Hilbert's Tenth Problem is Unsolvable Author(s): Martin Davis Source: The American Mathematical Monthly, Vol. 80, No. 3 (Mar., 1973), pp. 233-269 Published by: Mathematical Association of America Stable URL: http://www.jstor.org/stable/2318447 . Accessed: 22/03/2013 11:53 Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at . http://www.jstor.org/page/info/about/policies/terms.jsp . JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. . Mathematical Association of America is collaborating with JSTOR to digitize, preserve and extend access to The American Mathematical Monthly. http://www.jstor.org This content downloaded from 129.2.56.193 on Fri, 22 Mar 2013 11:53:28 AM All use subject to JSTOR Terms and Conditions HILBERT'S TENTH PROBLEM IS UNSOLVABLE Science ofMathematical MARTIN DAVIS, CourantInstitute would solved,everymathematician problemis finally Whena longoutstanding whathas been forhimself byfollowing like to sharein thepleasureof discovery of so muchofcontemporary bytheabstruiseness done.Buttoo oftenhe is stymied The recentnegativesolutionto Hilbert'stenthproblemgivenby mathematics. In thisarticle,a complete (cf. [23], [24]) is a happycounterexample. Matiyasevic a readerneedsto followthe accountofthissolutionis given;theonlyknowledge aboutdivisibility basicinformation theory:specifically is a littlenumber argument (The materialin Chapter1 and the of positiveintegersand linearcongruences. threesectionsof Chapter2 of [25] morethansuffices.) first whichwilltellof a algorithm Hilbert'stenthproblemis to givea computing or notit whether equationwithintegercoefficients Diophantine givenpolynomial provedthatthereis nosuchalgorithm. Matiyasevic hasa solutioninintegers. Hilbert'stenthproblemis thetenthin thefamouslistwhichHilbertgavein his (cf. [18]). The Congressof Mathematicians 1900addressbeforetheInternational wayin whichtheproblemhas beenresolvedis verymuchin thespiritof Hilbert's "thatevery amongmathematicians addressin whichhe spokeof the conviction ofa precisesettlement, be susceptible mustnecessarily problem definite mathematical an actualanswerto thequestionasked,or by theproofof the eitherintheform.of proofs ofitssolution..." (italicsadded). Concerningsuchimpossibility impossibility Hilbertcommented: hypotheses "Sometimes it happensthatwe seekthesolutionunderunsatisfied unableto reachourgoal. Then the or in an inappropriate senseand are therefore of solvingthe problemunderthe given task arisesof provingthe impossibility proofswerealreadygiven and in thesenserequired.Suchimpossibility hypotheses ofan isoscelesrighttriangle e.g.,thatthehypotenuse in showing, bytheancients, thequestionof theimposhasan irrational ratiotoitsleg.In modernmathematics we have acquiredthe that role, so a key played of has solutions sibility certain as to provetheparallelaxiom,to problems thatsuchold and difficult knowledge degreeinradicalshaveno solution squarethecircle,ortosolveequationsofthefifth havebeensolvedin a preciseand in theoriginally sense,butnevertheless intended way." satisfactory completely Ph.D. underAlonzoChurch.He hasheldpositionsat Univ. MartinDavis receivedhisPrinceton ofIllinois,IAS, Univ.of Calif.-Davis,Ohio StateUniv.,RensselaerPoly,YeshivaUniv.and New College,London.He has done researchin various York Univ.,and he spenta leaveat Westfield and Unsolvability of mathematics, and is theauthorof Computability aspectsof thefoundations (editor,RavenPress,1965),Lectureson ModernMathematics 1958),TheUndecidable (McGraw-Hill, Analysis(Gordonand Breach,1967). (Gordonand Breach,1967),and First Coursein Functional Editor. 233 This content downloaded from 129.2.56.193 on Fri, 22 Mar 2013 11:53:28 AM All use subject to JSTOR Terms and Conditions 234 [March MARTIN DAVIS is ofjustthischaracter. problem tenth solutionofHilbert's negative Matiyasevic's a "preciseand but rather sense" in intended It isnota solution Hilbert's"originally ispossible.Themethods needed proofthatno suchsolution satisfactory" completely ofalgorithms hadnotbeendeveloped to makeitpossibleto provethenon-existence functions, ofrecursive (orcomputable) arepartofthetheory in 1900.Thesemethods theory). function of recursive developedbylogiciansmuchlater([6] is an exposition function is assumed.The ofrecursive theory In thisarticleno previousknowledge littlethatis neededis developedin thearticleitself. existsfor Whatwillbe provedin thebodyof thisarticleis thatno algorithm or notit has whether to determine withintegercoefficients testinga polynomial integersolutions).But (Hilbertinquiredaboutarbitrary positiveintegersolutions forintegersolutions thenit willfollowat once thattherecan be no algorithm either.For one could testthe equation P(Xl, "'O 'Xn) forpossessionof positivesolutions<x1, *,x,> bytesting 2 P(1 + p 2+ q1 + r2+ s1,1 +p 2 +q2 + rn+ S2) =0 ofinteger solutions<p1,q1,r1,s1, s ** Pn qn rn,Sn>.Thisis because(by forpossession is the sum of four integer ofLagrange)everynon-negative a well-known theorem is exceeded! Cf. [17], p. 302.)In the squares.(Justthisoncethestatedprerequisite willbe dealt with-except whenthe bodyof thisarticle,onlypositiveintegers is explicitly stated. contrary and ingenioussolutionin January announcedhis beautiful WhenMatiyasevic decade ofHilbert'stenthproblem known that the unsolvability for a been 1970,ithad a Diophantine equationwhosesolutionswere wouldfollowifone couldconstruct withanotherof its grewroughlyexponentially suchthatone of its components showedhowthe Matiyasevic (In ?9,thisis explainedmoreprecisely.) components. suchan equation.In thisarticlethe couldbe usedto construct Fibonaccinumbers theaimhasratherbeento ofthesubjectwillnotbefollowed; development historical as seemscurrently an accountofthemainresults giveas smoothandstraightforward feasible.A briefappendixgivesthehistory. equations Sets. In thisarticletheusualproblemof Diophantine 1. Diophantine one Insteadof beinggivenan equationand seekingits solutions, willbe inverted. equation. Diophantine willbeginwiththesetof"solutions"andseeka corresponding More precisely: is calledDiophantine A setS oforderedn-tuples ofpositive integers .. ? where m coefficients 0, withinteger ifthereis a polynomial Ym), P(xl, ...,9xny1, suchthata given*n-tuple <x1,* , xn> belongsto S ifand onlyifthereexistpositive integersYi1*, ymfor which DEFINITION. This content downloaded from 129.2.56.193 on Fri, 22 Mar 2013 11:53:28 AM All use subject to JSTOR Terms and Conditions 1973] HILBERT'S TENTH PROBLEM IS UNSOLVABLE 235 P(XI*j," ,Xnj,Yl*...sYm) = 0- Borrowingfromlogic the symbols"3" for"thereexists" and ".*." for "if and P canbewritten thesetS andthepolynomial between onlyif",therelation succinctly as: Y1i .., Ym)= O?]s <XI, .* sXn>E S-(3yjj,-*,Ym) [P(xjj, * sXni or equivalently: S = {<xl **"> Xn | (3 y, * ,Ym) [P(xl 31*X nsYlq.. 9Ym)-?]}*- casesalwayswill)havenegativecoefficients. NotethatP may(andinnon-trivial in thearticleexceptwhere shouldalwaysbe so construed The word"polynomial" stated.Alsoall numbers isexplicitly thecontrary inthisarticleare positiveintegers is stated. unlessthecontrary The mainquestionwhichwillbe discussed(and settled)in thisarticleis: of theeventual A vagueparaphrase answeris: any WhichsetsareDiophantine? is Diophantine.What does thephrase set whichcouldpossiblybe Diophantine mean?Andhowisall thisrelatedto Hilbert's beDiophantine" "whichcouldpossibly Thesequitereasonablequestionswillonlybe answered muchlater. tenthproblem? forshowing thetaskwillbedeveloping thatvarioussets In themeantime, techniques are indeedDiophantine. A fewverysimpleexamples: whichare notpowersof2: (i) thenumbers y,z)[x = y(2z + 1)], xeS..(3 numbers: (ii) thecomposite xeS.S*(3y,z) [x = (y + 1)(z + 1)], thatis thesets{<x,y> x < y}, onthepositive relation (iii) theordering integers; {<x,y> Ix _y}: x < y (3 z) (x + z = y), x:!gy.(3z) (x +z- I =y), (iv) thedivisibility relation;thatis {<x,y>Ix I y}: xj y..(3 z) (xz = y). as othersetsto consider, thesetofpowersof2 and Examples(i) and(ii) suggest, Asweshalleventually ofprimesrespectively. see,thesesetsareDiophantine;butthe proofis not at all easy. Anotherexample: (v) theset W of<x,y,z> forwhichxj y and x < z: Here xl y.