International Journal of Advanced Research in Mathematics ISSN: 2297-6213, Vol. 7, pp 1-9 doi:10.18052/www.scipress.com/IJARM.7.1 © 2016 SciPress Ltd., Switzerland Submitted: 2016-08-30 Revised: 2016-09-13 Accepted: 2016-10-04 Online: 2016-12-15 Expansion of Function z ln z in the Quasi-Reciprocal Continued Fraction Mykhaylo Pahirya Department of natural sciences and information technology, Mukachevo state university, Mukachevo, Ukraine [email protected] Keywords: Quasi-reciprocal continued fractions, approximation functions, functions of complex variable, reciprocal derivatives of 2-nd type, Thiele type formula, quasi-reciprocal continued C-fraction. Absract. Expansion of function z ln z in the quasi-reciprocal continued fraction has been obtained. Convergence region of expansion has been established. Introduction It is well known that function of complex or real variable can be approximated by polynomials [1], by generalized polynomials, by rational functions [2], by Padé approximation [3] or by continued fractions. Approximation of functions is used in the calculation of the function [4, 5]. Basic methods of expansion of functions in continued fractions are considered in monographs [6, 7]. Danish mathematician T.N.Thiele in his book [8] presented for the first time reciprocal derivatives and proposed a formula which is analogous to the Taylor formula in the theory of continued fractions.Further research were performed Nörlund in [9]. The reciprocal derivatives of 2-nd type are introduced into consideration in the paper [10] and analogue of Thiele formula for quasi-reciprocal continued fractions is received. Problem of expansion of function z ln z in the Thiele continued fraction and regular continued C-fraction have been studied in the [11]. Convergence regions of expansions have been obtained. This paper is a continuation of previous studies. Problem of expansion function z ln z in the quasi-reciprocal continued fraction is discussed and convergence region of expansion is determined. Quasi-reciprocal continued fractions In [10] has been shown that if f (z) is analytic function on the compact Z ⊂ C then function can be expanded in the Thiele-type quasi-reciprocal continued fraction (T-QCF) of the form in a neighborhood of the point z∗ ∈ Z ( )−1 z − z∗ z − z∗ z − z∗ f (z) = d0 + , (1) d1 + d2 + · · · dn + · · · where d0 = 1 , f (z∗ ) dn = ( d1 = {1}f (z∗ ), n )′ = {n}f (z∗ ) − {n−2}f (z∗ ). f (z∗ ) {n−1} (2) Here {n}f (z) is a reciprocal derivative of 2-nd type. A reciprocal derivative of 2-nd type is defined by the recurrence relation 1 f (z) = , f (z) {0} −f 2 (z) f (z) = ′ , f (z) {1} f (z) = ( {n} n )′ + {n−2}f (z), f (z) {n−1} n = 2, 3, . . . . (3) It is well known [12] that (1) can be written in the form of equivalent continued fraction ( )−1 en (z − z∗ ) e1 (z − z∗ ) e2 (z − z∗ ) f (z) = e0 + , 1 + 1 + ··· 1 + ··· SciPress applies the CC-BY 4.0 license to works we publish: https://creativecommons.org/licenses/by/4.0/ (4) 2 Volume 7 where 1 1 , dn = , n = 2, 3, . . . . d1 dn−1 dn Continued fraction (4) is called quasi-reciprocal continued C-fraction (C-QCF). If repeated consideration of [12] we can prove the following theorem. e0 = d0 , e1 = (5) Theorem 1. Let Ra = {z : | arg(a(z − z∗ ) + 1/4)| < π} and elements of C-QCF e1 (z − z∗ ) e2 (z − z∗ ) e3 (z − z∗ ) 1 e0 + 1 + 1 + 1 + ··· (6) such that lim en = a ̸= 0, n→∞ a ∈ C. (7) Then (A) continued fraction convergence to a function f (z), which is meromorphic in Ra ; (B) if compact Z ⊂ Ra doesn’t contains poles of function f (z) then convergence is uniform; (C) function f (z) is holomorphic in point z = z∗ . A function ln(c + z), c = const, has expansion in the T-QCF of following form ln(c + z) = ∗ S0∗ (z − z∗ )S−1 (z − z∗ )S1∗ (z − z∗ )S0∗ (z − z∗ )S2∗ 1 − zS0∗ + 2 + 3zS1∗ + 1 + ∗ (z − z∗ )Sk∗ (z − z∗ )Sk−1 (z − z∗ )S1∗ , + 5zS2∗ + · · · + 2/k + (2k + 1)zSk∗ + · · · (8) where ∗ z = c + z∗ , S−1 = 1, S0∗ = ln z, Sn∗ = 2Hn + ln z, H0 = 0, Hn = n ∑ 1/k, n = 1, 2, . . . . (9) k=1 In accordance with (5), coefficients of expansion function ln(c + z) in the C-QCF in a neighborhood of the point z∗ will be equal e0 = ∗ nSn−1 1 −1 nSn∗ , e = , e = , e = , 1 2n 2n+1 ∗ S0∗ z(S0∗ )2 2(2n − 1)zSn−1 2(2n + 1)zSn∗ n = 1, 2, . . . . That is we have expansion function in the C-QCF ∗ /zS0∗ (z − z∗ )S1∗ /2zS0∗ (z − z∗ )S0∗ /6zS1∗ S0∗ (z − z∗ )S−1 ln(c + z) = 1 − 1 + 1 + 1 + (z − z∗ )2S2∗ /6zS1∗ (z − z∗ )2S1∗ /10zS2∗ 1 + 1 + ···+ + ∗ ∗ ∗ (z − z∗ )nSn /2(2n − 1)zSn−1 (z − z∗ )nSn−1 /2(2n + 1)zSn∗ . + 1 + 1 + ··· (10) Theorem 2. (A) C-QCF (10) and equivalent T-QCF (8) are converges to the function ln(c + z) on the set R(c, z∗ ) = {z ∈ C\{−c} : | arg(z + c) − arg(c + z∗ )| < π} (B) C-QCF (8) and T-QCF (10) are converges uniformly on the arbitrary compact Z ⊂ R(c, z∗ ). International Journal of Advanced Research in Mathematics Vol. 7 3 Expansion function z ln(z) in the quasi-reciprocal continued fraction The main result of this paper will be proved. Theorem 3. (A) Function z ln z, where z ̸= 0, has reciprocal derivatives of 2-nd type of arbitrary order which are defined including the formulae z 2 ln2 z , ln z + 1 {0} (z ln z) = 1 , z ln z {2n} (z ln z) = −1 , z(n(n + 1) ln z + αn ln z + βn ) (11b) (z ln z) = z 2 (An ln3 z + Bn ln2 z + Cn ln z + Dn ) , ln z + γn (11c) {2n+1} {1} (z ln z) = − 2 (11a) where αn = 4n(n + 1)Hn − (2n2 + 2n + 1), γn = 2Hn + 1/(n + 1), βn = 4n(n + 1)Hn2 − 2(2n2 + 2n + 1)Hn + 2n(n + 1), (12) n(n+1)2 (n+2) (n+1)(5n3 +12n2 +6n+2) 2 An = , Bn = 3n(n+1) (n+2)Hn − , 2 2 Cn = 6n(n + 1)2 (n + 2)Hn2 − 2(n + 1)(5n3 + 12n2 + 6n + 2)Hn + Dn = 4n(n + 1)2 (n + 2)Hn3 − +n(21n3 + 64n2 + 57n + 18)/4, −2(n + 1)(5n3 + 12n2 + 6n + 2)Hn2 + n(21n3 + 64n2 + 57n + 18)Hn /2− −n(16n3 + 43n2 + 27n + 2)/4, n = 1, 2, . . . , Hn defined in (8). (B) Coefficients of expansion function z ln z in the neighborhood of point z = z∗ are equals d0 = 1 − z∗2 z2 −2(z+1)2 3z∗2 (2z2 + 3z + 2)2 , d1 = , d2 = , d = , 3 z∗ z z+1 z∗ z(2z2 +3z+2) 2(z+1)(z+ 52 ) 2n(z + γn−1 )2 d2n = , z∗ ((n − 1)nz2 + αn−1 z + βn−1 )(n(n + 1)z2 + αn z + βn ) ( )2 (2n + 1)z∗2 n(n + 1)z2 + αn z + βn ( )( ) d2n+1 = , n(n + 1) z + γn−1 z + γn (13a) (13b) (13c) where z = ln z∗ , n = 2, 3, . . . . Proof. (A) Relationship (11a) follows from the definition of reciprocal derivative of 2-nd type. We use inductive method. It is easy to show that {2} {3} (z ln z) = (z ln z) = −1 , z(2 ln z + 3 ln z + 2) 2 z 2 (6 ln3 z + 11 ln2 z + 12 ln z + 6) . ln z + 5/2 Thus (11b) and (11c) holds at n = 1. Let (11b) and (11c) holds at n = k − 1. Thus from (3) follows that )′ /( z 2 (A 3 2 k−1 ln z + Bk−1 ln z + Ck−1 ln z + Dk−1 ) {2k} (z ln z) = 2k − ln z + γk−1 4 Volume 7 ) ( / ( −1/z (k − 1)k ln2 +αk−1 ln z + βk−1 = 2k(ln z + γk−1 )2 z 2Ak−1 ln4 z + (2Bk−1 + +2Ak−1 (1 + γk−1 )) ln3 z + (2Ck−1 + Bk−1 (1 + 2γk−1 ) + 3Ak−1 γk−1 ) ln2 z+ ) +(2Dk−1 + (2Ck−1 + 2Bk−1 )γk−1 ) ln z + (2Dk−1 + Ck−1 )γk−1 − Dk−1 − −1/z((k − 1)k ln2 +αk−1 ln z + βk−1 ). Substituting the values of αk−1 , βk−1 , γk−1 , Ak−1 , Bk−1 , Ck−1 we obtain / ( ( {2k} (z ln z) = 2k(ln z + 2Hk−1 + k1 )2 z (k 2 − 1)k 2 ln4 z + 8(k 2 − 1)k 2 Hk−1 − ) ( 2 −2k(2k 3 − 2k 2 − k + 2) ln3 z + 24(k 2 − 1)k 2 Hk−1 − 12(2k 3 − 2k 2 − k + 2)Hk−1 + ) ( 2 3 + − 24k(2k 3 − 2k 2 − k + 2)Hk−1 +8k 4 − 12k 3 + 6k − 5 ln2 z + 32(k 2 − 1)k 2 Hk−1 ) +4(8k 4 − 12k 3 + 6k − 5)Hk−1 − k2 (4k 5 − 8k 4 + 2k 3 − 2k + 1) ln z+ 4 3 2 +16(k 2 − 1)k 2 Hk−1 − 16k(2k 3 − 2k 2 − k + 2)Hk−1 + 4(8k 4 − 12k 3 + 6k − 5)Hk−1 − ) − k4 (4k 5 − 8k 4 + 2k 3 + 4k 2 − 2k + 1)Hk−1 + 4(k − 1)(k 3 − k 2 + 1) − ( ( ) 2 −1/z (k − 1)k ln2 z + 4(k − 1)kHk−1 − 2k 2 + 2k − 1 ln z + 4(k − 1)kHk−1 − ) −2(2k 2 − 2k + 1)Hk−1 + 2(k − 1)k . The denominate of the fist fraction can be presented as the following product ( ( ) 2 z ((k − 1)k ln2 z + 4(k − 1)kHk−1 − 2k 2 + 2k − 1 ln z + 4(k − 1)kHk−1 − )( ( −2(2k 2 − 2k + 1)Hk−1 + 2(k − 1)k) k(k + 1) ln2 z + 4k(k + 1)Hk−1 − ) −2k + 2k + 3 ln z + 4k(k + 2 2 1)Hk−1 − 2(2k − 2k − 3)Hk−1 + 2 2 (k 3 k ) − k + 1) . 