The Cap Roux MPA (Saint-Raphaël, French

180
The Cap Roux MPA (Saint-Raphaël, French
Mediterranean): changes in fish assemblages within
four years of protection
Catherine Seytre and Patrice Francour
Seytre, C., and Francour, P. 2009. The Cap Roux MPA (Saint-Raphaël, French Mediterranean): changes in fish assemblages within four years of
protection. – ICES Journal of Marine Science, 66: 180 – 187.
In recent decades, marine reserves have been established to protect ecosystem structure and biological diversity, or as management
tools to combat the overexploitation of fish stocks. The Cap Roux Marine Protected Area (MPA) was established by professional fishers
in December 2003, in the French Mediterranean between Cannes and Saint-Raphaël. It was implemented to enhance target fish stocks
for local fisheries. The objective of this 3-year study was to investigate the initial responses of fish assemblages, using complementary
methods: experimental net fishing performed by a professional fisher and underwater visual census. Within 3 years, this study detected
early changes in the fish assemblages. The methods also detected an increase in abundance and diversity of fish, but also a decrease of
seasonal fluctuations of the assemblage structure, which was characterized by winter values close to summer values in the protected
zone but not outside of the MPA. These results helped clarify the dynamic by which fish assemblages respond to fishing prohibition in
a newly created protected area.
Keywords: early reserve effect, FAST method, fish assemblages, Mediterranean, MPA.
Received 26 October 2007; accepted 2 June 2008; advance access publication 2 December 2008.
C. Seytre and P. Francour: EA 4228 ECOMERS, Université de Nice-Sophia Antipolis, Parc Valrose, 06108 Nice cedex 2, France. Correspondence to
P. Francour: tel: þ33 4 92 07 68 32; fax: þ33 4 92 07 68 49; e-mail: [email protected].
Introduction
In recent years, the number of Marine Protected Areas (MPAs)
has increased rapidly. The new generation of MPAs is made up
largely of multiple-use reserves accommodating many different
stakeholders, each with their own set of objectives, which can
include: (i) protecting biodiversity and habitats, (ii) facilitating
the recovery of damaged areas, (iii) preserving threatened
species, (iv) restocking overexploited marine species, and (v) supporting tourism and education (e.g. Agardy, 1994; Francour et al.,
2001; Guidetti, 2002; Gell and Roberts, 2003; Halpern, 2003).
For fishery management, implementation of marine areas with a
total prohibition on fishing (no-take areas) is considered to be
the most relevant tool (Dugan and Davis, 1993; Olver et al.,
1995; Sumaila, 1998; Jennings, 2001; Gell and Roberts, 2003).
The effects of no-take marine reserves on fish assemblages are by
now well studied. A “reserve effect”, characterized by increased diversity, abundance, and fish size, has been described (e.g. Garcı́a-Rubies
and Zabala, 1990; Francour, 1994; Dufour et al., 1995; Halpern and
Warner, 2002; but see Côté et al., 2001). Another characteristic of
the reserve effect, called the “buffer effect” and characterized by a
decrease in seasonal fluctuations in the structure of fish assemblages,
has also been described (e.g. Francour, 1994).
However, few data are available about the dynamics by which
fish assemblages respond to fishing prohibition. In previous
studies, a reserve effect typically appeared within 5 –10 years
(Gell and Roberts, 2003), and some studies have highlighted
earlier responses; for example, Russ and Alcala (1998) recorded
an increase in biomass after 1 year of protection, and Halpern
and Warner (2002) found general increases in density, biomass,
and diversity within 1 –3 years.
The Cap Roux MPA, a no-take area, was established as a management tool by professional fishers in December 2003, to sustain
local small-scale fisheries. It has been monitored since 2005. In this
paper, we present the results of 3 years of monitoring of fish
assemblages to assess the initial responses of fish assemblages to
protection. Fish diversity, size, and abundance were compared in
the protected and non-protected zones, using underwater visual
census (UVC) and experimental fishing. Fish assemblage structure
and seasonal variability were compared using a new UVC method,
the fish assemblage survey technique (FAST).
Guidetti (2002) stressed that spatial and temporal variability
could confound or obscure any reserve effect in the surveys. As a
result, it could be more difficult to detect and measure the
expected effects of protection on commercial fish (target fish).