*.(3u) (y = xu) and x <z.*.(3v) (z = x + v). This content downloaded from 129.2.56.193 on Fri, 22 Mar 2013 11:53:28 AM All use subject to JSTOR Terms and Conditions 236 [March MARTINDAVIS Hence, <x, y,z> EW (3it, v)[(y-xu)2 + (z-x-v)2 =O]. a Diophantine So, in defining general. justusedisperfectly Notethatthetechnique = set one mayuse a simultaneoussystemP1 = O, P2 = 0, *,Pk 0 of polynomial singleequation: can be replacedbytheequivalent equationssincethissystem 2 P1 +P22k+ o+ Pk2=0? integer ofoneormorepositive valuedfunction a positiveinteger Bya "function" will alwaysbe understood. arguments if is calledDiophantine A function f of n arguments DEFINITION. {<XI, .. xn,Y>l y =f(xi, . ,xX) is a Diophantine set, (i.e., f is Diophantineif its "graph" is Diophantine). areDiophantine? functions hereis: which questionthatwillbeanswered Another is associatedwiththe triangularnumbers, function Diophantine Animportant of theform: thatis numbers T(n) = 1 + 2 + *. +n - (n + 1) 2 z, thereis a unique foreachpositiveinteger function, SinceT(n) is an increasing n ? 0 suchthat T(n) < z < T(n + 1) = T(n) +n+ 1. Hence each z is uniquely representableas: z=T(n)+y; y<n+1, as: uniquelyrepresentable or equivalently, z = T(x + y -2) + y. In this case, one writesx = L(z), y = R(z); also one sets P(x,y) = T(x + y -2) + y - 1. since functions NotethatL(z), R(z) and P(x,y) are Diophantine z = P(x,y) 2z=(x+y-2)(x+y-1)+2y x = L(z) (3y)[2z=(x+y-2)(x+y-1)+2y] y = R(z) (3x) [2z = (x + y-2) (x + y-1) + 2y]. P(x; y) mapsthesetoforderedpairsof positiveintegersone-one The function This content downloaded from 129.2.56.193 on Fri, 22 Mar 2013 11:53:28 AM All use subject to JSTOR Terms and Conditions 1973] HILBERTS TENTH PROBLEMIS UNSOLVABLE 237 pairwhichis mappedinto And,foreachz,theordered integers. ontothesetofpositive z byP(x, y) is (L(z), R(z)). ("P" is for"pair", "L" for"left", and "R" for"right".) Note also thatL(z) < z, R(z) < z. To summarize: THEOREM 1.1 (PairingFunctionTheorem').There are Diophantinefunctions P(x,y), L(z), R(z) such that (1) for all x, y, L(P(x,y)) = x, R(P(x,y)) = y, and (2) for all z, P(L(z),R(z)) = z, L(z) < z, R(z) ? z. Theorem, Remainder usefulDiophantine function isrelatedtotheChinese Another statedbelow: of moduli sequence DEFINITION. The numbers mln**, mN arecalledanadmissible prime. if i #j impliesthatmi and mj are relatively THEOREM 1.2 (ChineseRemainderTheorem).Let a,, *,aN be any positive integersand let ml * mNbe an admissiblesequenceof moduli.Then thereis an x such that: x a, modml x a2 mod M2 x aN mod MN. is provedforexamplein [25],p. 33.(Thatx can theorem TheChineseremainder stated.Butsincetheproductof themoduli be assumedpositiveis notordinarily thisis obvious.) solution, addedto a solutiongivesanother Now let the funetionS(i, u) be definedas follows: S(i, u) = wI forwhich: wherew is theuniquepositiveinteger w-L(u) mod 1 + iR(u) w < 1 + i R(u). whenL(u) is dividedby1 + i R(u). remainder Herewissimply theleastpositive THEOREM 1.3 (Sequence Number Theorem). There is a Diophantinefunction S(i, u) such that (1) S(i, u) < u, and (2) for each sequencea,, ***,aN, thereis a numberu such that S(i,u) = a1 for 1 < i < N. Proof. The firsttaskis to showthatS(i, u) as definedjust above, is a Diophantine This content downloaded from 129.2.56.193 on Fri, 22 Mar 2013 11:53:28 AM All use subject to JSTOR Terms and Conditions 238 MARTIN DAVIS [March ofequations function. Theclaimisthatw S(i,u) ifandonlyifthefollowing system has a solution: 2u X = (x+y-2)(x+y-1)+2y w + z(1 + iy) 1+iy -w+v-1. Thisis because(by thediscussion leadingto thePairingFunctionTheorem),the to: first equationis equivalent x = L(u) and y = R(u). Then(usinga technique alreadynoted)oneneedsonlysumthesquaresofthethree equationsto see thatS(i,u) is Diophantine. let al, *- aN be givennumbers. Choosey to Now S(i, u) < L(u) ? u. So finally, be somenumber thaneach of at, * aN and divisible greater byeachof 1,2,**-,N. 1 + y, 1 + 2y,**,1 + Ny are an admissible Thenthenumbers sequenceofmoduli. (For, if dj 1 + iy and dfI +jy, i <I, then dj [j(1 + iy) - i(1 +jy)], i.e., di -i so thatd < N; butthisis impossible unlessd = 1 because dl y.) Thisbeingthecase, canbe appliedto obtaina number Theorem x suchthat theChineseRemainder x3 a x a2 mod l+ 2y x aN mod l+y modl+Ny. Let u =P(x,y), so thatx =L(u) and y = R(u). Then, for i =1,2, .. N a L=- L(u) mod 1 + iR(u) and ai < y = R(u) < I + iR(u). Butthenby definition, ai = S(i, u). A striking of Diophantine characterization setsof positiveintegers(cf.[26]) is given by: THEOREM 1.4. A setS ofpositiveintegersis Diophantineif and only if there isa polynomial P suchthatS isprecisely thesetofpositive in therangeofP. integers Proof. If S is relatedto P(x1,** , xm)as in thetheoremthen x E-S *(3 xl, ^*,xm)[x = p(xl , xm)]. let Conversely, PS(x, X1,XXm) x[ Q(x x1 Let P(x,xl *** xm)= x[l _ Q2(s, Xm) Tn, i-XSX= )]. XI ,.*.*, Xm Then,i'fx E-S, chooseX,, **>xmsuch This content downloaded from 129.2.56.193 on Fri, 22 Mar 2013 11:53:28 AM All use subject to JSTOR Terms and Conditions 1973] 239 HILBERT S TENTH PROBLEM IS UNSOLVABLE ' -,xm) = x; so x is in the rangeof P. On the thatQ(x,xl, ,Xm) = 0. Then P(x, xl, * xm)mustvanish(otherwise x,I otherhand,ifz = P(x, x, *., Xm),z > 0, thenQ(x,x 1-_Q2<_0) so thatz = x and x eS. 2. Twenty-four easylemmas.Thefirst majortaskis to provethattheexponential Thisis thehardestthingwe shallhaveto do. function h(n,k) = nk is Diophantine. The proofis in ?3. In thissectionwe developthemethodswe shallneed,usingthe so-calledPell equation: where X2 -dy2=1, X,Y>O, d =a21, a >1 M(* a self-contained Although thisis a famousequationwitha considerable literature,2 the obvious solutions to (*): Note is given. treatment LEMMA x= 1 y=0 x=a y=l. 2.1. There are no integersx , y, positive,negative,or zero,whichsatisfy (*)for which1 <x+yld< a +Id. Proof. Let x, y satisfy(*). Since 1 = (a + Vd)(a-Nd) = (x + yd)(x-yfyd), the inequalityimplies(takingnegativereciprocals)-1 < - x + yld < - a+ Id. 0 < 2yI/d< 2 I/d,i.e., 0 < y < 1, a contradiction. Addingtheinequalities: LEMMA 2.2. satisfy(*). Let Let x,y and x',y' be integers,positive,negative,or zero which X"+ Y (x +yV) (x' + y'Vd). Then,x",y"satisfies(k). Proof.Taking conjugates:x" - y"Id = (x - y Id) (x' - y'Id). gives: (x")2 DEFINITION. xn(a), - d(y")2 = (x2 - dy2) ((X')2 - d(y')2) = Multiplying 1. forn > 0, a > 1, by setting y,(a) are defined xn(a) + yn(a)/d = (a + Vd)n. on a is notexplicitly thedependence Wherethecontext permits, shown,writing XnL .sYn( LEMMA2.3. xn,,Yn sati'sfy() This content downloaded from 129.2.56.193 on Fri, 22 Mar 2013 11:53:28 AM All use subject to JSTOR Terms and Conditions 240 [March MARTIN DAVIS Proof.Thisfollowsat oncebyinduction usingLemma2.2. LEMMA solutionof(*). Then for some n, x = 2.4. Let x, y be a non-negative xn, Y =Yn. Proof.To beginwithx + yVd > 1. Oj theotherhandthesequence(a + Henceforsomen > 0O increasesto infinity. (a + I <d)"? x + yl/d< (a + 1ydY'+ theresultis proved;so supposeotherwise: If thereis equality, Xn + Yn,fdi < x + yV/d < (xn + Yn,/d) (a + V-d). Since (xn + ynV/d) (xn- yn Jd) = 1, the number xn- yn /d is positive. H4ence, < a + >/d. But thiscontradicts Lemmas2.1 and 2.2. 1 < (x + yld) (Xn-Yn y,d) The defining relation: Xn+ Yn,Id = (a + >d)" formula: is a formalanalogueof thefamiliar (cosu) + (sinu)y1- 1 = eiU= (cos1+ (sin1)1 - 1)u, theroleofsinandd playingtheroleof -1. withxnplaying theroleofcos,Ynplaying identities haveanaloguesin which-1 is replaced Thus,thefamiliar trigonometric by d at appropriate places.For examplethePell equationitself x- dY2 = 1 Nextanaloguesof thefamiliar is just the analogueof the Pythagorean identity. are obtained. additionformulas LEMMA 2.5. xm?n= XmXn ? dYnymand Ym?n = XnYm? XmYn. Proof. Xm+n+Ym+nvJd = (a + Vd)m+n = (Xm + Ym V/d)(Xi + Yn>/d) - (Xmxn+ dYnYm) + (XnYm+ XmYn)Id. Hence, Similarly, (Xm.n + Xm+n = XmXn + dYnYm Ym+n = XnYm+ XmYn. Ym.n Id) (Xn+ YnId) = Xm+ ym-/d. So Xm_n+ Ym-nn/d = (Xm + ym -/d) (xn d)- .as above. and one proceeds This content downloaded from 129.2.56.193 on Fri, 22 Mar 2013 11:53:28 AM All use subject to JSTOR Terms and Conditions 1973] LEMMA HILBERT S TENTH PROBLEM IS UNSOLVABLE 241 2.6. Ym?i = a Ym? Xm,and xm?1 = ax, + dym. Proof.Take n = 1 in Lemma2.5. Thefamiliar notation(x,y) is usedto symbolize theg.c.d.ofx and y. LEMMA 2.7. (x.,,yR)= 1. Proof. IfdIx and djYn, then dfx 2-dy2 i.e., dj1. LEMMA 2.8. YnJYnk Proof.Thisis obviouswhenk = 1. Proceeding byinduction, usingtheaddition formula(Lemma2.5), Yn(m+1) = XnYnm+ XnmYn By theinductionhypothesis Ynj Ynm.Hence,YnIYn(m+1)LEMMA 2.9. Yn|IYtifand onlyifnj t. Proof.Lemma2.8 givesthe implication in one direction.For the converse supposeYnjYtbutntt. So one can writet = nq + r, 0 < r < n. Then, + XnqYr. Yt = XrYnq = 1- (If df Yn, Since (byLemma2.8) ynj Ynq,it followsthatYnJ XnqYr.But (yn,xnq) d Xnq, byLemma2.7,impliesd = 1.) Henceynj Yr. thenbyLemma2.