Final Exam Solution - Bishri A. Abdel

Mansoura University
Faculty of Engineering
Preparatory Year
Engineering Mechanics
First term (2011-2012)
Time: Two hours
Final Exam
Instructors: Prof. Dr. Bishri Abdel-Mo'emen; Assoc. Prof. Dr. Ayman Ashour; Dr. Waleed Albeshbeshy
Answer The Following Questions (Total Mark 90 points)
A
Question 1: ( 10 Points )
C
Resolve the 1000 N force shown into two components along CA and CB.
FA
.
๐น๐ด
๐น๐ต
1000
=
=
= 1035.3 ๐‘
sin 45 sin 60 sin 75
60o
๐น๐ด = 1035.3 sin 45 = 732 ๐‘
75o
1000 N
FB
30o
45o
1000 N
๐น๐ต = 1035.3 sin 60 = 896.6 = 897 ๐‘
45o
B
OR ( โ€ซ)ุญู„ ุขุฎุฑโ€ฌ
30o
๐น๐‘ฅ = 0;
45o
FA
๐น๐ด cos 30 = ๐น๐ต cos 45
โˆด ๐น๐ด = 0.816 ๐น๐ต
FB
๐น๐‘ฆ = 0;
โ€ฆ โ€ฆ (๐‘Ž)
๐น๐ด sin 30 + ๐น๐ต sin 45 = 1000
Using (a) โˆด 1.115 ๐น๐ต = 1000
๐น๐ต = 896.8 = 987N and ๐น๐ด = 731.8 = 732 N
1000 N
Question (2): ( 15 Points )
A spider netting its web on a tree limb. If the spider has a
mass of 0.7 gram and is suspended from a portion of its web as
shown. Determine the force which each of the three web
โ€œstringsโ€ exerts on the twigs at A, B, and E. String CB is
horizontal.
A
E
D
o
45
Equilibrium of point D:
; T1 cos 30 = TE cos 45
B
o
30
T1 = 0.817TE
; T1 sin 30 + TE sin 45 = W;
substituting for T1, then
TE
TE (0.817 sin 30 + sin 45) = W
TE =
o
60
C
o
45
T1
D
o
30
= 6.15(10-3) N
=
W=0.7*9.8*10-3 N
T1 = 0.817TE = 5.023 (10-3) N
Equilibrium of point C:
;
TA sin 60 = T1 sin 30
TA
TA = 2.9*10-3 N
; TB + TA cos 60 = T1 cos 30
o
TB = 5.023(10-3) cos 30 - 2.9*10-3 cos 60 = 2.9*10-3 N
30
T1
C
o
60
TB
20o
A
Question 3: ( 10 Points )
During his Gym routine exercise, Prof. Gonaim exerts a
force F by his feet on the apparatus in the manner shown
in Figure. The combined mass of the load is 40 kg and
acts at point C. Determine the magnitude of the force F
act point A and the horizontal and vertical components of
the reaction at pin B.
F
60 cm
10o
B
C
50 cm
40 kg
y
๐‘€๐ต = 0; ๐น๐‘๐‘œ๐‘  20 (60) = ๐‘Š(50)
๐น=
(392)(50)
๐‘๐‘œ๐‘  20 (60)
= 347.6 ๐‘
๐น๐‘ฅ = 0; ๐น๐‘๐‘œ๐‘  30 = ๐ต๐‘ฅ
10o
A
x
F cos 20
60 cm
10o
Ans.
โ†’ ๐ต๐‘ฅ = 301 ๐‘ Ans.
20
o
F sin20
Bx
C
๐น๐‘ฆ = 0; ๐น๐‘ ๐‘–๐‘› 30 + ๐ต๐‘ฆ = ๐‘Š โ†’ ๐ต๐‘ฆ = 218 ๐‘ Ans.
50 cm
By
W=40*9.8=392 N
z
Question 4: ( 15 Points )
C
A door is kept open by a chain as shown in Figure. Determine:
a. The angle which the force Fc makes with the direction of BA.
b. The moment vector of the force Fc about the door hinge at A.
c. The magnitude of the moment of Fc about the hinged axis aa.