The survey procedure accounted for these issues using spatial
and temporal replication.
Material and methods
Study site
The 450-ha Cap Roux MPA is located between Cannes and
Saint-Raphaël (northwestern Mediterranean, France) and
extends from the shore to the 100-m isobath. All kinds of
fishing (including professional fishing and recreational spearfishing and angling) are prohibited; until now, however, there
# 2008 International Council for the Exploration of the Sea. Published by Oxford Journals. All rights reserved.
For Permissions, please email: [email protected].
181
Changes in fish assemblages in the Cap Roux MPA
Table 1. Fish species sampled for the P. oceanica transects and for
the FAST index.
Fish family
Figure 1. The Cap Roux MPA (Saint-Raphaël, French
Mediterranean). The protected area is delimited by a solid line, the
sampling stations are circled: two stations are located inside the
protected zone (R1 and R2), two outside north (N1 and N2), and
two outside south (S1 and S2).
has been no permanent surveillance. A 4-year period of protection
for this zone began in December 2003. It was renewed in January
2008 for an additional 6-year period (with the agreement of fishers
and administrative and scientific authorities). Regular seasonal
monitoring began in winter 2005.
For the present study, three zones were considered: inside reserve
(R), outside north (N), and outside south (S; Figure 1). In each
zone, two stations were surveyed to allow spatial replication, an
essential condition to avoid confusion in interpreting any difference
between protected (R) and unprotected (N and S) areas. All sites
display a similar biotope, with a mix of Posidonia oceanica seagrass
beds and rocky areas (cliffs and seamounts) covered by photophilic
algae and coralligenous concretions (Ballesteros, 2006). All sampling
sites belong to the same geographical and physical zone.
Sampling
Two methods were used to survey fish assemblages: UVC and
experimental netting. The classical UVC methods, transects
performed on hard substrata or seagrass beds, do not accurately
sample large mobile species, i.e. most of the target species
(Harmelin-Vivien and Francour, 1992). Therefore, in addition
to a classical transect method, we used a new method of UVC,
the FAST, developed to take account of the main species targeted
by small-scale fisheries.
FAST index
For each station, the data acquisition consists of six 15-min visual
censuses covering all kinds of substrata (sand, seagrass, rock)
between 0- and 20-m depth, along a random pathway using scuba
diving. Censuses were spread over 2 days. The census is performed
on a presence–absence basis and on a two-size-class basis (large
fish, i.e. longer than two-thirds of the maximum size of each
species, and small–medium fish, shorter than two-thirds of
maximum size). The fish species included are all targeted by
Species
Transect
FAST
censuses
Labridae
Symphodus ocellatus
x
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . .
Symphodus
melanocercus
x
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . .
Symphodus
roissali
x
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . .
Symphodus
rostratus
x
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . .
Symphodus
cinereus
x
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . .
Symphodus
mediterraneus
x
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . .
Symphodus doderleini
x
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . .
Symphodus
tinca
x
x
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . .
Coris
julis
x
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . .
Labrus merula
x
x
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . .
Labrus
viridis
x
x
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . .
Sparidae
Sarpa
salpa
x
x
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . .
Diplodus
annularis
x
x
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . .
Diplodus
vulgaris
x
x
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . .
Diplodus
sargus
x
x
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . .
Diplodus
puntazzo
x
x
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . .
Diplodus
cervinus
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . .
Spondyliosoma
cantharus x
x
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . .
Sparus
aurata
x (L)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . .
Oblada
sp.
x
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . .
Boops
boops
x
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . .
Dentex
dentex
x
x (L)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . .
Serranidae
Serranus
cabrilla
x
x
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . .
Serranus
scriba
x
x
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . .
Epinephelus
marginatus
x (A)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . .
Mullidae
Mullus
surmuletus
x
x
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . .
Mugilidae
x
x
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . .
Pomacentridae
Chromis
chromis
x
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . .
Centracanthidae
Spicara sp.
x
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . .
Scorpaenidae
Scorpaena
porcus
x
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . .
Scorpaena scorfa
x
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . .
Congridae
Conger
conger
x
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . .
Muraenidae
Muraena
helena
x
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . .
Carangidae
Seriola
dumerili
x
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . .
Sciaenidae
Sciaena
umbra
x (A)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . .
Sphyraenidae
Sphyraena viridensis
x
For the FAST index, (A) means that all size classes and (L) only large individuals
are considered as key and receive a higher coefficient than other species.
professional and/or non-professional fishers (e.g. netfishing, spearfishing, or angling; Table 1). The species and the number of censuses
were chosen for the FAST to be a relevant, rapid assessment method.
For each of the six censuses, a mean index (MI) was calculated by
applying a different coefficient according to the species and/or
the size of the individuals observed. Some key species receive a
higher coefficient (x2) than others (x1). Key species were those
with high commercial value or that are endangered. For some key
species, only the largest size class received a high coefficient (x2;
Table 1). A coefficient of variation (CV) was then calculated from
the six MI values obtained for each station. We also calculated a
cumulative index (CI) in the same way as the MI, but this was
calculated after pooling the six censuses. An additional index
182
C. Seytre and P. Francour
Figure 2. FAST results between winter 2005 and summer 2007, inside and outside the Cap Roux protected zone. Results are expressed as a
percentage of the maximum theoretical value except for the RSR. (a) MI; (b) CI; (c) coefficients of variation of the MI; (d) proportion of species
for which small and large individuals are observed simultaneously; and (e) RSR. Reserve values are represented with solid lines, outside North
by broken lines, and outside South by dotted lines.
displayed the proportion of species for which the two size classes
(small and large) were observed in the same census (SLP). A relative
species richness (RSR) was calculated after pooling the six censuses.
The MI is a proxy for density and size, whereas the CV of the MI
gives an estimate of assemblage variability. The CI is a proxy for
species richness and size distribution. MI and CI values are
expressed as percentages of the maximum theoretical value (the
value that would be obtained if all species and both size classes
were observed). The CV and SLP are also expressed as percentages.
The FAST index has been computed seasonally since the beginning
of 2005 (spring 2005 is missing in N). For each zone, the FAST
indices are calculated as the arithmetic mean of the two stations
(geometric mean for the CV).
An ordination of the FAST data by correspondence analysis
(Benzécri, 1973; Hugh and Gauch, 1982; Greenacre, 1984; Digby
and Kempton, 1987) was carried out. The 24 observations were
characterized by the year of observation, season (cold and warm),
and zone (R, N, and S), with two stations in each zone. To complete
this approach and to observe the seasonal variability inside and
outside the protected zone, a hierarchical clustering using Ward’s
method on Euclidean distance and a K-mean clustering were
performed on the FAST normalized data. The number of classes
for the K-mean was determined from the previous hierarchical
clustering dendrogram. Correspondence analysis and clustering
methods were performed using Statistica 6.1 (StatSoft).
2 m wide in the P. oceanica meadow (10-m depth). Three size
classes, defined by one-thirds of the maximum length of each
species, were recorded. As for the FAST index, two stations were
sampled for each zone (R, N, and S). Transect censuses were
performed in the cold season (May 2007), when the temperature
is below 188C, and in the warm season (September 2007), when
temperature is above 208C. A minimum of 10 transects was conducted at each station in May and 20 in September. One station
is missing in the N zone in May 2007. For each station in each
season, surveys covered more than 2 days with the same weather
conditions. As independence of data cannot be guaranteed
between the two sampling periods, seasons were analysed separately. Data were analysed using a nested design: stations were considered as a random factor nested in zones, the fixed factor.
Inclusion of the three zones in the analysis allowed us to test for
spatial trends along the coast, as well as spatial trends associated
with protection from fishing. Total density, total biomass, species
richness, and densities of the four main fish families (Labridae,
Sparidae, Serranidae, and Mullidae) were analysed using analysis
of variance (ANOVA) after appropriate transformations to reach
homogeneity of variance. Post hoc comparisons were performed
using Tukey’s HSD test (Zar, 1999). These analyses were performed
using Statistica 6.1 (StatSoft). The Sparidae are mainly made up of
targeted fish and the Labridae of non-targeted and prey fish. The
Serranidae are predators that are targeted by recreational fishers,
and the Mullidae by professional fishers.
