Thiyl Radicals in Organic Synthesis When burned, sulfur melts to a blood-red liquid and emits a blue flame that is best observed in the dark. Jian Jin MacMillan Group Meeting November 6, 2014 I. Generalities II.Thiyl-Mediated Hydrogen Atom Transfer III. Addition of Thiols to C=C bonds IV. Fragmentation of β-Sulfanyl Radicals V. Addition of Thiols to Alkynes VI. Addition of Thiols to Isonitriles VII. Addition of Thiols to C=S bonds I. Generalities ■ S-H Bond Dissociation Energies in Thiols ■ Alkanethiols: similar S−H BDEs around 87 kcal mol -1 regardless of the structure of the alkyl residue O O O HO SH SH Me NH 2 86 kcal mol -1 87 kcal mol -1 SH 88 kcal mol -1 ■ Thiophenols: weaker S−H BDEs due to the stabilization by resonance of the corresponding arenethiyl radical F SH SH SH H 2N O2N F SH F F F 70 kcal mol -1 79 kcal mol -1 82 kcal mol -1 84 kcal mol -1 ■ S-S Bond Dissociation Energies in Disulfides ■ Dialkyldisulfides: around 65 kcal mol -1 ■ Diaryldisulfides: around 50 kcal mol -1 Denes, F.; Pichowicz, M.; Povie, G.; Renaud, P. Chem. Rev. 2014, 114 , 2587. I. Generalities ■ Generation of Thiyl Radicals ■ Hydrogen atom abstraction by the other radicals having a corresponding higher X−H BDEs RS H + X + RS X H Initiator: AIBN, (PhCO 2)2, (t-BuO)2, Et 3B/O 2 ■ One-electron oxidation by Mn(OAc) 3, O2 − eRS H RS − H+ ■ One-electron reduction of disulfides + eRS SR RS + RS H RS + + H+ ■ Homolytic cleavage by radiolysis or light irradiation < 300 nm RS H H 355 nm PhS SPh 2PhS Denes, F.; Pichowicz, M.; Povie, G.; Renaud, P. Chem. Rev. 2014, 114 , 2587. II.Thiyl-Mediated Hydrogen Atom Transfer ■ Rate of Hydrogen Atom Transfer ■ The reactivity of a class of radicals toward a given hydrogen atom donor is well described by two parameters: the activation energy of the thermoneutral reaction (E e0) and the enthalpy of the reaction of interest (ΔH e) ■ Different interactions in the transition state such as polar effects, antibonding (triplet repulsion), or neighboring π-electrons may influence E e0, which is particularly low for the reactions of alkyl radicals with thiols RS + R'H 2C H RS S-H BDE = 87 kcal mol -1 n-Bu3Sn H + RH 2C k 298K = 2 × 10 7 M -1 s-1 + R'H 2C + n-Bu3Sn Sn-H BDE = 79 kcal mol -1 H RH 2C H k 298K = 2 × 10 6 M -1 s-1 Me Me Me OH Me Me + R'H 2C Me α-tocopherol O Me Me Me Me Me Me O-H BDE = 77 kcal mol -1 O Me + Me O RH 2C H Me Me k 298K =6 × 10 5 M -1 s-1 Denes, F.; Pichowicz, M.; Povie, G.; Renaud, P. Chem. Rev. 2014, 114 , 2587. II.Thiyl-Mediated Hydrogen Atom Transfer ■ Polar Effect in Hydrogen Atom Transfer ■ In hydrogen atom transfers