2.5 m
1.5 m
F C = 250 N
30o
A: (-0.5, -1, 0); B: (-0.5, 0, 0); C:(-2.5, -2.3, 0.75)
๐ซ๐ด๐ต = ๐ฃ;
B
๐‘Ÿ๐ด๐ต = ๐Ÿ
๐ซ๐ถ๐ต = 2 ๐ข + 2.3๐ฃ โˆ’ 0.75๐ค;
1m
๐‘Ÿ๐ถ๐ต = ๐Ÿ‘. ๐Ÿ๐Ÿ’
๐ซ๐‘Ž๐‘Ž = ๐ข;
x
250
๐…๐ถ = 3.14(2 ๐ข + 2.3๐ฃ โˆ’ 0.75๐ค) = 159.24 ๐ข + 183.12๐ฃ โˆ’ 59.71๐ค
a)
A
๐œฝ = ๐’„๐’๐’”โˆ’๐Ÿ
๐ซ๐ต๐ด .๐ซ๐ต๐ถ
๐‘Ÿ๐ต๐ด ๐‘Ÿ๐ถ๐ต
b) ๐‘€๐ด = ๐ซ๐ด๐ต × ๐…๐ถ =
= ๐’„๐’๐’”โˆ’๐Ÿ
๐ข
0
159.24
2.3
3.14
= 43๐‘œ
๐ฃ
๐ค
= -59.7 i โ€“ 159.24 k
1
0
183.12 โˆ’59.7
c) ๐‘€๐ด = ๐Œ๐ด . ๐”๐ด = โˆ’59.7 ๐ข โ€“ 159.24 ๐ค . ๐ข = โˆ’59.7 ๐‘๐‘š
Please turn over
0.5 m
y
z
Question 5: ( 15 Points )
The two supporting cables exert the forces shown on the sign, where F1= (-i-4.5j+3k)
kN and F2 = (0.75i-0.5j+1.5k) kN. The weight of the sign is represented by the force
W= (-6k) kN and passes through point B. Replace the two forces and the weight by an
equivalent force-couple system at point O.
z
1m
D
1.5 m
E
F2
3m
O
Given: F1= (-i-4.5j+3k) kN
F1
1m
2m
A
x
B
2m
F2 = (0.75i-0.5j+1.5k) kN
W= (-6k) kN
C
C: (0, 5, 0) , B: (0, 3, 0) , A: (0, 1, 0)
โˆด ๐ซ๐‘‚๐ถ = 5 ๐ฃ , ๐ซ๐‘‚๐ต = 3๐ฃ, ๐ซ๐‘‚๐ด = ๐ฃ
W
The Equivalent system at O:
๐‘ด๐‘น๐‘ถ
๐Œ๐‘ถ๐‘น = ๐ซ๐‘‚๐ถ × ๐…1 + ๐ซ๐‘‚๐ต × ๐–โฌš + ๐ซ๐‘‚๐ด × ๐…2
๐‘–
๐‘—
๐‘˜
๐‘– ๐‘— ๐‘˜
๐‘–
= 0
5
0 + 0 3 0 + 0
0 0 โˆ’6
0.75
โˆ’1 โˆ’4.5 3
= (15๐‘– + 5๐‘˜ ) + (โˆ’18๐‘–) + (1.5๐‘– โˆ’ 0.75๐‘˜ )
= (โˆ’1.5๐ข + 4.25๐ค) kN.m
Ans.
๐‘ = ๐…1 + ๐–โฌš + ๐…2
= (-i-4.5j+3k) +(-6k) +(0.75i-0.5j+1.5k)
= (- 0.25i - 5j โ€“ 1.5k) kN.
Ans.