Transect censuses
In addition to the FAST method, we surveyed fish along-transects,
using the method described in Harmelin-Vivien et al. (1985) and
Francour (1999). Fish were counted along-transects 20 m long by
Experimental fishing
To complement UVC and to produce data trusted by professional
fishers, standardized experimental net fishing was also performed
183
Changes in fish assemblages in the Cap Roux MPA
Figure 3. Ordination plot for the first two axes of correspondence analysis of (a) the FAST index MI, CI, CV, RSR, and SLP (see text for index
abbreviations) and (b) the observations. The observations are identified by ZSTYY: Z zone (N, R, S); S station (1, 2), T temperature (C, cold; W,
warm), YY year (06, 07). In (b), only major contributors to the inertia explained by the first two axes are mentioned: normal for axis 1,
underlined for axis 2.
in October 2006 and June 2007, using six trammel-nets 100 m long
of the type used by professional fishers in the Cannes–SaintRaphaël area. A medium mesh size was used (7 knots 25 cm21
of net) between 25- and 30-m deep.
Experimental fishing was established at two stations inside the
reserve and two outside, one N and one S. Total fish abundance
and species richness per 100 m of netting section (n ¼ 6 per
station) were compared for the different stations and zones.
The six replicates were performed simultaneously. As for the
transect censuses, the two seasons were analysed separately using
ANOVA, after appropriate transformation. Differences were
identified using Tukey’s HSD test with Statistica 6.1 (StatSoft).
Abundance of fish per 100 m of netting section of the most
abundant family was also compared using a nested ANOVA.
Results
Fish assemblage survey technique
Index
For the MI, seasonal fluctuations were observed in all zones
(Figure 2). Great differences between zones were not observed,
however, except in winter 2006 and 2007, when values were slightly
higher inside than outside the protected zone. The CI was higher
inside than outside the reserve and was relatively stable inside the
184
C. Seytre and P. Francour
Figure 4. Classification of all samples for the FAST parameters by a
hierarchical clustering method using Ward’s method and Euclidian
distance. A K-mean clustering method gathered the same
observations according to three clusters (a, b, c). For observation
abbreviations, see Figure 2.
reserve after autumn 2005, but fluctuated seasonally outside the
reserve (with lowest values in winter). During the first 3 years,
the CV was relatively stable outside the reserve, but fluctuated
inside the reserve until autumn 2006. There was no clear difference
in RSR values between the three zones. Seasonal fluctuations in
RSR were apparent in the three zones, with lowest values in
winter; however, these fluctuations were lower in the no-take
area (R) than outside it (N and S). The proportion of species for
which small and large individuals were observed was always
highest inside the protected zone, except in autumn 2006.
Ordination
The structure observed along axes 1 and 2 represents, respectively,
75.5 and 20.1% of the correspondence analysis total inertia
(Figure 3a and b). The CV values and the MI (FAST method)
made the greatest contribution to the inertia of the first axis.
Among the observations, the main contributors to the inertia
explained by axis 1 are the two R stations in the 2006 cold
season and one S station in the 2007 cold season. These observations were characterized by high CV values. Two other stations
also contributed to the inertia of the first axis: one N station in the
2006 and 2007 warm seasons and one R station in the 2007 warm
season. Along this axis, the observations are mainly distributed
into two groups according to the season.
RSR and the proportion of species having SLP were the two
variables that most contributed to the inertia of the second axis.
The main contributors to the inertia of the second axis are the
two R stations in the 2007 cold season, with a high SLP (more
than 64%) and an R station in the 2006 warm-season station
and an S station in the 2006 cold season with lower SLP.
Classification
The hierarchical clustering (Figure 4) separated three classes. The
first two classes (a and b) are dominated by the cold- and warmseason observations, respectively. The third class (c) comprises the
two 2006 inside-reserve cold-season observations. The 2007
inside-reserve cold-season observations were located in class a
(with the warm-season observations). These results were confirmed by the K-mean clustering, when computed for three
classes: the groups of observations were the same as given by the
hierarchical clustering.