$ dfYnqwhich, But,sincer < n,wehaveYr< Yn(e.g.,byLemma2.6). Thisis a contradiction. LEMMA2.10. Ynk k xyn mod (yM,)3. Proof. (a + Idyk V/d Xnk+ Y,,k = (Xn+ YnQd)k ( k-iy x ?W j= nJ Jdj12 n So, k j(Jxkydjh-h)/2 Ynk = j odd forwhich]> I are Butall termsofthisexpansion LEMMA 2.11. 0 mod(yR)3. O Yn I YnYn Proof. Set k = YR in Lemma 2.10. LEMMA2.12. If YnI Yf,thenYn t. This content downloaded from 129.2.56.193 on Fri, 22 Mar 2013 11:53:28 AM All use subject to JSTOR Terms and Conditions 242 [March MARTIN DAVIS Proof. By Lemma 2.9, n I t. Set t = nk. Using Lemma 2.10, y2 k xn-7y., i.e., ynI kx'-71.But byLemma2.7,(Yn, Xn)= 1. SO,Ynk and henceYnI t. and Yn+I = 2ayn-yn. LEMMA 2.13. xn+ = 2axn-xn_ Proof.ByLemma2.6, Xn+ = axn+ dyn, Ynl+ = aYn+ Xn = aXn - dyn, Yn-1 = aYn - Xn, Xn So, Xn+ Jr Xn-I = 2axw Yn+l + Yn-l = 2ayn. together withtheinitialvaluesxo = 1, equations, Thesesecondorderdifference x1 = a, Yo = 0, Yi = 1, determinethe values of all the Xn,Yn.Various propertiesof themforn = 0, 1 andusingthese thesesequencesareeasilyestablished bychecking show for fromits difference thattheproperty n + 1 can be inferred equationsto examplesfollow: holdingforn and n - 1. Somesimple(butimportant) LEMMA2.14. yn-n mod a 1. - usinga -1, mod inductively, Proof.For n = 0,1 equalityholds.Proceeding a-1: 2ayn-Yn-y Yn+1- mod a-1. 2n-(n-1) LEMMA2.15. If a _ b mod c, thenfor all n, mod c. yn(a) yj(b) xn(a)-x.(b), is an equality. Proceeding byinduction: Proof.Againforn = 0,1 thecongruence yn+1(a) = 2ay,(a) - yl1(a) - 2by.(b)-y,,-1(b) mod c = 7,.+ Il(b). LEMMA2.16. Whenn is eveny,,is evenand whenn is odd y, is odd. Proof Yn + = 2aYnYn - I Yn-, mod 2. So whenn is even,Yn Yo = 0 mod 2, and when n is odd, Yn-Yi = 1 mod 2. LEMMA 2.17. xn(a) - yn(a)(a Proof. xo - yo(a - - y) Y" mod 2ay _ y2 y) = 1 and xl yl(a - _ 1. y) = y, so theresultholds for n1= 0 - and 1. UsingLemma2.13 and proceeding by induction: Xn+ - Yn+(a - y) = 2a[Xn - yn(a - Y)] - [Xn- Yn-1(a = 2ayn _ yn-I This content downloaded from 129.2.56.193 on Fri, 22 Mar 2013 11:53:28 AM All use subject to JSTOR Terms and Conditions - y)] 1973] 243 HILBERT'S TENTH PROBLEM IS UNSOLVABLE = y"nI(2ay-1) = yn-I y2 yn+1 LEMMA 2.18. For all n, Yn+1 Proof. By Lemma 2.6, Yn+1 yn> n for all n. LEMMA > > Yn_ n. Yn.Since yo = 0 > 0, it followsby inductionthat 2.19. For all n, xn+1(a) > x"(a) > an; xn(a) < (2a)". By Lemmas 2.6 and 2.13 a x"(a) < xn+ 1(a) < (2a)xn(a). by induction. Proof. Next some periodicity properties of the sequence LEMMA 2.20. X2"n=- The result follows Xk are obtained. xj mod xn. Proof. By the addition formulas (Lemma 2.5) X2n j = Xnxn j + dYnYn j - dYn(YnXi ?XnYi) - dy 2xj = (x2- _)xj - LEMMA 2.21. x; mod X4"+J mod xn mod xn - x; mod xn. xn. Proof. By Lemma 2.20 x4n"j LEMMA n=1, i=0 -X2n" mod xn. ijxX n > 0. Then i=j, 2.22. Let xi- xj mod xn, i<J<2n, and j=2. unless a =2, Proof. First suppose xn is odd and let q = (xn - 1)/2. Then the numbers -q+2, ., -1,0 , 1, ,q - 1, q are a complete set of mutually -q, -q+1, incongruent residues modulo xn. Now by Lemma 1 =xo Using Lemma 2.6, x - I<- < X < ... 2.19, <xn-1. xnla < i xn; so xn_1 < q. Also by Lemma 2.20, the numbers Xn+1,Xn+29 ...X2n-1,X2n are congruent modulo xn respectively to: This content downloaded from 129.2.56.193 on Fri, 22 Mar 2013 11:53:28 AM All use subject to JSTOR Terms and Conditions 244 [March MARTIN DAVIS moduloxn.Thisgives incongruent x0,x1,x2,**. , x2 are mutually Thusthenumbers the result. Nextsupposexnis evenand let q = xn/2. In thiscase,it is thenumbers - q +1, - q +2, ... - 1,O,1,... ~q - 1,q residuesmodulox".(For, - q = q incongruent setofmutually whicharea complete < So the will follow as above,unless xn-1 = q result mod xn.)As above,xn1 q. = x"/2, so thatx"+ --q mod x", in whichcase i = n-1, =n + 1 would ourresult.But,byLemma2.6, contradict axn_l+ xn= dYn- 1, so thatxn= 2xn_1impliesa = 2 andyn-i= 0, i.e.,n = 1. So theresultcanfailonly fora =2, n = 1 and i =0, j =2. LEMMA 2.23. Let xj xi mod xn, n > O,O< i < n, O < j < 4n, then either i or j =4n-i. j= Proof. Firstsupposej < 2n. ThenbyLemma2.22, = ia unlesstheexceptional caseoccurs.Sincei > 0, thiscan onlyhappenifj = 0. Butthen i = 2 > 1 = n. letj > 2n and set j = 4n -j so 0 < j < 2n. By Lemma2.21,X _ Xj Otherwise, case ofLemma2.22occurs.Butthis -xi modxn.Againj = i unlessthe exceptional lastis out of thequestionbecausei, j > 0. LEMMA 2.24. If O < i < n and xj xi mod xn, thenj +i mod4n. Proof. Write]= 4nq + j, 0 _ j < 4n. ByLemma2.21, X_Xj_X. By Lemma2.23i= j or i = 4n - j. So, ]s mod xn. j- +i mod4n. ofDiophantine equations: function. Considerthesystem 3. Theexponential (I) x2 - (a2-1)y2 = 1 (II) u2 - (a2-1)v2 = 1 (III) s2 - (IV) v = ry2 (V) b = 1+4py=a+qu (VI) s = x+cu (VII) t = k + 4(d-1)y (b2-1)t2 = 1 This content downloaded from 129.2.56.193 on Fri, 22 Mar 2013 11:53:28 AM All use subject to JSTOR Terms and Conditions 1973] HILBERT S TENTH PROBLEM IS UNSOLVABLE 245 y = k+e-1. (VIII) Then it is possibleto prove: 3.1. For givena, x, k, a > 1, thesystemI-VIII has a solutionin the remainingargumentsy,u, v,s, t,b, r,p, q, c, d, e ifand onlyifx = xk(a). THEOREM Proof.Firstlettherebe givena solutionofI-VIII.ByV, b > a > 1. ThenI, II, III imply(byLemma2.4) thatthereare i,j, n > 0 suchthat x = xi(a), y = yi(a), u = x"(a), v = y(a), s = xj(b), t = yj(b). ByIV, y < v so thati < n. V andVI yieldthecongruences b-a mod x"(a); xj(b)-xi(a) mod x"(a) and by Lemma2.15 one getsalso Thus, mod x"(a). xj(b) xj(a) xi(a) xj(a) mod x"(a). By Lemma2.24, mod 4n. ij?+i (1) Next,equationIV' yields (y, (a))' y(a). y| so thatbyLemma2.12, yi(a)n 7 and (1) yields: j -+ (2) i mod 4yi(a). By equationV b -1 mod 4yi(a), so by Lemma2.14, (3) yj(b) j yj(b) k mod 4y,(a). k-+ i mod 4y,(a). mod 4yi(a). By equationVII, (4) Combining (2), (3), (4), (5) This content downloaded from 129.2.56.193 on Fri, 22 Mar 2013 11:53:28 AM All use subject to JSTOR Terms and Conditions 246 [March MARTIN DAVIS Equation VIII yields k < yi(a) and by Lemma 2.18, i < yi(a). Since the numbers - 2y+ 1, -2y +2, , 1,0, 1, 2y forma complete set of mutuallyincongruentresidues modulo 4y inequalitiesshow that (5) impliesk = i. Hence x ix(a) = 4y,(a), these Xk(a). Conversely,let x = xk(a). Set y yk(a) so that I holds. Let m = 2kyk(a) and let u = x"(a), v =yr(a). Then II is satisfied.By Lemmas2.9 and 2.11 y2' v. Hence one can choose r satisfying IV. Moreoverby Lemma 2.16, v is even so thatu is odd. By Lemma2.7, (u,v) = 1. Hence (u,v 4y) = 1. (If p is a primedivisorof u and of4y,then p jy because u is odd, and hence p Iv since y v.) So by the Chinese Remainder Theorem(Theorem 1.2), one can findbo such that bo-1 mod 4y bo-a mod u. Since bo + 4juy will also satisfythesecongruences,b,p, q satisfying V can be found. III is satisfiedby settings = xk(b), t = yk(b). Since b > a, s = xk(b)> xk(a) = x. By Lemma 2.15 (usingV), s -x mod u. So c can be chosen to satisfyVI. By Lemma 2.18, t> k and by Lemma 2.14, t= k mod b-I and hence usingV, t = k mod 4y. So d can be chosen to satisfyVIT. By Lemma 2.18 again, y > k, so VIII can be satisfiedby settinge = y - k + 1. COROLLARY 3.2. The function is Diophantine. g(z,k) = Xk(Z + 1) Proof. Adjoin to the systemI-VIII: a (A) = z +1. By thetheorem,thesystem(A), 1-VIII has a solutionifand onlyifx = xk(a) = g(z, k). Thus a Diophantinedefinitionof g can be obtainedin the usual way by summing the squares of 9 polynomials. Now at last it is possibleto prove: THEOREM 3.3. The exponentialfunction h(n,k) =-nk is Diophantine. This content downloaded from 129.2.56.193 on Fri, 22 Mar 2013 11:53:28 AM All use subject to JSTOR Terms and Conditions 1973] HILBERT S TENTH PROBLEM IS UNSOLVABLE 247 First,a simpleinequality: LEMMA 3.4. If a > yk, then2ay - y- - 1 > yk. Proof.Set g(y) =2ay - y2 - 1. Then (since a _2) g(1) =2a-2 > a. For So g(y)> a for 1< y<a. Then for a>y y y, 1<y<a, g'(y)=2a-2y>0. 