R
๐‘—
1
โˆ’0.5
๐‘˜
0
1.5
y
Question 6: ( 15 Points )
Assuming that the equivalent force-couple system in Question (7) is given by R= (- 250i 5000j -1500k) N and MR= (-1500i + 4250k) Nm. Reduce this system to a wrench and find its
pitch. Specify the point of intersection of the axis of the wrench with x-y plane.
Given: R= (- 250i - 5000j -1500k) N
MR= (-1500i + 4250k).
โˆด ๐‘… = (250)2 + (5000)2 + (1500)2 = 5226 ๐‘
๐‘ โˆ’ 250๐ข โˆ’ 5000๐ฃ โˆ’ 1500๐ค
๐ฎ๐‘… = =
๐‘…
5226
= (โˆ’ 0.048๐ข โˆ’ 0.957๐ฃ โˆ’ 0.287๐ค
๐‘ด๐‘นโŠฅ
R
๐‘ด๐‘นโˆฅ
O
๐‘€โˆฅ๐‘… = ๐Œ ๐‘… โˆ™ ๐ฎ๐‘… = (โˆ’1500)(โˆ’ 0.048) + (4250)(โˆ’0.287)
= โˆ’1147.8 N.m
โˆด
๐Œโˆฅ๐‘…
=
๐‘€โˆฅ๐‘… (๐ฎ๐‘… )
(the negative indicates a clockwise rotation when viewed from the tip of R )
O
= (โˆ’1147.8)(โˆ’ 0.048๐ข โˆ’ 0.957๐ฃ โˆ’ 0.287๐ค)
= 55๐ข + 1098.4๐ฃ + 329.4๐ค
r
๐‘น
(x,y,0) ๐‘ดโˆฅ
โˆต ๐Œ ๐‘… = ๐ŒโŠฅ๐‘… + ๐Œโˆฅ๐‘…
โˆด ๐ŒโŠฅ๐‘… = ๐Œ ๐‘… โˆ’ ๐Œโˆฅ๐‘… = (โˆ’1500๐ข + 4250๐ค) โˆ’ (55๐ข + 1098.4๐ฃ + 329.4๐ค)
โˆด ๐ŒโŠฅ๐‘… = (โˆ’1555๐ข โˆ’ 1098.4๐ฃ + 3920.6๐ค)
Moving the line of action of R to a point (x, y, 0), such that
๐ซ × ๐‘ = ๐ŒโŠฅ๐‘…
๐ข
๐ฃ
๐ค
โˆด ๐‘ฅ
๐‘ฆ
0 = โˆ’1555๐ข โˆ’ 1098.4๐ฃ + 3920.6๐ค
250 5000 1500
โˆด 1500y๐ข โˆ’ 1500x๐ฃ + (5000๐‘ฅ โˆ’ 250๐‘ฆ)๐ค = โˆ’1555๐ข โˆ’ 1098.4๐ฃ + 3920.6๐ค
i-component: 1500 ๐‘ฆ = โˆ’1555 โ†’ ๐‘ฆ = โˆ’1.04 ๐‘š
j-component: โˆ’1500 ๐‘ฅ = โˆ’1098.4 โ†’ ๐‘ฅ = 0.73 ๐‘š
Check: These values satisfy the K components (please consider the round off errors )
The wrench consists of : the force
R= (- 250i - 5000j -1500k) N, and
the Moment: ๐Œโˆฅ๐‘… = 55๐ข + 1098.4๐ฃ + 329.4๐ค
and act at the point ( 0.73, -1.04, 0)
The Pitch of wrench, P =
๐‘€โˆฅ๐‘…
๐‘…
=
โˆ’1147.8
5226
= - 0.22 m
( the pitch = 22 cm, the sign indicates measuring direction)
R
z
Question 7: ( 10 Points )
200 N
A
A vertical force of 200 N acts on the
crankshaft. Determine the horizontal force F
that must be applied to the handle to maintain
equilibrium. Determine also components of the
reaction forces at the smooth bearing A and the
thrust bearing B. The bearings are properly
aligned.