2 We reduce to a common denominator and take replacement Hk−1 = Hn − k1 . We finally get ( ( ) {2k} (z ln z) = −1/z k(k + 1) ln2 z + 4k(k + 1)Hk − 2k 2 − 2k − 1 ln z+ ) +4k(k + 1)Hk2 − 2(2k 2 + 2k + 1)Hk + 2k(k + 1) = −1 . k(k + 1) ln z + αk ln z + βk 2 Analogously /( )′ −1 (z ln z) = (2k + 1) + z(k(k + 1) ln2 z + αk ln z + βk ) / +z 2 (Ak−1 ln3 z + Bk−1 ln2 z + Ck−1 ln z + Dk−1 ) (ln z + γk−1 ) = {2k+1} = (2k + 1)z 2 (k(k + 1) ln2 z + αk ln z + βk )2 + k(k + 1) ln2 z + (αk + 2k(k + 1)) ln z + αk + βk + z 2 (Ak−1 ln3 z + Bk−1 ln2 z + Ck−1 ln z + Dk−1 ) . ln z + γk−1 International Journal of Advanced Research in Mathematics Vol. 7 5 If in denominates of fractions substitutes values of αk , βk and γk−1 then we have k(k + 1) ln2 z + (αk + 2k(k + 1)) ln z + αk + βk = k(k + 1) ln2 z + (4k(k + 1)Hk − 1) ln z+ )( ) ( +4k(k + 1)Hk2 − 2Hk − 1 = ln z + 2Hk − k1 k(k + 1) ln z + 2k(k + 1)Hk + k , ln z + γk−1 = ln z + 2Hk − k1 . Now substituted in numerators values αk , βk , Ak−1 , Bk−1 , Ck−1 , Dk−1 and reducing to a common denominator. We get ( 2 ( 3 2 {2k+1} (z ln z) = z 2 k (k+1)2 (k+2) ln4 z + 4k 2 (k + 1)3 (k + 2)Hk − k(k+1) (5k 3 + 13k 2 + 2 ) ( +9k + 4) ln3 z + 12k 2 (k + 1)3 (k + 2)Hk2 − 3k(k + 1)2 (5k 3 + 13k 2 + 9k + 4)Hk + ) ( + k+1 (21k 5 + 74k 4 + 91k 3 + 54k 2 + 16k + 4) ln2 z + 16k 2 (k + 1)3 (k + 2)Hk3 − 4 −6k(k + 1)2 (5k 3 + 13k 2 + 9k + 4)Hk2 + (k + 1)(21k 5 + 74k 4 + 91k 3 + 54k 2 + 16k + 4)Hk − ) − k(k+1) (16k 4 + 64k 3 + 91k 2 + 59k + 18) ln z + 8k 2 (k + 1)3 (k + 2)Hk4 − 4k(k + 1)2 × 4 ×(5k 3 + 13k 2 + 9k + 4)Hk3 + (k + 1)(21k 5 + 74k 4 + 91k 3 + 54k 2 + 16k + 4)Hk2 − k(k+1) × 2 ) k × (16k 4 + 64k 3 + 91k 2 + 59k + 18)Hk + k(k+1) (16k 3 + 43k 2 + 27k + 2) × 4 (( )( ))−1 1 × ln z + 2Hk − k k(k + 1) ln z + 2k(k + 1)Hk + k . We divide numerate and denominate to k(k + 1) ln z + 2k(k + 1)Hk − k − 1. We finally obtain ( ( 2 {2k+1} (z ln z) = k(k+1)2 (k+2) ln3 z + 3k(k + 1)2 (k + 2)Hk − k+1 (5k 2 + 12k 2 + 6k+ 2 ) ( +2) ln2 z + 6k(k + 1)2 (k + 2)Hk2 − (k + 1)(10k 3 + 24k 2 + 12k + 4)Hk + k4 (21k 3 + 64k 2 + ) +75k + 18) ln z + 4k(k + 1)2 (k + 2)Hk3 − 2(k + 1)(5k 3 + 12k 2 + 6k + 2)Hk2 + )/( ) 3 2 3 2 k k 1 + 2 (21k + 64k + 57k + 18)Hk − 4 (16k + 43k + 27k + 2) . ln z + 2Hk + k+1 In other words {2k+1} (z ln z) = z 2 (Ak ln3 z + Bk ln2 z + Ck ln z + Dk ) . ln z + γk Formulae (11) have been proven. (B) Formulae (13a) follows directly from (11a) and (11b)-(11c) at n = 1. According to (11b) we get that (z ln z) − {2n−2}(z ln z) = {2n} + 1 −1 + z(n(n + 1) ln z + αn ln z + βn ) 2 ( ) = 2n ln2 z + (αn − αn−1 ) ln z + βn − βn−1 / z((n − 