXX
7RITEANEQUATIONINSTANDARDFORMWITH
ROOTSAND
FTXEXX
7RITEAQUADRATICFUNCTIONWITHTWOZEROS
THATHAVEASUMOF
&ORROOTSAND
FTXEXX
7RITEAQUADRATICEQUATIONWITHJUSTONE
NONZEROROOT
FTXEXX
&INDTHEZEROSOFEACHFUNCTIONBYFACTORING3ETTHEFUNCTIONEQUALTO
FACTORSETEACHFACTOREQUALTOANDTHENSOLVEEACHEQUATION
X X
SX
ORX
X
XORX
X X
TXETXE
XTXE
XORX
XORX
XORX
XORX
#OPYRIGHT©BY(OLT2INEHARTAND7INSTON
!LLRIGHTSRESERVED
79
ORX
X X
(OLT!LGEBRA
DSX D
FSXDXX
S
Copyright © by Holt, Rinehart and Winston.
All rights reserved.
D
FSXDXX
B (OWLONGWILL-ARILYNSGOLFBALLSTAYINTHEAIR
AK4up.indd 79
X X
XORX
HTTET T
XSX
X
#OPYRIGHT©BY(OLT2INEHARTAND7INSTON
!LLRIGHTSRESERVED
FSXDX X
A -ARILYNHITAGOLFBALLONTHEGROUNDWITHHERDRIVER5SETHEGENERAL
FUNCTIONFORAPROJECTILETOWRITEAFUNCTIONTHATSHOWSTHEHEIGHTINFEET
OFHERGOLFBALLASAFUNCTIONOFTIME4HEBALLWASHITWITHANINITIAL
VERTICALVELOCITYOFFEETPERSECOND
FSXDX X
3OLVE
4HEROOTSOFTHEEQUATION
ARETHEZEROSOFTHEFUNCTION
4HEROOTSOFXXAREAND
(OLT!LGEBRA
Holt Algebra 2
5/20/06 2:37:50 PM
,iÌi>V…
3OLVING1UADRATIC%QUATIONSBY'RAPHINGAND&ACTORING
CONTINUED
,%33/.
x‡Î
,%33/.
x‡Î
3OMEEQUATIONSTHATARENOTOFTHESECONDDEGREECANBEREWRITTENIN
QUADRATICFORM/NCEINQUADRATICFORMTHEEQUATIONMAYBESOLVEDBY
FACTORING7HENYOUSOLVEANEQUATIONINQUADRATICFORMYOUMAYOBTAIN
AVALUETHATDOESNOTSATISFYTHEORIGINALEQUATION&ORTHISREASONITIS
IMPORTANTTOCHECKALLSOLUTIONSINTHEORIGINALEQUATION
3OMEQUADRATICEQUATIONSHAVESPECIALFACTORS
$IFFERENCEOF4WO3QUARES A
BSABDSABD
0ERFECT3QUARE4RINOMIALS A
ABB SABD s %XAMPLE
A
ABB SABD X
X
ANDAREPERFECTSQUARES
5SETHEDIFFERENCEOFTWO
SQUARESTOFACTOR
SXD SD SXDSXD
SXDORSXD
ORX??
X??
3ETEACHFACTOR
EQUALTO
4RYTOFACTORAPERFECTSQUARETRINOMIALIFTHECOEFFICIENTOFXANDTHE
CONSTANTTERMAREPERFECTSQUARES
XX
SXD SXDSDSD SXDSXDSXD
SXD
X??
2EWRITETHEEQUATIONINX SXD SXD
&ACTOR
X
S
:ERO0RODUCT0ROPERTY
3OLVEFORX
#HECKALLFOURVALUESINTHE
ORIGINALEQUATIONASSHOWN
ATRIGHT
XX
.O
--"
x‡Î
TXE TXE
SXD SXD
)TISINQUADRATIC
FORM,ET
YXTHEN
Y Y
Tr^
XE Tr^
XE
TXE
X
XTX E
T E
TX E ^ X ^
??
??