between two radicals of different electronegativity, charge transfer configurations may contribute to the character of the transition state, such polar effects resulting in a lowering of the activation barrier R2 R1 O C R2 H R3 OR1 C R3 the absence of charge-transfer stabilization of the symmetrical transition state, in which the incoming and outgoing α-alkoxyalkyl radicals have the same electronegativity δ- RS Me O Me Me Me OOt-Bu Me 5 mol% nonane, 125 °C, 3 h Me Me O O Me Me Me t-BuOO Me O O O Me + Me 100% Me C benefits from charge-transfer stabilization because the electronegativities of he nucleophilic α-alkoxyalkyl radical and the electrophilic thiyl radical are significantly different favored t-BuOO O H OR1 R3 disfavored Me R2 δ+ Me O high activation energy 0% OOt-Bu Me 5 mol% Me Me Me nonane, 125 °C, 2.5 h (t-BuO)3SiSH 5 mol% Me Me O O 16% Me Me Me O Me + Me Me O thermodynamic equilibrium 84% Dang, H.-S.; Roberts, B. P.; Tocher, D. A. J. Chem. Soc., Perkin Trans. 1 , 2001, 2452. II.Thiyl-Mediated Hydrogen Atom Transfer ■ Rate Constants for the Reduction of Various Alkyl Radicals by Thiophenol kH PhS + H C entry + PhS radical C kH/[M-1 s-1] (T/K) ΔH/[kcal mol-1] 1 n-C3H7-CH2⋅ 1.3 × 10 8 (298) -17 2 (CH3)2CH⋅ 1.0 × 10 8 (298) -15 3 (CH3)3C⋅ 10 8 (298) -12 4 n-C6F13 -CF2⋅ 2.8 × 10 5 (303) -20 5 ROCH2CH2⋅ 7.6 × 10 7 (353) -18 6 PhCH2⋅ 3.0 × 10 5 (298) -5 1.4 × H ■ Rate Constants for the Reduction of Various Alkyl Radicals by Alkanethiol kH RCH 2S H + C k-H entry radical kH/[M-1 s-1] (T/K) 1 R-CH2⋅ 2 × 10 7 (298) RCH 2S + k-H/[M-1 s-1] (T/K) C H ΔH/[kcal mol-1] -13 2 R3C⋅ 3 R-CH(OMe)⋅ 2 × 10 7 (298) -4 4 R-C(=O)⋅ 7 × 10 6 (353) -1 5 Ph-CHR⋅ 7 × 10 2 (333) 6 Ph-CH(OMe)⋅ 4× 10 6 (303) 2× 10 4 (353) 1 × 10 6 (353) 2× 10 7 (353) -8 +2 +2 Denes, F.; Pichowicz, M.; Povie, G.; Renaud, P. Chem. Rev. 2014, 114 , 2587. II.Thiyl-Mediated Hydrogen Atom Transfer ■ Dynamic Kinetic Resolution of α-Chiral Amines O SH Et 2N NH 2 Me Me Me O (cat.) C11H 23 AIBN, C11H 23CO2Et, Novozym 435 heptane, 80 °C Me 81% yield, >99% ee 0% ee NH 2 Me Me Me (R) (S) lipase acyl donor lipase acyl donor O C11H 23 Me NH 2 RSH, initiator Me NH O NH RSH, initiator Me Me (R) C11H 23 NH Me Me (S) Gastaldi, S.; Escoubet, S.; Vanthuyne, N.; Gil, G.; Bertrand, M. P. Org. Lett. 2007, 9, 837. II.Thiyl-Mediated Hydrogen Atom Transfer ■ Hydrogen Abstraction from Benzylic Positions NHBoc Me N Me i-Pr O i-Pr MeO 2C N OAc O PhSH (cat.), Et 3B/O 2 Benzene, rt O N O OAc 48% yield, dr = 13:1 NHBoc i-Pr NHBoc O NHBoc CO2Me N Me N Me OAc MeO 2C O CO2Me PhS PhSH PhSH NHBoc i-Pr NHBoc O N Me N Me OAc