P. oceanica transects
No significant difference among zones was observed for total
density, total biomass, or species richness in May or September
2007 (Table 2). However, significant differences were found
between stations for all three variables except for the total
biomass in September (warm season). These between-station
Table 2. Comparisons of fish assemblages of P. oceanica beds between protected and non-protected zones.
Parameter
Mean values (s.e.)
Zone factor
Station (zone)
R
N
S
d.f.
MS
F (p-value)
d.f.
MS
F (p-value)
May
2007
.....................................................................................................................................................................................................................................................................
Total biomass
323.8 (61.7)
295.9 (42.7)
370.4 (52.7)
2
0.053
0.219 (0.804)
3
1.218
4.985 (0.004) N
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . .. . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
RSR
3.9
(0.4)
4.9
(0.4)
3.7
(0.3)
2
0.047
2.084
(0.134)
3
0.075
3.289 (0.027) N, S
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . .. . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Density
.....................................................................................................................................................................................................................................................................
Total
16.5 (2.4)
19.6 (4.2)
15.1 (1.6)
2
0.033
0.338 (0.715)
3
1.180
11.877 (0.000)N, S
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . .. . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Labridae
2.2
(0.4)
4.8
(1.0)
2.8
(0.6)
2
0.261
3.001
(0.058)
3
0.165
1.903 (0.140)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . .. . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Sparidae
0.7
(0.1)
1.9
(0.3)
1.8
(0.4)
2
0.121
2.408
(0.101)
R,
S,
N
2
0.026
0.518 (0.599)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . .. . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Serranidae
0.6
(0.2)
0.4
(0.1)
0.5
(0.2)
2
0.200
0.292
(0.748)
3
1.20
1.751 (0.167)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . .. . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Mullidae
0.05
(0.05)
0.05
(0.05)
0.0
(0.0)
2
0.017
0.500
(0.061)
3
0.033
1.0
(0.400)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . .. . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
September
2007
.....................................................................................................................................................................................................................................................................
Total biomass
6.1 (0.2)
86.2 (11.9)
86.3 (17.5)
2
4 622
0.411 (0.664)
3
18 940
1.683 (0.174)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . .. . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
RSR
104.8
(17.3)
6.1
(0.3)
5.4
(0.3)
2
6.775
2.371
(0.098)
3
15.942
5.579
(0.001) S
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . .. . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Density
.....................................................................................................................................................................................................................................................................
Total
31.1 (2.0)
35.8 (3.3)
31.4 (2.5)
2
282.0
0.906 (0.407)
3
2 880.8
0.358 (0.783)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . .. . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Labridae
12.8
(1.1)
16.9
(1.8)
13.2
(1.7)
2
0.137
1.841
(0.163)
3
0.485
0.280 (0.839)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . .. . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Sparidae
8.9
(1.2)
9.6
(2.0)
5.4
(1.0)
2
0.627
3.887
(0.024)
R,
N,
S
3
0.297
1.839 (0.144)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . .. . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Serranidae
0.9
(0.1)
0.6
(0.1)
0.3
(0.1)
2
0.233
5.996
(0.003)
R,
N,
S
3
0.20
6.512 (0.000) S
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . .. . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Mullidae
0.15 (0.1)
0.10 (0.05)
0.0 (0.0)
2
0.233
2.509 (0.783)
3
0.033
9.251 (0.000) S, R
Differences between zones: inside reserve (R), outside reserve north (N), and south (S) and between stations were tested by nested analysis of variance
(ANOVA). Tukey’s HSD tests were performed when ANOVA detected significant differences. Post hoc results are given after the p-value in the table.
185
Changes in fish assemblages in the Cap Roux MPA
Table 3. The experimental net fishing results of October 2006 and June 2007.
Parameter
Mean values (s.e.)
Zone factor
Station (zone) factor
R
OR
d.f.
MS
F (p-value)
d.f.
MS
F (p-value)
October
2006
.....................................................................................................................................................................................................................................................................
Total
3.75 (0.62)
1.08 (0.26)
1
0.761
26.369 (0.000)
2
0.132
4.581 (0.023) R
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Scorpaenidae
1.25
(0.35)
0.25
(0.13)
1
2.113
6.704
(0.017)
2
1.205
3.824
(0.039)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Species
richness
2.67
(0.35)
1.08
(0.26)
1
15.042
17.524
(0.000)
2
4.208
4.903
(0.018) R
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
June
2007
.....................................................................................................................................................................................................................................................................
