Workshop #15 Professor D. Olles 1. Find dy dx by implicit differentiation. 3 a. x + y 3 = 1 b. x2 + xy − y 2 = 4 c. 4 cos x sin y = 1 d. ex/y = x − y e. tan (x − y) = y 1+x2 2. Use implicit differentiation to find an equation for the tangent line to the curve at the given point. x2 + 2xy − y 2 + x = 2, (1, 2) 3. Find y 00 by implicit differentiation. 9x2 + y 2 = 9 4. Use implicit differentiation to derive the formula for the derivative of y = loga x. 5. If f (x) = sin−1 x, show that f 0 (x) = √ 1 . 1−x2 6. If f (x) = tan−1 x, show that f 0 (x) = 1 1+x2 . 2 7. Find an equation of the line tangent to the curve y = ln (xex ) at (1,1). 8. Use logarithmic differentiation to fin the derivative of the function. y= √ 2 xex (x2 + 1)10 9. Find y 0 if xy = y x . 10. Find a formula for f (n) (x) if f (x) = ln (x − 1). 1 Solutions 1. Find dy dx by implicit differentiation. a. x3 + y 3 = 1 3x2 + 3y 2 dy =0 dx dy = −3x2 dx dy x2 =− 2 dx y 3y 2 b. x2 + xy − y 2 = 4 2x + (1)y + x dy dy − 2y =0 dx dx dy dy −x dx dx dy 2x + y = (2y − x) dx 2x + y dy = dx 2y − x 2x + y = 2y c. 4 cos x sin y = 1 dy 4 − sin x sin y + cos x cos y =0 dx −4 sin x sin y + 4 cos x cos y dy =0 dx dy = 4 sin x sin y dx dy sin x sin y = = tan x tan y dx cos x cos y 4 cos x cos y d. ex/y = x − y ex/y e x/y dy y(1) − x dx y2 1 x dy − 2 y y dx ! =1− dy dx =1− dy dx xex/y dy dy ex/y − =1− y y 2 dx dx 2 xex/y dy dy ex/y −1= − y y 2 dx dx x/y ex/y dy xe − 1 −1= y y2 dx x/y ex/y − y xe − y 2 dy = y y2 dx x/y dy e −y y2 = x/y y dx xe − y2 dy yex/y − y 2 = x/y dx xe − y2 e. tan (x − y) = y 1+x2 dy (1 + x2 ) dx − y(2x) 2 (1 + x )2 1 dy dy 2xy 2 2 sec (x − y) − sec (x − y) = − dx 1 + x2 dx (1 + x2 )2 2xy 1 dy dy sec2 (x − y) + = + sec2 (x − y) (1 + x2 )2 1 + x2 dx dx 1 dy 2xy 2 = + sec (x − y) sec2 (x − y) + 2 2 2 (1 + x ) 1+x dx 2 2 2 2 2 1 + (1 + x ) sec (x − y) dy (1 + x ) sec (x − y) + 2xy = (1 + x2 )2 1 + x2 dx 2 2 2 2 (1 + x ) sec (x − y) + 2xy dy 1+x = (1 + x2 )2 1 + (1 + x2 ) sec2 (x − y) dx dy sec (x − y) 1 − dx 2 = dy (1 + x2 )2 sec2 (x − y) + 2xy = dx 1 + x2 + (1 + x2 )2 sec2 (x − y) 2. Use implicit differentiation to find an equation for the tangent line to the curve at the given point. x2 + 2xy − y 2 + x = 2, (1, 2) dy dy − 2y +1=0 dx dx dy 2x + 2y + 1 = (2y − 2x) dx 2x + 2y + 2x 3 dy 2x + 2y + 1 = dx 2y − 2x mt = dy 2+4+1 7 = (1,2) = dx 4−2 2 y − y1 = mt (x − x1 ) 7 (x − 1) 2 7 7 y−2= x− 2 2 7 3 y = x− 2 2 y−2= 3. Find y 00 by implicit differentiation. 9x2 + y 2 = 9 18x + 2yy 0 = 0 2yy 0 = −18x y0 = − 18x 2y y0 = − y 00 = − y 00 = − 9x y (y)(9) − (9x)(y 0 ) y2 (y)(9) − (9x)(− 9x y ) y2 00 y =− y 00 = − 81x2 y y2 9y + 9y 2 + 81x2 y3 4. Use implicit differentiation to derive the formula for the derivative of y = dy loga x. Let y = loga x. We need to find the derivative, dx . y = loga x ay = x d y d (a ) = (x) dx dx 4 dy =1 dx dy 1 = y dx a ln a 1 dy = log x a dx a ln a dy 1 = dx x ln a ay ln a 5. If f (x) = sin−1 x, show that f 0 (x) = √ 1 . 