2ay _ y2 1 > a > yk Now, adjoin to equationsI-VIII: IX (x-y(a-n)-m)2 X m + g = 2an-n2 2 XI w-n + h = k + l XII a2 -(w2-1) - =(f-1)2(2an-n2 1)2 (w-1)2z2 = 1. at oncefrom: Theorem3.3thenfollows LEMMA 3.5. m = ing argumen?ts. nk ifand onlyif equationsI-XII havea solutionin the remain- Proof. Suppose I-XII hold. By XI, w > 1. Hence (w - 1)z > 0 and so by XII a > 1. So Theorem3.1 appliesand it followsthatx = xk(a), y = yk(a). By IX and Lemma2.17, mod 2an-n2 m-nk 1. XI yields k,n <w. By XII (usingLemma 2.4),forsomej, a = xj(w), (w - 1)z = yj(w). By Lemma 2.14, j 0 mod w - 1 so thatj > w - 1. So by Lemma 2.19, a ? ww1 > n Now by X, m < 2an-n2 - 1, and by Lemma3.4, nk< 2an-n2 _ 1. and bothlessthanthemodulus,theymustbe equal. Sincem and nk are congruent Conversely, supposethatm = nk. Solutionsmustbe foundforI-XII.Chooseany numberw such that w > n and w > k. Set a = xw_I(w)so that a > 1. By Lemma 2.14, Yw-l(w) 0 mod w - 1. This content downloaded from 129.2.56.193 on Fri, 22 Mar 2013 11:53:28 AM All use subject to JSTOR Terms and Conditions 248 [March MARTIN DAVIS So one can write (W) = z(w Yw- -1); XI can be satisfied thusXII is satisfied. bysetting h=w-n, As before,a > nk I=w-k. so thatagainbyLemma3.4, m= nk < 2an - 1 n and X can be satisfied.Settingx = xk(a), y = yk(a), Lemma 2.17 permitsone to definef suchthat (f- 1)(2an -n2 x - y(a - n) - m so thatIX is satisfied. Finally,I-VIII can be satisfied byTheorem3.1. ofDiophantine Now thatit has beenprovedthatthe 4. Thelanguage predicates. is other exponentialfunction functions andsetscan be handled. Diophantine, many As an example,let h(u,v,w) = uv . The claim is thath is a Diophantinefunction.For: y uvW (3z) (y = z& vw) where"&" is the logician'ssymbolfor "and". UsingTheorem3.3, thereis a polynomialP such that: z~~~~~~~~~~~~ y = u4Z (3rj, *,rn)[P(y, u,z, rl, Z = Vw 3S 1, *sSO VI ,Ws [P(Z, r I SSn 0,7n ]9 O= ] Then, y = uVW (3(z,ri,*,rn,si, * + ,sn) [Pp2(y,u,z, ri,.*,r) P2(Z, V,W, S1, *', S) = 0]. Now this procedureis perfectlygeneral: Expressionswhichare alreadyknown setsmaybe combinedfreelyusingthelogicaloperations to yieldDiophantine of "&" and "(3)"; theresulting willagaindefinea Diophantine set.(Such expression expressionsare sometimescalled Diophantinepredicates.)In this "language" it is to use thelogician's"V" for"or", since: also permissible (3 rl, -,rn)[PI = O] V(OSI, ',Sm) EP2 = ?] This content downloaded from 129.2.56.193 on Fri, 22 Mar 2013 11:53:28 AM All use subject to JSTOR Terms and Conditions 1973] HILBERT S TENTH PROBLEM IS UNSOLVABLE 249 Threeimportant are givenby: Diophantinefunctions THEOREM 4.1. Thefollowingfunctionsare Diophantine: (1) f(n,k) =( g(n) = n! (2) (3) y H (a + bk). h(a, b,y) = k=1 thefamiliar thistheorem notation[oc],wherea is a realnumber, will In proving be usedto meantheuniqueintegersuchthat [ac]? a < Lx]+ 1. LEMMA 4.1. For 0 < k ! n, u > 2n + [(u 1)n/uk] = i= k u I', Proof. ?(I (u+1)n/uk= .u =S + R where S= j n-ikk 3 R nI- '7 = ( i- .)uik k and ThenS is an integer R < u ' i=0 (. Ivi i- < ui 1 i0O - u(I. < 1. + ( 1)n So, S ? (u + 1)n/uk < S + I whichgivesthe result. This content downloaded from 129.2.56.193 on Fri, 22 Mar 2013 11:53:28 AM All use subject to JSTOR Terms and Conditions 250 [March MARTIN DAVIS LEMMA 4.2. For 0 < k < n, u > 2 , [(U + kn 1)nlUk]- odu ofthesumforwhichi > k aredivisiblebyu. Proof. In Lemma4.1 all terms LEMMA 4.3. f(n, k) = () is Diophantine. Proof. Since =2n <u, (k--) Lemma 4.2 determines(n) as the unique positive integercongruentto [(u + 1)n/uk]modulou and < u. Thus, z-( k ) (3u, v,w) (v = 2n& u > v &w = [(u + I)n!uk] &z W mod u&z<u). to note that each of the above To see that(k) is Diophantine,it then suffices v=2" isofcourseDiophanpredicates; by"&" areDiophantine separated expressions u > v is of courseDiophantinesinceu > v tineby Theorem3. The inequality (3x)(u = v + x). Also, z3w mod u & z<u*(3x,y)(w=z+(x-1)u&u=z+y). Finally w = [(u + 1)n /uk] (3x,y,t) (t = u + 1 &x = tn&y =u k&w ?xIy < w + 1), and w < x/y< w + 1 wy < x < (w + l)y. LEMMA 4.4. If r > (2x)x+1 then x= [r (rx)l] Proof. Let r > (2x)x+l. Then, ~~~rxx! X/ r x = r(r - 1) ..(r-x = x! -, 4\ +1) , x This content downloaded from 129.2.56.193 on Fri, 22 Mar 2013 11:53:28 AM All use subject to JSTOR Terms and Conditions 1973] HILBERT'S TENTH PROBLEM IS UNSOLVABLE < xx x Now, = 1+ x 1 1 x--+ r r~ x 2 r + <1+-{1 r 2 r ~~~ ll r + 3: + + r 2x r And, r~~~ j 2x +2x 2x 2 < 1+< I + =l r (x) 2x x r So, rxi(r) < x! + < + x! .x!2x 2x+1 xx+' r _ < X! + 1. LEMMA 4.5. n! is a Diophantinefunction. Proof: m = n! * (3r,s,t,u,v) {s = 2x + 1& t = x + 1 &r &u= r&v =(r) n = St & mv < u < (m + 1)v}. LEMMA4.6. Let bq -a mod M. Then, I (a + bk) bYy!(y Y) mod M. This content downloaded from 129.2.56.193 on Fri, 22 Mar 2013 11:53:28 AM All use subject to JSTOR Terms and Conditions 251 252 [March MARTINDAVIS Proof byY! q+ = by(q+y) (q +y-l)-. (q+l1) (bq + yb) (bq + (y-1)b) *.. (bq + b) = 3 (a + yb) (a + (y-I)b) **(a LEMMA 4.7. h(a, b, y) = fkj= + b) (mod M). (a + bk) is a Diophantine 1 function. Proof. In Lemma 4.6 choose M = b(a + by)' + 1. Thein, (M, b) = 1 and bq _ a modM is solvableforq and then fJ7k1 (a + bk). Hencethecongruence as theuniquenumber whichis congruent moduloM fk=1 (a + bk) is determined M > to byy! q + Y) and is also < M. I.e., y Z HI k=1 (a p,q, r,s,t, u, v,w, x) + bk) (M, r = a + by&s &bq = rY & M = bs + 1 a + Mt & u- by&v = y! &z < M & w =q?y &x= (w)&z+MP=uvx} forthe exponential forv = y! and for function, Usingthe previousexpressions x -(), we obtaintheresult. in Lemmas4.3,4.5,and 4.7. ofTheorem4.1 is contained The assertion The languageof Diophantinepredicates use of permits quantifiers. 5. Bounded usedbylogiciansare: &, V, and 3. Otheroperations for"not" (Vx) for"forall x" for"if*.., then ..." can lead to as willbe clearlater,theuseofanyoftheseotheroperations However, Thereare also thebounded whichdefinesetsthatarenotDiophantine. expressions existentialquantifiers: , '6(3y)s " which means "(3y) (y < x & andtheboundeduniversalquantifiers: "(Vy)x X whichmeans "(Vy) (y > xV P) This content downloaded from 129.2.56.193 on Fri, 22 Mar 2013 11:53:28 AM All use subject to JSTOR Terms and Conditions 19731 253 HILBERT S TENTH PROBLEM IS UNSOLVABLE It turnsoutthattheseoperations maybe adjoinedto thelanguageof Diophantine thatis, thesetsdefinedby expressions of thisextendedlanguagewill predicates; stillbe Diophantine. I.e., THEOREM R 5.1. If P is a polynomial, = {<y,x1, **,xn>| Z,X1, **,Xn,Y1, * ,Ym) = (3z)s5(3y1 **,Ym)[P(Y 0]} and S {<y, XI, *, xn> I(Vz)5(y(3y1 , Ym)[P(Y, z, xI, .*, Xn,Y,1, , Ym)= OD} thenR and S are Diophantine. is trivial.Namely, ThatR is Diophantine <Y, XI, ,ym)(z < y&P = O). IXn> c-R.t(3z, yl, is farmorecomplicated. The proofoftheotherhalfofthetheorem LEMMA 5.1. (Vk)gY(3y1, ,Ym) [I(Y,k, XI, Ym) = Y,, ,Xn, 0] *I*Ym)-u[P(y,k,xl1,** , xn, Y I,* Ym)= ?] (3u) (Vk):,Y(3yI, Proof.The fightside of theequivalencetrivially impliestheleftside. For the converse, supposetheleftsideistrueforgiveny,x1,* xn. Thenforeach k = 1,2, . ,y thereare definitenumbers (k)**, y(k) forwhich: P(y,k,x1 **,,(k) , , y(k)) 0. of the mynumbers Takingu to be themaximum {(k)| m; k = j = J, **, 1,2,**,y}, is likewisetrue. it followsthattherightsideoftheequivalence LEMMA 5.2. (1) Let Q(y,Ux1 ...X) be a polynomialwiththe properties: ~~Q(Y'U,X1,*,Xn) > U, (2) Q(Y,U,X1,*" Xn)> Y, , <! Q(Y,U,X1,***,Xn)* IYm)| (3) k < y and yl,**,Ym_ u imply|P(y,k,xl-,*,xn,Yl, Then, "' Xns Y,I ..* ~Ym)= 0] (Vk)5Sy(3yI *y,Y5)u [P(y, k,xl ** y (3c,t,a,, ...$am) [1 +ct= k=1 (1 + kt) This content downloaded from 129.2.56.193 on Fri, 22 Mar 2013 11:53:28 AM All use subject to JSTOR Terms and Conditions 254 [March MARTIN DAVIS u f I &t = QU3o8eX13 ... 