Total
9.33 (1.62)
2.17 (0.56)
1
1.729
33.686 (0.000)
2
0.33
6.440 (0.007) OR
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Scorpaenidae
3.08
(0.5)
0.75
(0.28)
1
0.873
24.544
(0.000)
2
0.119
3.354 (0.055)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Species richness
4.92 (0.59)
1.58 (0.34)
1
66.667
25.806 (0.000)
2
5.083
1.968 (0.166)
The fish abundance is expressed as the mean number of fish per 100 m netting section, and the species richness as the mean number of fish species or the
mean number of Scorpaenidae per 100 m netting section. Data for two zones, reserve (R) and outside reserve (OR), were tested by analysis of variance, and
differences were identified by Tukey’s HSD test. For the Station (zone) factor, post hoc results are given after p-value in the table.
differences were the result of the outside-reserve stations, mainly
N stations in May, but also S for the RSR. In September, these
differences were mainly located in the S zone, but also in the R
zone when testing the total density values.
Differences among zones were observed for density of Sparidae
in May and September and for density of Serranidae in September
2007. In May 2007, the highest Sparidae density was outside the
reserve. However, in September 2007, the highest densities were
inside the reserve for Sparidae and Serranidae. A difference
between stations was observed in September for density of
Labridae and was caused by the R and outside S stations.
Experimental netfishing
Fish abundance and species richness per netting section were
significantly lower outside the reserve (p , 0.001; Table 3).
Significant between-station differences were observed in October
2006 for species richness and fish abundance. These differences
were the result of the two inside-reserve station observations. In
June 2007, only the fish abundance recorded outside the reserve
exhibited a significant difference between stations. Scorpaenidae
were the most abundant, and few or no differences in density
were observed between stations, whereas significant differences
were observed in October and June between zones.
Discussion
Despite the popularity of marine reserves as a management tool,
decisions on the design and location of most existing reserves
have largely been the result of political and social processes
(Francour et al., 2001; Halpern, 2003). The implementation of
the Cap Roux marine reserve by the professional fishers of the
Saint-Raphaël Prud’homie de Pêche was a political decision.
However, the MPA is located in a remote area (there are no
buildings along the shore on this part of the coast), with shallow
bays covered by dense P. oceanica beds and deeper, rocky areas
covered by intact coralligenous concretions. These conditions
allow the development of healthy benthic communities. The
main objective of this study was to observe the dynamics of the
fish assemblages following establishment of this protected area,
because few such data on other areas were available, and none
was from the Mediterranean.
The traditional UVC along transects did not reveal an evident
reserve effect after 4 years of protection. Transects were performed
only on P. oceanica seagrass beds; Francour (1994) pointed
out that the reserve effect is less evident for fish assemblages in
P. oceanica meadows than in rocky areas. Conversely, they
exhibit a buffer effect, characterized by a decrease in seasonal
fluctuations in biomass, density, or diversity. Although total
density and richness did not respond significantly to protection,
two fish families seemed sensitive to protection in the last survey
(autumn 2007), Sparidae and Serranidae. Both are targeted by
professional and non-professional fishers. Biomass, species
richness, and total density exhibited some fluctuations in the N
and S zones, and the lower variation observed inside the reserve
for these variables could be caused by an early buffer effect. As
many of the fish sampled by this method are not targeted by
fishers, the fishing pressure could have been expected to demonstrate indirect effects through trophic cascades (Pinnegar et al.,
2000). In the present study, target fish (Sparidae, Dentex dentex,
Serranidae, and Scorpaenidae) are primarily predators. An
increase in abundance of these fish, as observed by UVC and
experimental fishing (at least for the Scorpaenidae), could affect
the density and species richness of lower trophic levels (i.e.
Symphodus spp. and microphagous fish such as Chromis chromis
or Boops boops).
