IMAP^2 Fairfield , IA Trig Function Explorations June 2008 Notes by WS EXAMPLE 1 The graphic below shows the two curves y1 = Sin[x] and y2= (1/3) Sin [ 3 x ] x Î[-2Π, 2Π], y Î[-3,3 ]. QUESTION: what does the curve y1 + y2 look like? See next cell for an answer. Plot@8Sin@xD, H1 3L Sin@3 * xD<, 8x, -2 Pi, 2 Pi<, PlotRange ® 8-3, 3<, PlotStyle ® [email protected]<, ImageSize ® 600D 3 2 1 -6 -4 -2 2 -1 -2 -3 4 6 2 Two-Three-FourierTerms-061708-22.nb y1 = Sin[x] and y2 = (1/3) Sin [ 3 x ] x Î[-2Π, 2Π], y Î[-3,3 ]. ANSWER: y1 + y2 looks like this: In[2]:= Plot@8Sin@xD + H1 3L Sin@3 * xD<, 8x, -2 Pi, 2 Pi<, PlotRange ® 8-3, 3<, PlotStyle ® [email protected]<, ImageSize ® 600D 3 2 1 Out[2]= -6 -4 -2 2 -1 -2 -3 4 6 Two-Three-FourierTerms-061708-22.nb In[1]:= 3 Plot@8Sin@xD, H1 3L Sin@3 * xD, Sin@xD + H1 3L Sin@3 * xD<, 8x, -2 Pi, 2 Pi<, PlotRange ® 8-3, 3<, PlotStyle ® [email protected]<, ImageSize ® 600D 3 2 1 Out[1]= -6 -4 -2 2 -1 -2 -3 4 6 4 Two-Three-FourierTerms-061708-22.nb The graphic below shows the curves (y1 = Sin[x] ) + (y2 = (1/3) Sin [ 3 x ] ) y3 = (1/5) Sin [ 5 x ] x Î[-2Π, 2Π], y Î[-3,3 ]. QUESTION: what does the curve y1 + y2 + y3 look like? Plot@8Sin@xD + H1 3L Sin@3 * xD, H1 5L Sin@5 * xD<, 8x, -2 Pi, 2 Pi<, PlotRange ® 8-3, 3<, PlotStyle ® [email protected]<, ImageSize ® 600D 3 2 1 -6 -4 -2 2 -1 -2 -3 Plot@8Sin@xD, H1 3L Sin@3 * xD, H1 5L Sin@5 * xD<, 8x, -2 Pi, 2 Pi<, PlotRange ® 8-3, 3<, PlotStyle ® [email protected]<, ImageSize ® 600D 4 6 Two-Three-FourierTerms-061708-22.nb 5 EXAMPLE 2 The graphic below shows the two curves y1 = Cos[x] and y2= (1/3^2) Cos [ 3 x ] x Î[-2Π, 2Π], y Î[-3,3 ]. QUESTION: what does the curve y1 + y2 look like? See next cell for an answer. Plot@8Cos@xD, H1 3 ^ 2L Cos@3 * xD<, 8x, -2 Pi, 2 Pi<, PlotRange ® 8-1.5, 1.5<, PlotStyle ® [email protected]<, ImageSize ® 600D 1.5 1.0 0.5 -6 -4 -2 2 -0.5 -1.0 -1.5 y1 = Cos[x] and y2= (1/3^2) Cos [ 3 x ] x Î[-2Π, 2Π], y Î[-3,3 ]. ANSWER: y1 + y2 looks like this: 4 6 6 Two-Three-FourierTerms-061708-22.nb Plot@8Cos@xD + H1 3 ^ 2L Cos@3 * xD<, 8x, -2 Pi, 2 Pi<, PlotRange ® 8-1.5, 1.5<, PlotStyle ® [email protected]<, ImageSize ® 600D 1.5 1.0 0.5 -6 -4 -2 2 -0.5 -1.0 -1.5 4 6 Two-Three-FourierTerms-061708-22.nb In[3]:= 7 Plot@8Cos@xD, H1 3 ^ 2L Cos@3 * xD, Cos@xD + H1 3 ^ 2L Cos@3 * xD<, 8x, -2 Pi, 2 Pi<, PlotRange ® 8-1.5, 1.5<, PlotStyle ® [email protected]<, ImageSize ® 600D 1.5 1.0 0.5 Out[3]= -6 -4 -2 2 -0.5 -1.0 -1.5 4 6 8 Two-Three-FourierTerms-061708-22.nb The graphic below shows the curves (y1 = Cos[x] )+ (y2= (1/3^2) Cos [ 3 x ]) and y3 = (1/5^2) Sin [ 5 x ] x Î[-2Π, 2Π], y Î[-3,3 ]. QUESTION: what does the curve y1 + y2 + y3 look like? Plot@8Cos@xD + H1 3 ^ 2L Cos@3 * xD, H1 5 ^ 2L Cos@5 * xD<, 8x, -2 Pi, 2 Pi<, PlotRange ® 8-1.5, 1.5<, PlotStyle ® [email protected]<, ImageSize ® 600D 1.5 1.0 0.5 -6 -4 -2 2 -0.5 -1.0 -1.5 Plot@8Cos@xD + H1 3 ^ 2L Cos@3 * xD + H1 5 ^ 2L Cos@5 * xD<, 8x, -2 Pi, 2 Pi<, PlotRange ® 8-1.5, 1.5<, PlotStyle ® [email protected]<, ImageSize ® 600D 4 6
© Copyright 2026 Paperzz