0.3 m
x
0.4 m
B
0.4 m
0.2 m
y
0.25 m
Summing the moment about y-axis:
200 (0.3) = F (0.25)
0.15 m
F= 240 N
F
Summing the moment about x-axis:
Bz (0.8)-200(0.4) =0
z
Bz = 100 N
Az
Summing the moment about z-axis:
Bx (0.8) = F (1.0)
200 N
Bx = 300 N
A 0.3 m
Ax
๐น๐‘ฅ = 0; ๐ด๐‘ฅ + ๐ต๐‘ฅ โˆ’ ๐น = 0 โ†’ ๐ด๐‘ฅ = โˆ’60 ๐‘
x
๐น๐‘ฆ = 0; ๐ด๐‘ฆ = 0
C
Ay
Bz
0.4 m
B
๐น๐‘ง = 0; ๐ด๐‘ง + ๐ต๐‘ง โˆ’ 200 = 0 โ†’ ๐ด๐‘ง = 100 ๐‘
0.4 m
Bx
0.2 m
y
0.25 m
D
OR (โ€ซ)ุญู„ ุขุฎุฑโ€ฌ
C: (-0.3, 0.4, 0) ; B: (0, 0.8, 0); D: (0, 1.15, -0.25)
0.15 m
F
๐‘€๐‘‚ = 0; ๐ซ๐ถ × (โˆ’200 ๐ค) + ๐ซ๐ต × ๐ + ๐ซ๐ท × (โˆ’๐น ๐ข) = 0
๐ข
๐ฃ
๐ค
๐ข
๐ฃ
๐ค
๐ข
๐ฃ
๐ค
0
0.8
0
โˆด โˆ’0.3 0.4
+
+
0
0 1.15 โˆ’0.25 = 0
๐ต๐‘ฅ 0 ๐ต๐‘ง
0
0 โˆ’200
โˆ’๐น
0
0
โˆด (โˆ’80๐ข โˆ’ 60๐ฃ ) + (0.8 ๐ต๐‘ง ๐ข โˆ’ 0.8 ๐ต๐‘ฅ ๐ค ) + (0.25 ๐น๐ฃ + 1.15 ๐น๐ค ) = 0
โˆด ๐ข โˆ’ ๐‘๐‘œ๐‘š๐‘๐‘œ๐‘›๐‘’๐‘›๐‘ก โ†’ โˆ’80 + 0.8 ๐ต๐‘ง = 0 โ†’ ๐ต๐‘ง = 100 N
โˆด ๐ฃ โˆ’ ๐‘๐‘œ๐‘š๐‘๐‘œ๐‘›๐‘’๐‘›๐‘ก โ†’ โˆ’60 + 0.25 ๐น = 0 โ†’ ๐น = 240 N
โˆด ๐ค โˆ’ ๐‘๐‘œ๐‘š๐‘๐‘œ๐‘›๐‘’๐‘›๐‘ก โ†’ โˆ’0.8๐ต๐‘ฅ + 1.15 ๐น = 0 โ†’ ๐ต๐‘ฅ = 345 N
๐น๐‘ฅ = 0; ๐ด๐‘ฅ + ๐ต๐‘ฅ โˆ’ ๐น = 0 โ†’ ๐ด๐‘ฅ = โˆ’60 ๐‘
๐น๐‘ฆ = 0; ๐ด๐‘ฆ = 0
๐น๐‘ง = 0; ๐ด๐‘ง + ๐ต๐‘ง โˆ’ 200 = 0 โ†’ ๐ด๐‘ง = 100 ๐‘
......โ€ซู…ุน ุชุญูŠุงุชูŠ ูˆุชู…ู†ูŠุงุชูŠ ุงู„ุทูŠุจุฉโ€ฌ
)2012 โ€ซ ูŠู†ุงูŠุฑโ€ฌ20( โ€ซ ุจุดุฑูŠ ุนุจุฏ ุงู„ู…ุคู…ู†โ€ฌ.โ€ซุฏโ€ฌ.โ€ซุฃโ€ฌ