MeO 2C O CO2Me i-Pr Me O O N OAc N Me NHBoc MeO 2C CO2Me Guin, J.; Frohlich, R.; Studer, A. Angew. Chem. Int. Ed. 2008, 47, 779. II.Thiyl-Mediated Hydrogen Atom Transfer ■ Hydrogen Abstraction from Silane OAc Ph OAc O AcO AcO Ph O Ph SH Ph (5 mol%) Ph 3Si Ph 3SiH,TBHN Hexane/dioxane, 60 °C O O O 90% ( 95% ee) Ph Ph Ph 3Si O O Ph 3SiH *RS *RSH *RSH Ph Ph 3Si Ph Ph 3Si O O Ph Ph O O Cai, Y.; Roberts, B. P.; Tocher, D. A. J. Chem. Soc., Perkin Trans. 1 , 2002, 1376. III. Addition of Thiols to C=C bonds ■ anti-Markovnikov Addition of Thiyl Radicals to Olefins R1 S + R3 k add R3 R4 R1 S k frag R4 R2 R2 ■ Thiol-Ene Coupling (TEC) R3 R1 S R3 R4 + R1 S R1SH R2 R4 + RS R2 ■ Thiol-Olefine Cooxidation (TOCO) O R3 R1 S R4 + R1 S O2 R2 O inter R1SH intra R1SR R3 products R4 intra C=C R2 ■ Ring-Openning of Vinyl Cyclopropane R3 R1 S R3 EWG R2 R1 S EWG R2 Denes, F.; Pichowicz, M.; Povie, G.; Renaud, P. Chem. Rev. 2014, 114 , 2587. III. Addition of Thiols to C=C bonds ■ Thiol-Olefine Cooxidation (TOCO) SH AcO OH AcO (1 equiv) Cl O S O2, hexane, hv Cl SH Me O (1 equiv) Me V2O5 (cat.) S Me O2, hexane/EA, hv OH Me OH Me O S Me Iriuchijima, S.; Maniwa, K.; Sakakibara, T.; Tsuchihashi, G. J. Org. Chem. 1974, 39, 1170. III. Addition of Thiols to C=C bonds ■ Thiol-Olefine Cooxidation (TOCO) Me 1) PhSH, O2, DTBPO(cat.) O OH Me O O Me SPh O 6-exo-trig 30% O Me SPh O Me SPh Me 2) PPh 3 via: Me O PhSH Me O O2 O SPh Me HO Me Me O OH OH O Me Me Me Yingzhaosu A Szpilman, A. M.; Korshin, E. E.; Rozenberg, H.; Bachi, M. D. J. Org. Chem. 2005, 70, 3618. III. Addition of Thiols to C=C bonds ■ Ring-Openning of Vinyl Cyclopropane CO2Bn CO2Bn CO2Bn thiophenol (3 mol%) + t-BuO BPO (6 mol%), toluene, 0 °C, 2 h hv (100 W Hg lamp or sunlight) CO2Bn t-BuO 95% yield, 19:1 dr, 86% ee Bu CF3 OH SH Si CF3 t-Bu Bu Me via: RS CO2Bn CO2Bn RS CO2Bn t-BuO CH2O2Bn RS CO2Bn t-BuO CO2Bn RS CO2Bn t-BuO CO2Bn Hashimoto, T.; Kawamata, Y.; Maruoka, K. Nature Chem. 2014, 6, 702. IV. Fragmentation of β-Sulfanyl Radicals ■ Isomerization of Alkenes R2 + PhS R1 R2 R1 S R2 PhS + R1 R1 ■ Fragmentation of Allyl Sulfides R2 R1 + R2 SPh R1 R2 SPh R1 ■ Fragmentation of Vinyl Sulfides R R SPh SPh R Denes, F.; Pichowicz, M.; Povie, G.; Renaud, P. Chem. Rev. 2014, 114 , 2587. IV. Fragmentation of β-Sulfanyl Radicals ■ Fragmentation of Allyl Sulfides O O MeO Mn(OAc) 3 (1 equiv.) O N Bn via MeO N AcOH, 70 °C SPh Me O Me Bn 43% yield trans only O O Me MeO SPh MeO O N SPh Bn N O Me Bn ■ Fragmentation of Vinyl Sulfides MeO MeO OH O SPh Br N Bu 3SnH, AIBN Benzene, 130 °C Me O H N Ts Me 35% yield H Ts HO via MeO O H SPh N Me