1)n ln2 z + αn−1 ln z + βn−1 ) ( ) z((n − 1)n ln2 z + αn−1 ln z + βn−1 )(n(n + 1) ln2 z + αn ln z + βn ) . Substituting values of αn−1 , βn−1 , αn , βn from (2) we obtain that in the neighborhood of point z = z∗ d2n 2n(z + γn−1 )2 = . z∗ ((n − 1)nz2 + αn−1 z + βn−1 )(n(n + 1)z2 + αn z + βn ) 6 Volume 7 Thus (13b) holds. Similarly (z ln z) − {2n+1} − z 2 (An ln3 z + Bn ln2 z + Cn ln z + Dn ) (z ln z) = − ln z + γn {2n−1} z 2 (An−1 ln3 z + Bn−1 ln2 z + Cn−1 ln z + Dn−1 ) . ln z + γn−1 Reducing to common denominate and substituting the values of An , Bn , Cn , Dn , γn , An−1 , Bn−1 , Cn−1 , Dn−1 , γn−1 , will be ( ( {2n+1} {2n−1} 2 (z ln z) − (z ln z) = (2n + 1)z n(n + 1) ln4 z + 8n(n + 1)Hn − ) ( 2 +2n+1)+1 ) −2(2n2 + 2n + 1) ln3 z + 24n(n + 1)Hn2 − 12(2n2 + 2n + 1)Hn + 4n(n+1)(2n × n(n+1) ( 2 +2n+1)+1) × ln2 z + 32n(n + 1)Hn3 − 24(2n2 + 2n + 1)Hn2 + 4(4n(n+1)(2n Hn − n(n+1) ) 2 +2n+1)+1) × −4(2n2 + 2n + 1) ln z + 16n(n + 1)Hn4 − 16(2n2 + 2n + 1)Hn3 + 4(4n(n+1)(2n n(n+1) )/(( ) )( ) ×Hn2 − 8(2n2 + 2n + 1)Hn + 4n(n + 1) ln z + γn−1 ln z + γn . If multiple numerate and denominate to n(n + 1) and substitutes z = z∗ than we have d2n+1 ( )2 (2n + 1)z∗2 n(n + 1)z2 + αn z + βn ( )( ) = . n(n + 1) z + γn−1 z + γn Relationship (13c) has been proven too. Also, formulae (13) are true. From theorem 3 follows that function z ln z in the neighborhood of point z = z∗ is expanded into T-QCF of the form ( 1 z − z∗ z − z∗ + z ln z = 2 2 2 z∗ z −z∗ z /(z + 1)+ −2(z + 1) /z∗ z(2z2 + 3z + 2)+ + z − z∗ 2 2 3z∗ (2z +3z+2)2 /2(z+1)(z+ 25 )+ + ···+ z − z∗ ( 5 )2 4 z+ 2 /z∗ (2z2 +3z+2)(6z2 +23z+27) + z − z∗ 2 2 2n(z+γn−1 ) /z∗ ((n−1)nz +αn−1 z+βn−1 )(n(n+1)z2 +αn z+βn )+ )−1 z − z∗ . + (2n+1)z∗2 (n(n+1)z2 +αn z+βn )2 /n(n+1)(z+γn−1 )(z+γn )+ · · · (14) In the particular case at z∗ = e and z = 1 we have ( 1 z−e z−e z−e z−e z−e z ln z = + e −e2 /2+ −8/7e + 21e2 /2+ 1/8e + 2240e2 /13+ · · · + z−e + 2n(2Hn +(n−1)/n)2 2 e(4(n−1)nHn−1 −2Hn−1 +n2 −n−1) z−e + 2 −2H +n2 +n−1)2 (2n+1)e2 (4n(n+1)Hn n n(n+1)(2Hn +(n−1)/n)(2Hn+1 +n/(n+1)) )−1 + ··· . International Journal of Advanced Research in Mathematics Vol. 7 7 According to (5) and (13) coefficients of expansion function z ln z into C-QCF in the neighborhood of point z = z∗ are equal 1 −(z+1) 2z2 +3z+2 −z(z+5/2) , e1 = , e = , e = , 2 3 z∗ z z∗2 z2 2z∗ z(z+1) 3z∗ (z+1)(2z2 +3z+2) (n − 1)(z + γn−2 )(n(n + 1)z2 + αn z + βn )) e2n = , 2(2n − 1)z∗ (z + γn−1 )((n − 1)nz2 + αn−1 z + βn−1 ) (n + 1)(z + γn )((n − 1)nz2 + αn−1 z + βn−1 )) e2n+1 = , n = 2, 3, . . . , 2(2n + 1)z∗ (z + γn−1 )(n(n + 1)z2 + αn z + βn ) e0 = (15) where z = ln z∗ and values αn , βn , γn determined in (12). We