1−x2 f (x) = sin−1 x y = sin−1 x sin y = x d d (sin y) = (x) dx dx dy =1 cos y dx dy 1 = dx cos y From the claim that sin y = x, we may set up the triangle: √ Which gives us cos y = 1−x2 . 1 So, f 0 (x) = √ 6. If f (x) = tan−1 x, show that f 0 (x) = 1 1 − x2 1 1+x2 . f (x) = tan−1 x y = tan−1 x tan y = x 5 dy =1 dx dy 1 = dx sec2 y sec2 y From the claim that tan y = x, we may set up the triangle: Which gives us sec y = √ 1 + x2 . So, dy 1 = √ dx ( 1 + x2 )2 f 0 (x) = 1 1 + x2 2 7. Find an equation of the line tangent to the curve y = ln (xex ) at (1,1). ex2 (1 + 2x2 ) 2 2 dy 1 1 + 2x2 = x2 (1)ex + x(ex (2x)) = = 2 dx x xe xex dy 1+2 =3 x=1 = dx 1 y − y1 = mt (x − x1 ) mt = y − 1 = 3(x − 1) y − 1 = 3x − 3 y = 3x − 2 8. Use logarithmic differentiation to fin the derivative of the function. √ 2 xex (x2 + 1)10 h√ 2 i ln y = ln xex (x2 + 1)10 h√ 2 i ln y = ln xex + ln (x2 + 1)10 h i h 2i ln y = ln x1/2 + ln ex + ln (x2 + 1)10 y= 6 1 ln x + x2 ln e + 10 ln (x2 + 1) 2 1 ln y = ln x + x2 + 10 ln (x2 + 1) 2 11 1 1 dy = + 2x + 10 2 (2x) y dx 2x x +1 ln y = 1 20x 1 dy = + 2x + 2 y dx 2x x +1 y 20xy dy = + 2xy + 2 dx 2x x +1 dy = dx √ √ 2 2 √ 2 20x xex (x2 + 1)10 xex (x2 + 1)10 + 2x xex (x2 + 1)10 + 2x x2 + 1 9. Find y 0 if xy = y x . ln xy = ln y x y ln x = x ln y d d [y ln x] = [x ln y] dx dx dy 1 1 dy ln x + y = (1) ln y + x dx x y dx ln x y x dy dy + = ln y + dx x y dx dy x dy y − = ln y − dx y dx x x dy y ln x − = ln y − y dx x ln x ln y − xy dy = dx ln x − xy x ln y−y x dy = y ln x−x dx y dy xy ln y − y 2 = dx xy ln x − x2 7 10. Find a formula for f (n) (x) if f (x) = ln (x − 1). f (x) = ln (x − 1) 1 = (x − 1)−1 x−1 1 f 00 (x) = −(x − 1)−2 = − (x − 1)2 f 0 (x) = f 000 (x) = 2(x − 1)−3 = 2 (x − 1)3 f (4) (x) = −6(x − 1)−4 = − f (5) (x) = 24(x − 1)−5 = 6 (x − 1)4 24 (x − 1)5 If we allow the first derivative to represent the case where n = 1, the second n = 2 and so on, then we can find a formula in terms of n for the nth derivative. The alternating signs give us negative functions when n is even, and positive functions when n is odd. So, a factor that should exist in the numerator is (−1)n+1 . The power of the binomial in the denominator is always equal to the value for n in that function, so we need (x − 1)n in the denominator. The value in the numerator is increasing as a factorial. But, when n = 3, the numerator is 2 and 3! 6= 2. So, we need (n − 1)! in the numerator. f (n) (x) = (−1)n+1 (n − 1)! (x − 1)n 8
© Copyright 2026 Paperzz