: 1 5 10 (a) NO : HO2 3 10 1 10 -1 [H2O] = 1% [O3]= 5 ppm 10 -3 -15 10 4 10 (b) 3 10 OH : NO3 -2 -1 I254 =10 ph cm s 0.032 0.64 6.4 x 2 10 1 10 0 10 -1 10 0 2 4 6 N2O (%) Figure S1. Modeled steady-state (a) NO:HO2 , and (b) OH:NO3 as a function of input [N2 O] in the PAM oxidation flow reactor with mean residence time = 80 sec for: low, medium, and high I254 = 0.032×1015 , 0.64×1015 and 6.4×1015 ph cm2 sec, respectively, at fixed [H2 O] = 1% and [O3 ] = 5 ppm. : NO [ppb] 2 30 25 20 15 10 5 0 (a) 5 NO : HO2 10 (b) [H2O] = 1% 3 15 10 I254 = 6.4*10 -2 -1 ph cm s [O3]: 1 10 0.5 ppm 5 ppm 50 ppm -1 10 -3 10 (c) OH : NO3 3 10 1 10 -1 10 0 2 4 N2O (%) 6 Figure S2. Modeled steady-state (a) NO, (b) NO:HO2 , and (c) OH:NO3 as a function of input [N2 O] in the PAM oxidation flow reactor with mean residence time = 80 sec for: low, medium, and high [O3 ] = 0.5, 5, and 50 ppm respectively, at fixed [H2 O] = 1% and I254 = 6.4×1015 ph cm−2 sec. 3 NO [ppb] : 30 25 20 15 10 5 0 (a) 5 (b) NO : HO2 10 [O3] = 5 ppm 3 15 10 I254 = 6.4*10 [H2O]: 0.07 % 1% 2.3 % 1 10 -1 10 -3 -2 -1 ph cm s O3 = 5 ppm 15 I254 = 6.4*10 10 (c) OH : NO3 3 10 1 10 -1 10 0 2 4 N2O (%) -2 -1 cm s 6 Figure S3. Modeled steady-state (a) NO, (b) NO:HO2 , and (c) OH:NO3 as a function of input [N2 O] in the PAM oxidation flow reactor with mean residence time = 80 sec for: low, medium, and high [H2 O] = 0.07, 1, and 2.3% respectively, at fixed [O3 ] = 5 ppm and I254 = 6.4×1015 ph cm−2 sec. 4 : NO:HO2 [NO] (ppb) -3 OHexp (cm s) 10 2.5 x10 2.0 1.5 1.0 0.5 0 0.25 0.20 0.15 0.10 0.05 0 2.0 (a) 36 ppb isoprene [H2O] = 1%, [O3] = 5 ppm I254 = 6.4*10 13 -2 ph cm -1 (b) s (c) 1.5 1.0 0.5 OH:NO3 0 10 (d) 1 0.1 0.01 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 [N2O] (%) Figure S4. Modeled steady-state (a) OH exposure, (b) [NO], (c) NO:HO2 , and (d) OH:NO3 as a function of input [N2 O] corresponding to isoprene + OH oxidation conditions at low OH exposure in the PAM reactor. Error bars represent uncertainty in model outputs (Peng et al., 2015) and in accuracy of N2 O flow controller. : 5 8 -3 OHexp (cm s) [NO] (ppb) 12 2.5 x10 2.0 1.5 1.0 0.5 0 12 (a) 36 ppb isoprene [H2O] = 1%, [O3] = 5 ppm I254 = 3.2*10 15 -2 ph cm (b) -1 s 4 0 (c) NO:HO2 10 1 0.1 OH:NO3 0.01 100 (d) 10 1 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 [N2O] (%) Figure S5. Modeled steady-state (a) OH exposure, (b) [NO], (c) NO:HO2 , and (d) OH:NO3 as a function of input [N2 O] corresponding to isoprene + OH oxidation conditions at high OH exposure in the PAM reactor. Error bars represent uncertainty in model outputs (Peng et al., 2015) and in accuracy of N2 O flow controller. 6 : -3 s) (a) 4 (cm OHexp 2 11 10 2 10 10 (b) 16 s) [NO] (ppb) (cm -3 O3,exp 1.0 x10 0.5 0 20 15 10 5 0 (c) (d) NO:HO2 3 10 0 10 -3 OH:NO3 10 10 (e) 1 0.1 0.01 0 1 2 3 4 5 6 [N2O] (%) Figure S6. Modeled steady-state (a) OH exposure, (b) O3 exposure, (c) [NO], (d) NO:HO2 , and (e) OH:NO3 as a function of input [N2 O] corresponding to isoprene + OH oxidation conditions at low OH exposure in the PAM reactor. Error bars represent uncertainty in model outputs (Peng et al., 2015) and in accuracy of N2 O flow controller.
© Copyright 2026 Paperzz