3,x)! & 1 + ct &... &1 +Ct f j =1 (amJ-(j) mod 1+ct]. *,am)-=O &P(y,c,-x,,xn,al, (a,l-j) j=i Thepointofthislemmais thatwhiletherightsideoftheequivalence seemsthe morecomplicated ofthetwo,itis freeofboundeduniversal quantifiers. in the - direction: Proof.Firsttheimplication Foreachk = 1,2, **, y,letPkbea primefactorof 1 + kt.Lety,k) be theremainder whena' is dividedbypk(k = 1,2,***,y; i = 1,2,**,m).It willfollowthatforeach k,i: (a) 1< Yk) < u (b) P(y,k,x, ...xnyk) mk)) - 0. To demonstrate(a), notethatPk i + kt,1 + kt| 1 + ct and 1 + ct f[J> =1(a, -j). I.e., .~~~~~~~~~~~~~~~~~~~~~~~~~~~~ pkI1iJ=l(ai -j). Since Pk is a prime,Pkj ai -j forsome1j2, j *.*?u. That is Since t = Q(y,u,x1, ,x)!, mod Pk. ) jaai= (2) implies that every divisor of 1 + kt must be > Q(y, u, xi, ***,xn").So Pk > Q(y,,u, xi, ..** x") and by (1), pk > u. Hence j<u Sincey(k)is theremainderwhenai is dividedbyPk, also )(5c<Pk. So, yik) = j To demonstrate (b), first notethat mod 1+ct=1+kt=0 Pk. Hence k+kct-=c+kct i.e., k-c mod Pk, mod Pk. Wehavealreadyobtained yk)-=ai mod p,. Thus, Y(f k,x1,* ",y)-P(y, c, xi , Xn.a,, X, 0 modpk. Finally This content downloaded from 129.2.56.193 on Fri, 22 Mar 2013 11:53:28 AM All use subject to JSTOR Terms and Conditions am) < Pk. 1973] 255 HILBERT'S TENTH PROBLEM IS UNSOLVABLE ,n,( |P(y, k,xl,...Y )| _ (Y(ksx) This proves(b) and completesthe proofof the To prove the => implication,let P(Y'k> = <Pk..' implication. (k) ... Ymk)= ?~ for each k = 1,2, .*, t, whereeach yj(k)< u . We sett = Q(y,u,x1, x")!, and since Hk= (1 + kt) =1 mod t, we can findc suchthat ..., 1+ Ct = y H (1 + kt). k= 1 Now, it is claimed that for 1 ? k < I< y, (1 + kt,1 + It) = 1. For, let p 11+ kt,p| l + It. Then P I-k, so p < y. But since Q(y,u,x1, ,xn) > y thisimpliesp I t whichis impossible.Thus the numbers1 + kt forman admissible sequence of moduli and the Chinese RemainderTheorem (Theorem 1.2) may be applied to yield,foreach i, 1 < i < m, a numberai such that a, _yek) modI + kt, k-=1, 2, -*,y. As above, k _ c mod I + kt. So P(y c,x -X,n aj, - am) P(y, k,xl, **, X", - k) ... y(k)) mod 1 + kt, 0. Since the numbers 1 + kt are relativelyprime in pairs and each divides ., x", a1, **, am) so does theirproduct. I.e., P(y, c,x1, P(y, c, x 1, .. x., xna am) -0 mod 1 + ct. Finally, i.e., ai y=k) mod 1 + kt, 1 +kt az _ (k) Since1 <y(k)<u 1kt|IIf j=1 (ai-J) Andagain sincethe 1 + kt'sare relativelyprimeto one another, I+ ct Hrl (ai -j). u j=1 This content downloaded from 129.2.56.193 on Fri, 22 Mar 2013 11:53:28 AM All use subject to JSTOR Terms and Conditions 256 [March MARTIN DAVIS Nowitis easyto completetheproofofTheorem5.1using Lemmas5.1 and 5.2. Firstfinda polynomial Q satisfying (1), (2), (3) of Lemma5.2. Thisis easyto do: Write N k,xj,. sX.,Yi ..sYm) Ya tr P(yu r=1 whereeach trhas theform tr=c'k S=|cy Xq,Xq,2. qnyl S2 .Sm 2 y 2 Set Ur = forc an integer positiveor negative. Y cya+bX 1XX2...xqnus1?S2+--+Sm N Q(Y' = sxn) UsX,,.. u + Y E + r=1 Ur. Thus: Then(1), (2), and(3) ofLemma5.2holdtrivially. 1,*,Ym)[P(ysk,x X'n*,Y"Y1,**,Ym)= ? (Vk)<Y(3y + ct (3u, c, t,a,***,am) Y k =1 ,x n)!&1 +ctI &t=Q(y,uxI X u & ...&1 + ctlHi j=l mod I + ct] *a+ , ejh,g&1, *, gm,h1, ,e hn ) , &a 171(a1 -j) j=1 (a,n-]) &P(Y'c,xj,-,x,,aj,-,am)--0 (hu,c,t,a ( + kt) Y t =f! =iao-aU &e2=ya2-Uh &gD &e&4gm.am1u u & h,= f k=1 & .. &hm= ti (gI+ k) &h2 t rI k=1 = fl k=1 +k) (92 k) &e| hj&e| h2&}&e| (gmn+ & I= P(y' , xl,s,, x, a,,,,",an) &e hm 1 and this is Diophantine by Theorem 4.1. This content downloaded from 129.2.56.193 on Fri, 22 Mar 2013 11:53:28 AM All use subject to JSTOR Terms and Conditions and let 1973] HILBERT S TENTH PROBLEM IS UNSOLVABLE 257 6. Recursive functions. So farone trickafteranotherhas been used to show thatvarioussetsare Diophantine. Butnowverypowerful methodsareavailable:it turnsoutthatthe expandedversionof the languageof Diophantinepredicates, theuseofboundedquantifiers permitting (sanctioned byTheorem5.1)together with theSequenceNumber Theorem (Theorem 1.3)enablesonetoshowinquitea straightforward waythatalmostanysetwe pleaseis Diophantine. Someexamplesare in order: (i) theset P of primenumbers: x > I &(Vy,z)<x[yz <xv yz > x V y = 1 V z = 1]. xeP oftheprimesis: Another Diophantine definition X GP-=x > I &((x -1)! ,x) = I x > 1 &(3y,z,u,v) [y = x -1 &z = y! &(uz - vx)2 = 1]; is themorenaturalone. butthefirst definition From Theorem 1.4 it followsthat thereis a "prime-representing" polynomial is primeif and onlyif it is in the rangeof P. For an P, i.e.,a positiveinteger of sucha polynomial explicitconstruction P, cf. [23a]. (ii) thefunctiong(y) = ,7ly=1 (I + k2). Here we use the SequenceNumber Theoremto "encode" the sequence g(1), g(2), . so that S(i,u) = g(i), ,g(y) into a singlenumberu, i.e., i = 1,2, .,y. Thus, z = g(y) >(3u) {S(1,u) = 2 &(Vk)<Y[k = 1 V(S(k,u) (3u) {S(l,u) & b-S(a, = = (1 + k2)S(k - 1,u))] & z = S(y,u)} 2 & (Vk)?y[k = 1 V (3a,b,c) (a u) & c = S(k, u) & c = (1 + k2)b)] & z k- 1 S(y,-u)}. By now it is clearthattheavailablemethodsare quitegeneral.Theyare so thatthe questionbecomes:how can any "reasonable"set or function powerful escapethesemethods, i.e.,notbe Diophantine? Thestrength canbe testedbyconsidering ofthemethods theclass ofall compuTheseare thefunctions whichcan be computed functions. tableor recursive bya or machinehavingarbitrarily finite program computing largeamountsof timeand ofthisclass(all ofthemequivalent) definitions atitsdisposal.Manyrigorous memory are available.One of thesimplest is as follows: The recursive functions3 are all those functionsobtainable from the initial functions This content downloaded from 129.2.56.193 on Fri, 22 Mar 2013 11:53:28 AM All use subject to JSTOR Terms and Conditions 258 [March MARTIN DAVIS c(x) = ,s(X) =x + 1; U"(x1', **x) i t < i <n; S(i,u) (Thesequencenumber function)4 iterativelyapplyingthe three operations: composition,primitiverecursion,and minimalizationdefinedbelow: COMPOSITION yieldsthefunction , h(X 1, , "XJ)fg 1(x 1,* ,X.),* g(x, ,X.)) fromthe given functionsg1, , gn and f(t1,* ,r, .) PRIMITIVE RECURSION equations: yields the functionh(xl, h(xl, x., t) =f(xl, **,x",z) whichsatisfiesthe **x.) h(xl,** x" t + 1) = g(t,h(x1,***,Xn,t) xl, ** ,xJ, romthegivenfunctions f, g. Whenn = 0,f becomesa constant so thath is obtaineddirectly fromg. MINIMALIZATION yieldsthefunction: h (x 1, *, xj= mi'n,U(x x,y) 1, *.*1 X, = g(X, XnY)] X, fromthegivenfunctionsf, g assumingthatf,g are such that foreach x1, ,x. there . ,x",y) = g(x1,.,x",y); (i.e.,h must is at leastoney satisfying theequationf(x1, be everywhere defined). The mainresultof thisarticleis: TEILOREM6.1. AfunctionisDDiophantine ifand onlyifit is recursive. To beginwith,consider thefollowing shortlistofrecursive functions: since (1) x + y is recursive x + I = s(x), x + (t + 1) = s(x + t) = g(t,x + t,x), whereg(u, V,w) = S(U3(U, V,W)). since (2) x *y is recursive x l x (t+ 1)=(x whereg(u, v,w) = = U1(x) t)+x=g(t,x tx), U3(u, V,W) + U3(u, V,W). This content downloaded from 129.2.56.193 on Fri, 22 Mar 2013 11:53:28 AM All use subject to JSTOR Terms and Conditions 1973] 259 HILBERT'S TENTH PROBLEM IS UNSOLVABLE (3) For eachfixedk,theconstant function Ck(X) = k is recursive, since c1(x) is and Ck+I(X) = Ck(X) + c(x). one of theinitialfunctions (4) Any polynomialP(x1, ***, x") with positiveintegercoefficients is recursive, of additionsand mulcan be expressed bya finite iteration sinceanysuchfunction of variablesand c(x). E.g., tiplications 2x2y+ 3xz3 + 5 = C2(X) * X * X * y + C3(X) * X * Z * Z * Z + C5(X). So (1), (2), (3), and composition givestheresult. is recursive: Nowit is easyto see thateveryDiophantine function Letf be Diophantine, and write: y =f(xj, *w,x.)<*(3tls *ss tm) [P(X1, = Q(XD, ..,Xng *' * Xn Y, Y9 tIg tl, .. ... 