The two other survey methods, FAST and experimental fishing,
demonstrated stronger reserve effects than UVC on P. oceanica. The
CI was always higher and less variable inside the reserve than
outside (N and S). However, the MI was not clearly different
between the three zones. This means that, after pooling stations,
there were more species or larger fish inside the marine reserve
than outside it, but this was variable, as demonstrated by the
high values of CV. These results were supported by the results of
ordination and clustering, in which season seemed to be the
main factor explaining the difference between classes of FAST
observations. Little difference was observed between the protected
and the non-protected zones during the warm season. However,
for cold-season observations, the pattern is different inside and
outside the protected zone. The observations made inside the
reserve in the cold season clustered close to the warm-season observations, whereas outside the reserve, cold- and warm-season observations clustered separately. This confirms previous results that
revealed that the main effect of this early protection on the fish
assemblage is a decrease in seasonal fluctuations inside the MPA.
Seasonal fluctuations in fish assemblages in the Mediterranean
are typical in winter, owing to changes in bathymetric distribution,
as observed for Mullus surmuletus by Machias et al. (1998) and for
Diplodus annularis and Sarpa salpa by Francour (1997). Some
behavioural changes have also been proposed (e.g. Kotrschal,
186
1983): species could be less active, hidden, or aggregated in specific
sites during winter. Diel variations of the fish assemblage could
also change over the year, as proposed by Nash and Santos
(1998). These processes could lead to decreased density and
richness values in UVC but also for fishing gears.
Two main considerations led us to use experimental fishing:
first, to survey a part of the fish assemblage that is difficult to
sample with UVC (such as nocturnal and homochromic
species); and second, to use a method trusted by professional
fishers. In the trammel-nets, the most abundant fish were
Scorpaena spp., species that are difficult to sample with UVC.
The other genera were mainly Spondyliosoma, Diplodus, and
Muraena. Important differences were measured for the total
abundance, species richness, and Scorpaenidae density between
zones. Very low values were recorded outside the MPA. These
differences were more important in June 2007 than October
2006. This trend is consistent with the high fishing pressure
exerted outside the reserve (unpublished data from the
Saint-Raphaël Prud’homie de Pêche). The total prohibition of
fishing inside the reserve, even if some poaching is both possible
and probable, allowed us to observe a clear reserve effect with
this method for both seasons, with more evidence in June 2007.
The increase in abundance and size of target fish observed
by the FAST method and experimental fishing provided a good
indicator of an early reserve effect. Even if spillover processes are
not yet visible, as in older MPAs (e.g. Abesamis et al., 2006),
these results allowed us to convince professional fishers of the
usefulness of such MPAs and to extend the protection for 6 years.
In conclusion, two methods highlighted an early reserve effect:
(i) experimental fishing yielded significantly higher density and
species richness inside the protected zone, and (ii) the FAST
method indicated a decrease in seasonal fluctuations within the
Cap Roux MPA. Fishing pressure is not constant throughout the
year as a consequence of weather conditions and market
demand for fish. Perhaps a combination of migration and
fishing pressure during the warm season leads to a decrease in richness and/or density during the beginning of the cold season, and
this could explain the seasonal patterns of differences observed
between the protected zone and outside it.
Acknowledgements
We thank Christian Decugis and Elisabeth Tempier from the
Saint-Raphaël Prud’homie de Pêche for their commitment,
Christian Ubbizzoni for carrying out the experimental fishing,
and the divers Pascaline Bodilis, Julien Gratiot, and Jean-Michel
Cottalorda, for helping with the underwater observations.
References
Abesamis, R. A., Russ, G. R., and Alcala, A. C. 2006. Gradients
of abundance of fish across no-take marine reserve boundaries:
evidence from Philippine coral reefs. Aquatic conservation:
Marine and Freshwater Ecosystems, 16: 349 – 371.
Agardy, M. T. 1994. Advances in marine conservation: the role of
marine protected areas. Trends in Ecology and Evolution, 9:
267– 270.
Ballesteros, E. 2006. Mediterranean coralligenous assemblages: a
synthesis of present knowledge. Oceanography and Marine
Biology: an Annual Review, 44: 123 – 195.
Benzécri, J. P. 1973. L’analyse des Données. II. L’Analyse des
Correspondances. Dunod, Paris. 619 pp.