r
.O
Xq^
X Tr^
XETr^
XE
r
#OPYRIGHT©BY(OLT2INEHARTAND7INSTON
!LLRIGHTSRESERVED
x‡Î
X X TX E TX E
--"
%RINANDHERFRIENDSLAUNCHAROCKETFROMGROUNDLEVELVERTICALLY
INTOTHEAIRWITHANINITIALVELOCITYOFFEETPERSECOND4HEHEIGHT
OFTHEROCKETHTTEAFTERTSECONDSISGIVENBYHTTET T
(OLT!LGEBRA
,i>`ˆ˜}Ê-ÌÀ>Ìi}Þ
#OMPAREAND#ONTRAST
!ZEROOFAFUNCTIONISTHEVALUEOFXTHATMAKESFSXD4WODIFFERENT
WAYSOFFINDINGTHEZEROSOFAFUNCTIONGRAPHINGANDFACTORINGARE
COMPAREDBELOW
4HEYWANTTOFINDOUTHOWHIGHTHEYCANEXPECTTHEROCKETTOGOANDHOW
LONGITWILLBEINTHEAIR
AÊÊ£È]ÊBÊÊnä]ÊCÊÊä
B 5SETHECOORDINATESFORTHEVERTEXOFTHEPATHOFTHE
ROCKETTOFINDTTHENUMBEROFSECONDSTHEROCKET
näÊÊÊ
ÚÚÚÚÚÚÚ
ÊÓ°xÊÃiVœ˜`Ã
WILLBEINTHEAIRBEFOREITSTARTSITSDOWNWARDPATH TÊÊÊÊ T
E
&INDING:EROSBY5SINGA'RAPH
&INDING:EROSBY&ACTORING
FSXDXX
FSXDXX
4HEGRAPHOPENSUPWARD
3ETTHEFUNCTIONEQUALTOZERO
4HEVERTEXISSD
XX
4HEYINTERCEPTIS
ÓÊÊ £ÈÊ Ê
&ACTOR
Y
SXDSXD
3ETEACHFACTOREQUALTOANDSOLVE
£ääÊviiÌ
D -EGANPOINTSOUTTHATTHEROCKETWILLHAVEAHEIGHT
OFZEROAGAINWHENITRETURNSTOTHEGROUND(OW
LONGWILLTHEROCKETSTAYINTHEAIR
XX
XTXXE
X X *ÀœLi“Ê-œÛˆ˜}
3OLVING1UADRATIC%QUATIONSBY'RAPHINGAND&ACTORING
C 3UBSTITUTETHEVALUEFORTINTHEGIVENFUNCTIONTO
FINDTHEMAXIMUMHEIGHTOFTHEROCKET(OWHIGH
CANTHEYEXPECTTHEIRROCKETTOGO
XXX
7RITEEACHEQUATIONINQUADRATICFORMANDSOLVE#HECKYOURANSWERS
(OLT!LGEBRA
A 5SETHESTANDARDFORMFSXDAX BXC
TOFINDVALUESFORABANDC
#OPYRIGHT©BY(OLT2INEHARTAND7INSTON
!LLRIGHTSRESERVED
XX
Xq^
X XX
E
TXE
XORX
ORX??
X??
3OTHEREAREFOUR
SOLUTIONS
&ACTOREACHEQUATIONTODETERMINEIFITCONTAINSAQUADRATICFACTOR)FSO
WRITETHEFACTOREDFORMOFTHEEQUATION)FNOTWRITENO$ONOTSOLVE
X TETXET .O
TXETXE
XORX
D SD SD XX
X X XD S
X X
XORX
TXE TXE
X X
SXDSXD
&INDTHEROOTSOFEACHEQUATIONBYFACTORING
X X SD SD X X 4HEFACTORSARE
THESAME
X
#HECK
X X $ETERMINEIFEACHEQUATIONCANBEEXPRESSEDINQUADRATICFORM)FSO
WRITETHEEQUATIONINQUADRATICFORM)FNOTWRITENO$ONOTSOLVE
X ANDARE
PERFECTSQUARES
3OLVEX X s 3OLUTION
!LWAYSWRITEAQUADRATICEQUATIONINSTANDARDFORMBEFOREFACTORING
…>i˜}i
%XPLORING%QUATIONSIN1UADRATIC&ORM
X
xÊÃiVœ˜`Ã
X
X
X
X
-EGANGETSREADYTOLAUNCHTHESAMEROCKETFROMAPLATFORMFEETABOVETHEGROUNDWITH