9 tm)] tm) 9 withpositiveinteger coefficients. whereP, Q arepolynomials Then,by thesequence numbertheorem: f(x1, x.., x) = S(1, min,,[P(x1, X., x",S(1, u), S(2, u), ... , S(m + 1,u)) = Q(xl, ..., x,, S(1, u), S(2, u), ..., S(m + 1,u))]). andminimalization). so isf (usingcomposition SinceP, Q, S(i, u) arerecursive, To obtaintheconverse:S(i, u) is knownto be Diophantine;the otherinitial to provethattheDiophantine Henceit suffices aretrivially functions Diophantine. are closed undercomposition, recursion and minimalization. functions primitive Composition:If h(xl,**,Xn)=w(gj(xj9**Ixn), ** 9m g are Diophantine,thenso is h since .. y = h(xl **, Xn) ->(3t19 ** tm) [tj & tm I g(XI,* , gm(Xlx* * , X.)), m(x where f,g , ... Xn) & Xn) & y =f(tl, ... tm)] PrimitiveRecursion: If h(xls *-*9Xn,1) = f(XI, -qssXn) h(xl **,Xn, t + 1) = g(t,h(xl, **X*,n t)9xl ... ,Xn), to "code" the then(usingthesequencenumber theorem andf,g are Diophantine, numbers h(xl, ... ,xn,1), h(xl Xn,2),*,h(xj,***,x z): y = h (x, I 9.., Xn9 Z) < (3u) {(3v) [v) = S(, u) & v =f(x1,I, (Vt) z [(t=z) xn)] V (3v) (v = S(t + 1,u) & v = g(t, S(t,u), xI, ..,x))] & y = S(z, u)} This content downloaded from 129.2.56.193 on Fri, 22 Mar 2013 11:53:28 AM All use subject to JSTOR Terms and Conditions 260 [March MARTIN DAVIS so that(usingTheorem5.1) h is Diophantine. Minimalization:If h(x1, --x = g(xl, mnU[(x1, j..,y) ...,x" y)], wheref,g are Diophantine,thenso is h since, y= h(x-,X*> (3Iz)[z = ---Xn,Y)&Z =A(XI, XXI, **?,Xn-Y)] ? (Vt):5y [(t = Y) V (3u,v) (u f(x,, ... 9Xn9t) &v=g(xl,..X ot)&( < v Vv< u)]. of all theDiophantine set.An explicitenumeration 7. A universal Diophantine withpositiveinteger willnowbe described. Anypolynomial setsofpositiveintegers canbebuiltupfrom1 andvariables additions and multiplicabysuccessi've coefficients tions.We fixthealphabet Xo,X1,X2,X3,' of all such polynomials enumeration of variablesand thenset up thefollowing (usingthepairingfunctions): P1I = P3i1 = P3 - PL(i) + PR(i) P3i+ I WritePi = Pi(x0, x, * x), XiPL(i) PR(i) wheren is largeenoughso thatall variablesoccurring in Pi are included.(Of coursePi will notin generaldepend on all of thesevariables.) Finally,let n= {xoj (3x1, ...,x") [PL(fn)(X0o * I, Xn) l PR(n)(x0 X 1 .,xX)}. Here,PL(,)andPR(n)do notactuallyinvolveall ofthevariablesxo, x1, xn-but I clearlycannotinvolveanyothers.(RecallthatL(n), R(n) ? n.) Bythe way the seitis seenthatthesequenceofsets: quencePi hasbeenconstructed, DI1, 23,D39D4, * includesall Diophantinesets. Moreover: 7.1 (Universality THEOREM Theorem5). {<n, x> I x Dn} is Diophantine. This content downloaded from 129.2.56.193 on Fri, 22 Mar 2013 11:53:28 AM All use subject to JSTOR Terms and Conditions 1973] 261 S TENTHPROBLEM IS UNSOLVABLE HILBERT it is claimedthat: theorem, Proof.Onceagainusingthesequencenumber xe Dn. (3u) {S(1, u) = 1 & S(2, u) = x & (Vi):5[S(3i, u) = S(L(i), u) + S(R(i), u)] &(Vi)sn[S(3i + 1,u) = S(L(i), u) S(R(i), u)] & S(L(n), u) = S(R(n), u)}. side of thisequivalence is It is clearenoughthatthepredicateon theright-hand to verify theclaim: so itis onlynecessary Diophantine, Let x E Dn for given x, n. Then there are numberst1,***, tn such that number theorem) PL(n) (X, tl, ***, tn) = QL(n) (X, tl, **., ta). Chooseu (bythesequence so that (*) j = u) =Pj(x1, t,I *. , tn)3 ~~~~SOS, 3n + 2. ,2 Then in particularS(2, u) = x and S(3i - 1,u) = ti-1, i = 2,3, right-hand side of theequivalenceis true. sideholdforgivenn,x. Set lettheright-hand Conversely, *,n + 1. Thus the t, = S(5, u), t2 = S(8, u), ... , t = S(3n + 2, u). Then, (*) mustbe true.Since S(L(n), u) = S(R(n), u), it mustbe the case that PL(n)(X4 t3, *s*,tn) = pR(n)(X3, tI . tn)9 so thatxE Dn* of all Diophantine sets,it is easyto SinceDI, D2,D3, .*', givesan enumeration Thatis,define: from all ofthemandhencenon-Diophantine. construct a setdifferent f v = {n n Dnl} THEOREM7.2. V is notDiophantine. Proof. This is a simple application of Cantor's diagonal method. If V were Diophantine,thenforsome fixedi, V = Di. Does i E V? We have: i c-V.>i c-Di; i e-V i 0 Di. This is a contradiction. THEOREM 7.3. Thefunctiong(n,x) definedby: g(n,x)=1 if xq Dn, g(n,x)=2 if xeDn, is not recursive. (Theorem6.1),say: thenit wouldbe Diophantine Proof.If g wererecursive This content downloaded from 129.2.56.193 on Fri, 22 Mar 2013 11:53:28 AM All use subject to JSTOR Terms and Conditions 262 [March MARTIN DAVIS y = g(n,x) *(3y1,* *,Ym)[P(n, xy,yl Y,Y,**,Ym) =0?] Butthen,it wouldfollowthat V-={x I (3y,,**, Ym)[P(x,x,11Yll,... Ym)= ?]} Theorem7.2. whichcontradicts UsingTheorem7.1,write: "' Zk) [P(n,x,z, Xc-Dn*(3zl ** Zk) = O]. whereP is somedefinite (thoughcomplicated) polynomial. Supposetherewerean algorithmfor testingDiophantineequationsfor possessionof positiveinteger solutions;i.e., an algorithmfor Hilbert's tenthproblem!Then forgiven n, x this ornottheequation couldbe usedtotestwhether algorithm P(n, x,ZI, - z Zk) = has a solution,i.e., whether or not x E Dn. Thusthe algorithm could be used to compute thefunction g(n,x). Sincetherecursive functions arejustthoseforwhicha computing algorithm exists,g wouldhaveto be recursive. This would contradict Theorem7.3, and thiscontradiction proves: THEOREM7.4. Hilbert's tenthproblemis unsolvable! Naturally thisresultgivesno information aboutthe existenceof solutionsfor anyspecificDiophantineequation;it merelyguarantees thatthereis no single algorithm fortesting theclassofall Diophantine equations. Alsonotethat: X E-v - (3z,, J(3z (VZ1,** **' Zk) ", ,ZO [P(X, X, ZI, ", ZJ) = 0] [P(X, X, Z1s Zk) [P(X, X, Z 1, ... Zk) = 01 -+ I = 0} 9)Zk > ? V P(x, X, Z, ..., Zk) < 0] whichshowsthatifeither- orunbounded universal quantifiers (Vz)or implication ( ) arepermitted inthelanguage ofDiophantine thennon-Diophantine predicates, setswill be produced. It is naturalto associatewitheach Diophantine seta dimension and a degree; i.e.,thedimension ofS is theleastn forwhicha polynomial P existsforwhich: (*) S-{xl (3y1, Yn) [P(X,Y Yn = ?]} andthedegreeofS is theleastdegreeofa polynomial P satisfying n (*) (permitting to be as largeas onelikes).Nowitis easyto see: THEOREM 7.5. EveryDiophantineset has degree ? 4. Proof The degreeofP satisfying (*) maybe reducedbyintroducing additional This content downloaded from 129.2.56.193 on Fri, 22 Mar 2013 11:53:28 AM All use subject to JSTOR Terms and Conditions 1973] HILBERT'S TENTH PROBLEM IS UNSOLVABLE 263 variablesZj satisfying equationsof theforim YiYk Zi zj zi= Yi Zj = zj = XYi x ofthezj's intoP itsdegreecan be broughtdownto 2. substitutions Bysuccessive equationseach of Hencetheequationis equivalentto a systemof simultaneous thesquaresgivesan equationofdegree4. degree2. Summing A lesstrivial(andmoresurprising) factis: THEOREM7.6. There is an integerm such that every Diophantine set has dimension< m. Proof. Write Dn= {xl (3YI,.. Ym)[P(x n,yl, .. IYm) = 0]}s of Dnis <m for theorem.Thenthe dimension whichis possiblebytheuniversality all n. sets: Aninteresting exampleis givenbythesequenceofDiophantine Sq = {X I (3y1 , yq) [X = (Yt + 1) .. (Yq + 1)]}. numbers. HereS2isthesetofcomposite numbers; Sq is thesetof"q-fold"composite definition of Sq (for thatit is possibleto givea Diophantine It is surelysurprising large q) requiringfewerthan q parameters(cf. [19]). in the universalDiophantineset? How largeis m, thenumberof parameters A directcalculation usingthearguments givenherewouldyielda numberaround50. and JuliaRobinsonhave veryrecently shownthat m = 14 ActuallyMatiyacevic will suffice! ofHilbert's Theunsolvability tenthproblem canbe usedto obtaina strengthened theorem: formof Godel's famousincompleteness Correspondingto any given axiomatizationof numbertheory, thereis a Diophantineequation whichhas no positiveintegersolutions,but such that thisfact cannot be provedwithinthegivenaxiomatization. THEOREM 7.7. of"axiomatization of number A rigorous proofwouldinvolvea precisedefinition heuristic argument theory"whichis outsidethescopeof thisarticle.An informal follows: all ofthetheorems to systematically generate One usesthegivenaxiomatization willbe someasserting of the axioms).Amongthesetheorems (i.e., consequences This content downloaded from 129.2.56.193 on Fri, 22 Mar 2013 11:53:28 AM All use subject to JSTOR Terms and Conditions 264 [March MARTIN DAVIS suchis encountered thatsomeDiophantine equationhas no solution.Whenever it on a list called LISTA. At thesametimea list,LIST B, is made of isplaced special Diophantineequationswhichhavesolutions.LIST B is constructed by a search e.g.,atthenthstageofthesearchlookatthefirst procedure, nDiophantine equations inwhicheachargument is < n. Thus every (in a suitablelist)andtestforsolutions willeventually Diophantine equationwhichhaspositive solutions integer beplacedin LIST B. If likewiseeachDiophantine equationwithno solutionswouldeventually forHilbert'stenthproblem. appearin LIST A, thenone wouldhavean algorithm ofa solutionsimplybegingenerating Namely, totesta givenequationforpossession LIST A andLIST B untilthegivenequationappearsin onelistor the other.Since some equationwithno solutionmustbe Hilbert'stenthproblemis unsolvable, fromLIST A. Butthisis justtheassertion ofthetheorem. omitted sets. It is nowtimeto settlethe questionraisedat the 8. Recursively enumerable which sets are beginning: Diophantine? DEFINITION. 