introduce the notation pn =z + γn = ln z∗ + 2Hn + 1/(n + 1), n = 0, 1, . . . , ( qn =n(n + 1)z2 + αn z + βn = n(n + 1) ln2 z∗ + 4n(n + 1)Hn − 2n2 − ) −2n−1 ln z∗ +4n(n+1)Hn2 −2(2n2 +2n+1)Hn +2n(n+1). (16) If used the notation (16) in the coefficient (15) than we obtain expansion of function z ln z in the neighborhood of point z = z∗ into C-QCF z ln z = z∗ ln z∗ (z − z∗ )p0 /z∗ q0 (z − z∗ )q1 /2z∗ ln z∗ p0 1 + 1 + 1 + (z − z∗ )p1 q0 /3z∗ p0 q1 (z − z∗ )p0 q2 /6z∗ p1 q1 (z − z∗ )p2 q1 /10z∗ p1 q2 1 + 1 + 1 + + (z − z∗ )(n − 1)pn−2 qn /2(2n − 1)z∗ pn−1 qn−1 + ···+ 1 + (z − z∗ )(n + 1)pn qn−1 /2(2n + 1)z∗ pn−1 qn . + 1 + ··· If z = e than the expansion (17) takes the form z ln z = (17) e (z − e)pe0 /eqe0 (z − e)qe1 /2epe0 (z − e)pe1 qe0 /3epe0 qe1 1+ 1 + 1 + 1 + (z − e)pe0 qe2 /6epe1 qe1 (z − e)pe2 qe1 /10epe1 qe2 + 1 + 1 + ···+ e e e e (z − e)(n − 1)pn−2 qn /2(2n − 1)epn−1 qn−1 + 1 + (z − e)(n + 1)pen qen−1 /2(2n + 1)epen−1 qen , 1 + ··· + where pen = 2Hn+1 + n/(n + 1), qen = 4n(n + 1)Hn2 − 2Hn + n2 + n − 1, n = 0, 1, . . . . Theorem 4. (A) C-QCF (17) and T-QCF (14) are convergent to the function z ln z on set R(0, z∗ ) = {z ∈ C\{0} : | arg(z) − arg(z∗ )| < π} (B) C-QCF (17) and T-QCF (14) are convergent uniformly on the arbitrary compact Z ⊂ R(0, z∗ ). 8 Volume 7 Proof. Take limit 1 z + 2Hn−2 + n−1 (n − 1)pn−2 qn n−1 lim e2n = lim = lim lim × n→∞ n→∞ 2(2n − 1)z∗ pn−1 qn−1 n→∞ 2(2n − 1)z∗ n→∞ z + 2Hn−1 + 1 n ( ( ) × lim n(n+1)z2 + 4n(n+1)Hn −2n2 −2n−1 z+4n(n+1)Hn2 −2(2n2 +2n+1)Hn + n→∞ )/( ( ) 2 +2n(n + 1) n(n − 1)z2 + 4n(n − 1)Hn−1 − 2n2 + 2n − 1 z + 4n(n − 1)Hn−1 − ) −2(2n2 − 2n + 1)Hn−1 + 2n(n − 1) . Since limn→∞ Hn /Hn−1 = 1 than 1 n−1 2Hn−1 + n1 z/2Hn−2 + 1 + 1/2(n − 1)Hn−2 = 1. n→∞ z + n→∞ z/2Hn−2 + Hn−1 /Hn−2 + 1/2nHn−2 ( ( ) lim n(n+1)z2 + 4n(n+1)Hn −2n2 −2n−1 z+4n(n+1)Hn2 −2(2n2 +2n+1)Hn + n→∞ )/( ( ) 2 +2n(n + 1) n(n − 1)z2 + 4n(n − 1)Hn−1 − 2n2 + 2n − 1 z + 4n(n − 1)Hn−1 − ( ) n(n + 1)z2 4n(n + 1)Hn z + − −2(2n2 − 2n + 1)Hn−1 + 2n(n − 1) = lim 2 2 n→∞ 4n2 Hn−1 4n2 Hn−1 ) (2n2 + 2n + 1)z 4n(n + 1)Hn2 2(2n2 + 2n + 1)Hn 2n(n + 1) − z+ − + : 2 2 2 2 4n2 Hn−1 4n2 Hn−1 4n2 Hn−1 4n2 Hn−1 ( 2 n(n − 1)z2 4n(n − 1)Hn−1 z (2n2 − 2n + 1)z 4n(n − 1)Hn−1 + − + − : 2 2 2 2 4n2 Hn−1 4n2 Hn−1 4n2 Hn−1 4n2 Hn−1 ) 2(2n2 − 2n + 1)Hn−1 2n(n − 1) − + = 1. 2 2 4n2 Hn−1 4n2 Hn−1 In that case limn→∞ e2n = 1/4z∗ . Similarly is proved that limn→∞ e2n+1 = 1/4z∗ . Thus 1 . lim en = n→∞ 4z∗ Further (z − z 1) ∗ arg + = arg(z) − arg(z∗ ). 