HO Ts Cerreti, A.; D'Annibale, A.; Trogolo, C.; Umani, F. Tetrahedron Lett. 2000, 41, 3261. Parker, K. A.; Fokas, D. J. Org. Chem. 2006, 71, 449. V. Addition of Thiols to Alkynes ■ Addition of Thiyl Radical to Alkynes + R1 S R2 k add R1 S R2 ■ Addition to alkynes is more exothermic than to alkenes as replacing a very weak π-bond by a stronger Csp2−S σ-bond compensates for the energetic cost of generating a vinyl radical ■ The reverse reaction that releases the triple bond is rather slow, and fragmentation of the thiyl radical is generally not observed due to the rapid decay of the resulting highly reactive vinyl radical ■ Very few intermolecular trappings of β-sulfanylalkenyl radicals in a new C−C bond-forming reaction have been reported because it's very hard to compete with the hydrogen atom abstraction from thiols H R1 S R2 + R1SH R1 S + R1 S R2 SR1 R1 S R2 + R1SH R1 S R2 branched Thiol-Yne Coupling ■ Intramolecular trapping by C=C, C=N bonds SPh PhSH (slow addition) AIBN, TMTHF, reflux 70% Denes, F.; Pichowicz, M.; Povie, G.; Renaud, P. Chem. Rev. 2014, 114 , 2587. V. Addition of Thiols to Alkynes ■ Intramolecular Chalcogenation: SH 2 at Sulfur PhS S S Y S SH 2 + Y PhS Y PhS Y = alkyl, acyl, carbamoyl, Ph 2P(O), (EtO) 2P(O), (EtO) 2P(S), (N(Me)CH 2)2P(O) Me PhSH, AIBN N benzene, reflux S N N O O 80% yield O 4% yield ■ Translocation Reactions: 1,n-Hydrogen Transfer O O H PhSH, AIBN H cyclohexane, 25 °C, hv SPh Me Me cis/trans = 8:1 via O Me Me O H SPh Me Me SPh Me Me H Lachia, M.; Denes, F.; Beaufils, F.; Renaud, P. Org. Lett. 2005, 7, 4103. VI. Addition of Thiols to Isonitriles ■ Intermolecular Trapping versus Fragmentation R1 = primary alkyl Ar H C R1 R1 S C N C R2 R1 R2 N R1 = tertiary alkyl Bn S O R2 N S R1 + HS C N R2 O SH O OAc + t-Bu-NC, AIBN, 80 °C OAc O 79% yield ■ Intramolecular Trapping by Alkenes or Alkynes Me Me Me HO Me SH OTBS OTBS AIBN, toluene, 80 °C CN Me via O CO2Et Me N H CO2Et Me Me OTBS Me OTBS Me OTBS S S OH N S CO2Et OH N CO2Et O N H CO2Et Denes, F.; Pichowicz, M.; Povie, G.; Renaud, P. Chem. Rev. 2014, 114 , 2587. VII. Addition of Thiols to C=S bonds ■ Barton Reductive Decarboxylation O N O O N R S t-BuS t-BuS R + O S R OH N O Me 1. S ,pyridine Me H Cl 11 11 95% yield 2. t-BuSH, toluene, reflux ■ Barton Reductive Deoxygenation of Tertiary Alcohols O Me OH Me Me Me Cl Me H OH O Me O Cl Cl Me O Me N Me S Me , DMAP O Me Me t-BuSH, toluene, reflux AcO AcO AcO Barton, D. H. R.; Crich, D.; Motherwell, W. B. Tetrahedron 1985, 41, 3901. Barton, D. H. R.; Crich, D. J. Chem. Soc., Chem. Commun. 1984, 774.
© Copyright 2026 Paperzz