8.1. A set S of n-tuplesof positiveintegersis called recursively enumnerable if thereare recursive functionsf(x,x1, 1 ., x), g(x,gx1. -qXn) suchthat: S = {<xl, ..*sxn>I(3x) [AX,Xi, xn)=g(x,x -, xJ)]} THEOREM 8.1. A set S isDiophantineifand only if it is recursively enumerable. Proof.If S is Diophantinethereare polynomials P, Q withpositivecoefficients suchthat: <x 4 x,, >c-S(3y,1, (3u)[P(x1,... x , -,YM) [P(X I X.. ",yi," Ym) -= Q(X i .. ~Xn Yi1.., Ym)] **S(m, SO1 u), u..,S(M,U)) = Q(X* ,* xu), SO )] enumerable. so thatS is recursively if S is recursively enumerablethere are recursivefunctions Conversely such that f(x,x1, .. ,x"), g(x,xI,--,xn) <xi, Xn> x">S.*S (3x) [J(x,1, XI,. xn) = g(x, x1, .* (3x,z) [z =Xf(x,x1,.*X,xn)&z Xn)] = (X,x, ,x")].n Thus by Theorem6.1, S is Diophantine. The presentexpositionhas ignoredthe chronological 9. Historical appendix. orderin whichtheideas weredeveloped.The first contribution was by Godel in his celebrated1931paper[16]. The mainpointof Godel's investigation was the in formalsystems. ofundecidable The undecidablestatements existence statements and in orderto exhibitthesimple Godel obtainedinvolvedrecursive functions, character number-theoretic of thesestatements, Godel usedtheChineseremainder to reducethemto "arithmetic" form.The techniqueused is justwhatis theorem This content downloaded from 129.2.56.193 on Fri, 22 Mar 2013 11:53:28 AM All use subject to JSTOR Terms and Conditions 1973] 265 HI'LBERT'S TENTH PROB3LEMIS UNSOLVABLE usedhereinproving Theorem1.3(thesequencenumber theorem)and Theorem6.1 (in the direction:everyrecursive function is Diophantine).Howeverwithout the fordealingwithboundeduniversal as discussedinthispaper, techniques quantifiers the bestresultyieldedby Godel's methodsis thateveryrecursive function(and indeedeveryrecursively enumerable set)can be defined bya Diophantine equation precededbya finite number ofexistential andboundeduniversal quantifiers6. In my doctoraldissertation (cf.[5], [6]), I showedthatall butoneoftheboundeduniversal so thateveryrecursively couldbe eliminated, enumerable setS couldbe quantifiers definedas S = {x I (3y) (Vk)<y(3y1 " Ym)[P(k, x, y,y1, ,Ym)= O]}. Thisrepresentation becameknownas theDavisnormal form.(LaterR. M. Robinson [31], [32] showedthatin thisnormalformone couldtakem = 4. More recently Matiyacevic has shownthatone can eventakem= 2. It is knownthatone cannot one can alwaysgetm = 1 is open.) alwayshavem= 0; whether ofmyworkandat aboutthesametime,JuliaRobinsonbeganher Independent centeredaboutthe question: study[27] of Diophantinesets.Her investigations Is theexponentialfunctionDiophantine?The mainresultwas thata certainhypoth- Thehypothesis, esis impliedthattheexponential was Diophantine. which function becameknownas theJuliaRobinsonhypothesis, has playeda keyrolein workon is simply: Hilbert'stenthproblem.Its statement There existsa Diophantineset D such that: (1) <u, v> EDD impliesv ? u'. (2) For each k, thereis <u, v> E D such thatV > Uk. Thehypothesis an openquestionforabout2 decades.(Actually remained theset D = {<u,v> Iv=xx(2)&u>3} satisfies (1) and(2) byLemma2.19andis Diophantine byCorollary 3.2, so thetruth followsat once fromthe resultsin thisarticle.) of JuliaRobinson'shypothesis is function JuliaRobinson'sproofthatthishypothesis impliesthattheexponential is usedthePell equation.And,theproofthattheexponential Diophantine function indeedDiophantine givenhereis closelyrelatedto a morerecentproof[28] by herof thissameimplication. whichwereexponential In [27], JuliaRobinsonstudiedalso setsand functions definablein termsof exponentiation) thatis which Diophantine(or existentially oftheform: possessdefinitions (3u,, ..X .. .. Ung VI, * * Vng Wl, ** Wn) EP(X 1 &u1 =vI '&. **.*,XWsU19 &u" = - ' Un1V19-,** 1Vni WD -9%*W) = O Vln]. In particular, the functions (k) and n! were shown by her to be exponential This content downloaded from 129.2.56.193 on Fri, 22 Mar 2013 11:53:28 AM All use subject to JSTOR Terms and Conditions 266 MARTIN DAVIS [March Diophantine. This is reallywhatis shownin proving(1) and (2) of Theorem4.1. The present proofof (2) is justhers;theproofof(1) givenhereis a simplified variantof thatin [27]. (It is due independently to JuliaRobinsonand Matiyasevic.) Theidea ofusingtheChineseremainder theorem to codetheeffect ofa bounded in theworkofmyself universal quantifier first occurred andPutnam[7]. In [8], we refined ourmethods andwereable to show,beginning withtheDavis normalform, thatIF thereare arbitrarily long arithmetic progressions consistingentirelyof primes (stillan openquestion), theneveryrecursively enumerable set is exponential Diophantine.In our proofwe needed to establishthath(a, b,y) = fly= (a + bk) is whichwe did extending exponential Diophantine, JuliaRobinson'smethods. (The proofgivenhereof (3) ofTheorem4.1 is a muchsimplified argument foundmuch laterbyJuliaRobinson-cf.[29].)JuliaRobinson thenshowedfirst howto eliminate the hypothesis about primesin arithmetic then how to greatly and progression, theproofalongthelinesofLemma5.2ofthisarticle.Thusweobtainedthe simplify theorem of[9] thateveryrecursively setis exponential enumerable Diophantine. Attention was nowfocusedon theJuliaRobinsonhypothesis sinceit was plain thatit wouldimplythatHilbert'stenthproblemwas unsolvable. werefoundto implytheJuliaRobinsonhypothManyintelesting propositions seemedimplausible esis.7. Howeverthe hypothesis to many,especially becauseit andsurprising wasrealizedthatan immediate wouldbe theexistence consequence of an absoluteupperboundforthedimensions ofDiophantine sets(cf.Theorem7.6). Thus in his review[19] Kreiselsaid concerningtheresultsof [9]: "... it is likelythe present resultis notcloselyconnected withHilbert'stenthproblem.Alsoit is not are uniformly altogether plausiblethatall (ordinary) reducible Diophantine problems ofvariablesoffixeddegree...." to thoseina fixednumber The JuliaRobinsonhypothesis was finally provedby Matiyasevic [23], [24]. he showed if we define that Specifically d-=a2 = 1, an+1 = an + an-1 so thatan is thenthFibonaccinumber, thenthefunction Then a2n is diophantine. since,forn > 3,as is easilyseenbyinduction, )< an <2n2 the set D = {<u,v>j v = a2,,&u > 2} theJuliaRobinsonhypothesis. satisfies directdiophantine definitions Subsequently, of the exponential weregivenby a numberof investigators, function severalof themusingthePellequationas inthisarticle(cf.[3], [4], [14], [18a]). The treatment in ?2,3 isbasedon Matiyasevic's thedetailsare JuliaRobinson's. methods, although This content downloaded from 129.2.56.193 on Fri, 22 Mar 2013 11:53:28 AM All use subject to JSTOR Terms and Conditions 1973] HILBERT'STENTH PROBLEMIS UNSOLVABLE 267 In particular, itwasMatiyasevic whotaught ushowtouse resultslikeLemmas2.11, usedanalogousresults himself 2.12,and2.22ofthepresent exposition. (Matiyasevic fortheFibonaccinumbers.) It wassoonnoticed(byS. Kochen)thatbya simpleinductive argument theuse oftheDavis normalformcouldnowbe entirely avoided,as has been done in the presentexposition. Let #(P) be thenumber of solutions oftheDiophantineequationP = 0. Thus O? #(P) ? 