4z∗ 4 The conditions of theorem 1 are held than this theorem is valid. lim z + 2Hn−2 + = lim In the expansion function ln(c + z) in C-QCF (10) in the neighborhood of point z = z∗ let’s choose z = z∗ and multiply to z. Then we have z ln z∗ (z − z∗ )/z∗ ln z∗ (z − z∗ )(2 + ln z∗ )/2z∗ ln z∗ 1 + 1 + 1 + (z − z∗ ) ln z∗ /6z∗ (2 + ln z∗ ) (z − z∗ )(3 + ln z∗ )/3z∗ (2 + ln z∗ ) ln z∗ 1 + 1 + · · ·+ + (z −z∗ )nS̄n /2(2n−1)z∗ S̄n−1 (z −z∗ )nS̄n−1 /2(2n+1)z∗ S̄n , (18) + 1 + 1 + ··· where S̄n = 2Hn + ln z∗ , n = 1, 2, . . . . Approximants of continued fraction (18) create sequence [ n+1P̄ ] n (z)/Q̄n (z), where [ n+2 ]of rational functions polynomials degree satisfying inequality deg P̄n (z) ≤ 2 , deg Q̄n (z) ≤ 2 . Conversely function z ln z in the neighborhood of point z = z∗ expanded into C-QCF of form (17). Approximants of this continued fraction create sequence[ of] rational functions [ P̂n](z)/Q̂n (z), where . These continued polynomials degree satisfying conditions deg P̂n (z) ≤ n2 , deg Q̂n (z) ≤ n+1 2 fractions are not equivalent, but have a common area of convergence. z ln z = International Journal of Advanced Research in Mathematics Vol. 7 9 References [1] P. Henrici, Applied and computational complex analysis, Vol. 1, Power series, integration, conformal mapping, location of zeros, Wiley, 1974. [2] J.L. Walsh, Interpolation and approximation by rational functions in the complex domain, third ed., American Math. Soc., 1960. [3] G.A. Baker, P.R. Graves-Morris, Padé approximants, Encyclopedia of Mathematics and its applications, Reading, Mass., Addison-Wesley, 1981. [4] M. Abramowitz, I. Stegun, Handbook of mathematical functions: with formulas, graphs, and mathematical tables, Courier Corporation, 1964. [5] Y.L.Luke, Mathematical functions and their approximations, Academic press, 2014. [6] A.N. Khovanskii, The Application of Continued Fractions and Their Generalizations to Problems in Approximation Theory, P. Noordhoff, Groningen, 1963. [7] A. Cuyt et al., Handbooks of Continued Fractions for Special Functions, Springer Science and Business Media, 2008. [8] T.N. Thiele, Interpolationsprechnung, Commisission von B.G. Teubner, 1909. [9] N.E. Nörlund, Vorlesungen über Differenzenrechnung, Springer, 1924. [10] M.M. Pahirya, Expansion of functions of complex variable in the Thiele-like quasi-inverse continued fraction, Scien. Bull. of Uzhhorod Univ. Series of Math. and Informath. 25 (2014) 131-144. (in Ukrainian) [11] M.M. Pahirya, Expansion of function z ln z in the continued fraction, Scien. Bull. of Uzhhorod Univ. Series of Math. and Informath. 27 (2015) 123-136. (in Ukrainian) [12] W.B. Jones, W.J. Thron, Continued Fractions: Analytic Theory and Applications, Encyclopedia of Mathematics and its Applications, Vol. 11, Addison-Wesley, 1980.
© Copyright 2025 Paperzz