THESAMEINITIALVELOCITY(OWLONGWILLTHEROCKETSTAYINTHEAIRTHISTIME
A 7RITEAFUNCTIONTHATREPRESENTSTHEROCKETSPATH
FORTHISLAUNCH
HTTEÊÊ£ÈÊTÊÓÊÊnäTÊÊÓ£
B &ACTORTHECORRESPONDINGEQUATIONTOFINDTHE
VALUESFORTWHENHISZERO
ÊT{TÊÊ£ÊEÊT{TÊÊÓ£ÊEÊÊä
!NSWEREACHQUESTION
(OWCANYOUUSEAGRAPHTOFINDTHEZEROSOFAQUADRATICFUNCTION
C %RINSAYSTHATTHEROOTSOFTHEEQUATIONARETANDTANDTHAT
THEROCKETWILLSTAYINTHEAIRSECONDS-EGANSAYSSHEISWRONG
7HOISCORRECT(OWDOYOUKNOW
#HOOSETHELETTERFORTHEBESTANSWER
-EGANREADSABOUTAROCKETWHOSEPATH
CANBEMODELEDBYTHEFUNCTIONHSTD
TT7HICHCOULDBETHE
INITIALVELOCITYANDLAUNCHHEIGHT
! HSTDT T
œÆÊ«œÃÈLiÊ>˜ÃÜiÀ\Ê>Ê«>À>Lœ>ÊV>˜ÊVÀœÃÃÊ̅iÊX‡>݈ÃÊ>ÌʓœÃÌÊ>ÌÊÌܜʫœˆ˜Ìð
#ONSIDERTHEFUNCTIONFSXDSXDSXD
£Ê>˜`Ê£
A 7HATARETHEZEROSOFTHEFUNCTION
B 7HICHMETHODDIDYOUUSE7HY
>V̜Àˆ˜}ÆÊ«œÃÈLiÊ>˜ÃÜiÀ\ÊȘViÊ̅iÊv՘V̈œ˜ÊÜ>ÃÊ>Ài>`ÞÊv>V̜Ài`]ÊʍÕÃÌÊ
ÃiÌÊi>V…Êv>V̜ÀÊiµÕ>Ê̜ÊäÊ>˜`Ê܏Ûi`ÊvœÀÊX°
!QUADRATICFUNCTIONOPENSDOWNANDITSVERTEXISSD(OWMANYZEROSDOESTHIS
FUNCTIONHAVE%XPLAIN
œÊâiÀœÃÊi݈ÃÌÊvœÀÊ̅ˆÃÊv՘V̈œ˜°Ê*œÃÈLiÊ>˜ÃÜiÀ\Ê-ˆ˜ViÊ̅iÊ«>À>Lœ>ʜ«i˜ÃÊ
`œÜ˜Ê>˜`ʈÌÃÊÛiÀÌiÝʈÃÊLiœÜÊ̅iÊX‡>݈Ã]Ê̅iÊ}À>«…Ê܈Ê˜œÌÊVÀœÃÃÊ̅iÊX‡>݈ð
! FTSFTOFFTHEGROUND
" FTSFTOFFTHEGROUND
#OMPAREANDCONTRASTTHETWOMETHODSOFFINDINGTHEZEROSOFAQUADRATICFUNCTION
$ESCRIBEWHENYOUWOULDUSEONEORTHEOTHERMETHOD
# FTSFTOFFTHEGROUND
" HSTDT T
# HSTDT T
$ HSTDT T
$ FTSFTOFFTHEGROUND
#OPYRIGHT©BY(OLT2INEHARTAND7INSTON
!LLRIGHTSRESERVED
Copyright © by Holt, Rinehart and Winston.
All rights reserved.
AK4up.indd 80
*œÃÈLiÊ>˜ÃÜiÀ\Ê/…iÊ«œˆ˜ÌÃÊ܅iÀiÊ̅iÊv՘V̈œ˜ÊVÀœÃÃiÃÊ̅iÊX‡>݈ÃÊ>ÀiÊ̅iÊ
âiÀœÃʜvÊ̅iÊv՘V̈œ˜°
#ANAQUADRATICFUNCTIONHAVEMORETHANTWOZEROS%XPLAIN
*œÃÈLiÊ>˜ÃÜiÀ\ÊÀˆ˜Ê…>ÃÊ̅iÊÀœœÌÃÊVœÀÀiV̰Ê-iÌÊi>V…Êv>V̜ÀÊiµÕ>Ê̜ÊäÊ>˜`Ê
܏ÛiÊvœÀÊTÊÕÌÊ̅iÊÀœVŽiÌÊ܈ÊÃÌ>Þʈ˜Ê̅iÊ>ˆÀÊx°ÓxÊÃiVœ˜`ðʭ/…iʘi}>̈ÛiÊ
ÀœœÌÊÀi«ÀiÃi˜ÌÃÊ̅iÊ̈“iÊLivœÀiʏ>՘V…ÊȘViÊ̅iÊÀœVŽiÌʈÃÊÃÌ>À̈˜}Ê>ÌÊÓ£Ê
viiÌ]ʘœÌÊ>ÌÊ}ÀœÕ˜`ʏiÛi°®
7HICHFUNCTIONMODELSTHEPATHOF
AROCKETTHATLANDSSECONDSAFTER
LAUNCH
4HEZEROSAREAND
4HEZEROSAREAND
œÌʏ}iLÀ>ÊÓ
*œÃÈLiÊ>˜ÃÜiÀ\ÊÊܜՏ`ÊV…iVŽÊܓiÊv>V̜ÀÃʜvÊCÊ̜ÊÃiiʈvÊÊVœÕ`Êi>ȏÞÊ
v>V̜ÀÊ̅iÊiµÕ>̈œ˜°ÊvʘœÌ]Ê̅i˜ÊÊܜՏ`ʓ>ŽiÊ>Ê}À>«…°
#OPYRIGHT©BY(OLT2INEHARTAND7INSTON
!LLRIGHTSRESERVED
80
œÌʏ}iLÀ>ÊÓ
Holt Algebra 2
5/20/06 2:38:16 PM