8R. Hilbert'stenthproblemseeksan algorithm fordecidingofa given P whetheror not #(P) = 0. But there are many related questions: Is there an algorithmfortestingwhether#(P) = N, or #(P) = 1, or #(P) is even? I was able ofHilbert'stenthproblem)thatall withtheunsolvability to showeasily(beginning areunsolvable. Infactif oftheseproblems A = {0,1,2,3, 4o} for andB ' A, B # 0, B # A,thenonecanreadilyshowthatthereis no algorithm ornot#(P) E B (cf.[15]). whether determining suchas Hilbertdemandedwillbe forthcoming Thefactthatnogeneralalgorithm for of interest adds to the algorithms dealingwithspecialclassesof Diophantine equations.AlanBakerand his coworkers [1], [2] havein recentyearsmadeconin thisdirection. siderableprogress Notes (but ofcoursenottheirbaingDiophantine)wereusedby Cantorin 1. Thesepairingfunctions an J.Robertsand D. Siefkeseach corrected of therationalnumbers. his proofof thecountability They,as wellas W. Emerson,M. Hausner,Y. Matiyasevic, ofthesefunctions. errorin thedefinition and JuliaRobinsonmade helpfulsuggestions. = 1, usedinsteadtheequationsx2 - xy2. For example,cf.[25],pp. 175-180.Matiyasevic U2- muv + V2 1. Thiscreatesa minor integers. on thenonnegative areusuallydefined functions 3. The recursive (e.g., withone in theliterature technicalproblemin comparingthepresentdefinition butannoying in cf. [6],p. 41; also Theorem4.2 on p. 51).Thusone can simplynotethatf(xl,..., x") is recursive in theusual sense.Fromthe thepresentsenseif and onlyiff(t1+ 1,. *,tn+ 1) - 1 is recursive of thefunctions involvedthisdoesn'tmatterat all; "computability" pointof viewof theintuitive integers as a "code" forthenonnegative oneis simplyinthepositionofusingthepositiveintegers using n + 1 to representn. Thatis, S (i, u) can bs obtainedusingour three 4. InclusionofS (i, u) in thislistis redundant. initialfunctions. operationsfromtheremaining to use theenumera5. Themethodofproofis JuliaRobinson's,[28],[30].If onewerepermitted Theoremwould theory([6],p. 67.Theorem1.4),theUniversality function tiontheoremin recursive followat once fromTheorem6.1. 6. ActuallytheresultwhichG6delstated(as opposedto whatcan be obtainedat oncebyuse of functions oftheclass ofrecursive weaker.Indeed,theverydefinition was somewhat histechniques) came severalyearslaterin theworkof G6del,Church,and of theirsignificance and theperception was a precise equivalentof theintuitive Turing.In particularths sugg-stionthatrecursiveness This content downloaded from 129.2.56.193 on Fri, 22 Mar 2013 11:53:28 AM All use subject to JSTOR Terms and Conditions 268 MARTIN DAVIS [March by Churchand by was madeindependently notionof beingcomputableby an explicitalgorithm whichis essentialin regardingthe technicalresults Turing.And ofcourseit is thisidentification a negativesolutionofHilbert'stenthproblem.(For further discussedin thisaccountas constituting cf. [6].) discussionand references, wouldfollowfromthenon7. For example,I showed([13]) thattheJuliaRobinsonhypothesis solutionsof theequation existenceof nontrivial 9 (U2 -!-7i2)2 __ 7(x2 + 7y2)2 - 2. The methodsused readilyshowthatthesameconclusionfollowsiftheequationhas onlyfinitely (and hencethe Julia manysolutions.Cudnovskii[4] claimsto haveprovedthat2x is diophantine thereis a possibility thatsomeof Cudnovskii's usingthisequation.Apparently Robinsonhypothesis) - butI havenotbeenable to obtaindefinite ofMatiyasevic workmayhavebeendoneindependently aboutthis. information References to thetheoryofDiophantineequations:I. On therepresentation 1. Alan Baker,Contributions ofintegers bybinaryforms,II. The Diophantineequationy2 xX3 + k, Philos.Trans. Roy. Soc. London Ser. A, 263 (1968) 173-208. 2. AlanBaker,The Diophantineequationy2 == ax3 F bx2 + cx + d, J.LondonMath.Soc., 43 (1968) 1-9. 3. G. V. Cudnovskii,Diophantinepredicates(Russian),UspehiMat. Nauk, 25 (1970) no. 4 (154), pp. 185-186. , Certain problems (Russian),OrdenaLeninaAkad.Ukrains.SSR, Preprint arithmetic 4. IM-71-3. enumerablepredicates,J. Symbolic problemsand recursively 5. MartinDavis, Arithmetical Logic, 18 (1953)33-41. , Computability 6. McGrawHill, New York, 1958. and Unsolvability, 7. MartinDavis and HilaryPutnam,Reductionof Hilbert'stenthproblem,J.SymbolicLogic, 23 (1958) 183-187. -, On Hilbert's -and tenthproblem, U. S. AirForce0. S. R. ReportAFOSR TR 8. 59-124(1959),PartIII. 9. MartinDavis, HilaryPutnam,and JuliaRobinson,The decisionproblemforexponential Diophantineequations,Ann. Math.,74 (1961) 425-436. -Proc.Symp. 10. MartinDavis, Applicationsof recursivefunctiontheoryto numbertheory, PureMath.,5 (1962) 135-138. , Extensions and corollariesof recentworkon Hilbert'stenthproblem,IllinoisJ. 11. Math.,7 (1963) 246-250. 12. MartinDavis and HilaryPutnam,Diophantinesetsoverpolynomial rings,IllinoisJ.Math., 7 (1963)251-256. 13. MartinDavis, One equationto rulethemall, Trans.New York Acad. Sci., SeriesII, 30 (1968) 766-773. oftheexponential Comm.PureAppl. , An explicit 14. function, Diophantinedefinition Math.24 (1971) 137-145. , On thenumberof solutionsof Diophantineequations,Proc. Amer.Math. Soc., 15. 35 (1972) 552-554. undverwandter 16. KurtGodel,Uberformalunentscheidbare SatzederPrincipiaMathematica (1) Kurt,Godel, SystemeI, Monatsh.Math.und Physik,38 (1931) 173-198.Englishtranslations: On FormallyUndecidablePropositionsof PrincipiaMathematicaand Related Systems,Basic This content downloaded from 129.2.56.193 on Fri, 22 Mar 2013 11:53:28 AM All use subject to JSTOR Terms and Conditions 1973] HILBERTS TENTH PROBLEMIS UNSOLVABLE 269 Books, 1962.(2) MartinDavis (editor),The Undecidable,Raven Press,1965,pp. 5-38. (3) Jean Press,1967,pp. 596-616. Van Heijenoort(editor),FromFregeto Gddel,HarvardUniversity An Introduction to theTheoryofNumbers,Fourthedition, 17. G. H. Hardyand E. M. Wright, OxfordUniversity Press,1960. MatheVortrag, gehaltenaufdeminternationalen 18. David Hilbert,MathematichseProbleme, zu Paris 1900. Nachrichten Akad. Wiss. Gottingen,Math. -Phys.Kl. (1900) matiker-Kongress 253-297.Englishtranslation: Bull. Amer.Math.Soc., 8 (1901-1902)437-479. ofthesolutionsofPell's equation(Rus18a. N. K. Kosovskii,On Diophantinerepresentations sian), Zap. Nau6n.Sem. Leningrad.Otdel.Mat. Inst.Steklova,20 (1971)49-59. 19. GeorgKreisel,Reviewof[9].Mathematical Reviews, 24 (1962)PartA, p. 573(reviewnumber A 3061). Therelationofsystems ofequationsinwordsandtheirlengths to Hilbert's 20. YuriMatiyasevi6, Logike Matematikei Matematiceskoi tenthproblem(Russian).Issledovaniya po Konstruktivnoi II. Vol. 8, pp. 132-144. Two reductions of Hilbert'stenthproblem(Russian),Ibid.,pp. 145-158. , 21. , Arithmetic ofexponentiation 22. (Russian).Ibid.,pp. 159-165. representation , Enumerable setsare Diophantine(Russian),Dokl. Akad. Nauk SSSR, 191 (1970) 23. SovietMath.Doklady,11 (1970) 354-357. 279-282.ImprovedEnglishtranslation: of theset of primenumbers(Russian).Dokl. Akad. 23a. , Diophantinerepresentation Nauk SSSR, 196 (1971) 770-773.ImprovedEnglishtranslation withAddendum:Soviet Math. Doklady,12 (1971) 249-254. of recursively 23b. -, enumerablepredicates,Proc. Second Diophantinerepresentation 1971. Amsterdam, ScandinavianLogic Symp.,editor,J.E. Fenstad,North-Holland, of recursively 23c. -, enumerablepredicates,Proc. 1970 Diophantinerepresentation Intern.CongressMath.,pp. 234-238. of enumerable predicates(Russian),Izv. Akad. Nauk 24. , Diophantinerepresentation SSSR, Ser. Mat. 35 (1971) 3-30. , Diophantine sets(Russian),UspehiMat. Nauk,27(1972)185-222. 24a. An Introduction to theTheoryof Numbers,2nd ed., 25. Ivan Nivenand HerbertZuckerman, Wiley,New York, 1966. 26. HilaryPutnam, J.Symb.Logic,25 (1960)220-232. An unsolvable probleminnumbertheory, 27. JuliaRobinson,Existential in arithmetic, definability Trans.Amer.Math. Soc., 72 (1952) 437-449. 6 (1969) [Studies 28. ^, Diophantinedecisionproblems,MMA Studiesin Mathematics, in NumberTheory,editedby W. J.LeVeque,pp. 76-116]. , UnsolvableDiophantineproblems, 29. Proc.Amer.Math.Soc., 22 (1969) 534-538. -, Hilbert'stenthproblem,Proc.Symp.PureMath.,20 (1969) 191-194. 30. ofrecursively sets,J.Symb. 31. RaphaelM. Robinson,Arithmetical representation enumerable Logic, 21 (1956) 162-186. Some representations of Diophantinesets,J. Symb.Logic,forthcoming. 32. -, This content downloaded from 129.2.56.193 on Fri, 22 Mar 2013 11:53:28 AM All use subject to JSTOR Terms and Conditions
© Copyright 2026 Paperzz