C. Seytre and P. Francour
Côté, I. M., Mosqueira, I., and Reynolds, J. D. 2001. Effects of marine
reserve characteristics on the protection of fish populations: a
meta-analysis. Journal of Fish Biology, 59A: 178 – 189.
Digby, P. G. N., and Kempton, R. A. 1987. Multivariate Analysis of
Ecological Communities. Chapman and Hall, London. 206 pp.
Dufour, V., Jouvenel, J-Y., and Galzin, R. 1995. Study of a
Mediterranean reef fish assemblage. Comparisons of population
distributions between depths in protected and unprotected areas
over one decade. Aquatic Living Resources, 8: 17 – 25.
Dugan, J. E., and Davis, G. E. 1993. Applications of marine refugia to
coastal fisheries management. Canadian Journal of Fisheries and
Aquatic Sciences, 50: 2029– 2042.
Francour, P. 1994. Pluriannual analysis of the reserve effect on
ichthyofauna in the Scandola natural reserve (Corsica, northwestern Mediterranean). Oceanologica Acta, 17: 309– 317.
Francour, P. 1997. Fish assemblages of Posidonia oceanica beds
at Port-Cros (France, NW Mediterranean): assessment of
composition and long-term fluctuations by visual census. Marine
Ecology, 18: 157 – 173.
Francour, P. 1999. A critical review of adult and juvenile fish sampling
techniques in Posidonia oceanica seagrass beds. Naturalista
Siciliana, 23: 33 – 57.
Francour, P., Harmelin, J. G., Pollard, D., and Sartoretto, S. 2001. A
review of marine protected areas in the northwestern
Mediterranean region: siting, usage, zonation and management.
Aquatic Conservation: Marine and Freshwater Ecosystems, 11:
155– 188.
Garcı́a-Rubies, A., and Zabala, M. 1990. Effects of total fishing prohibition on the rocky fish assemblages of Medes Islands marine
reserve (NW Mediterranean). Scientia Marina, 54: 317– 328.
Gell, F. R., and Roberts, C. M. 2003. Benefits beyond boundaries: the
fishery effects of marine reserves. Trends in Ecology and Evolution,
18: 448– 455.
Greenacre, M. J. 1984. Theory and Application of Correspondence
Analysis. Academic Press, London. 364 pp.
Guidetti, P. 2002. The importance of experimental design in detecting
the effects of protection measures on fish in Mediterranean MPAs.
Aquatic Conservation: Marine and Freshwater Ecosystems, 12:
619– 634.
Halpern, B. S. 2003. The impact of marine reserves: do reserves work
and does reserve size matter? Ecological Applications, 13:
S117– S137.
Halpern, B. S., and Warner, R. R. 2002. Marine reserves have rapid and
lasting effects. Ecology Letters, 5: 361– 366.
Harmelin-Vivien, M., and Francour, P. 1992. Trawling or visual censuses? Methodological bias in the assessment of fish populations
in seagrass beds. Marine Ecology, 13: 41 –51.
Harmelin-Vivien, M., Harmelin, J. G., Chauvet, C., Duval, C., Galzin,
R., Lejeune, P., Barnabé, G., et al. 1985. Evaluation visuelle des
peuplements et populations de poissons: méthodes et problèmes.
Revue d’écologie (La Terre et la Vie), 40: 467 –539.
Hugh, G., and Gauch, J. R. 1982. Multivariate Analysis in Community
Ecology. University Press, Cambridge, UK. 298 pp.
Jennings, S. 2001. Patterns and prediction of population recovery in
marine reserves. Reviews in Fish Biology and Fisheries, 10:
209– 231.
Kotrschal, K. 1983. Northern Adriatic rocky reef fishes at low winter
temperatures. Marine Ecology, 4: 275– 286.
Machias, A., Somarakis, S., and Tsimenides, N. 1998. Bathymetric distribution and movements of red mullet Mullus surmuletus. Marine
Ecology Progress Series, 166: 247– 257.
Nash, R. D. M., and Santos, R. S. 1998. Seasonality in diel catch rate of
small fishes in a shallow-water fish assemblage at Porto Pim Bay,
Faial, Azores. Estuarine, Coastal and Shelf Science, 47: 319– 328.
Olver, C. H., Shuter, B. J., and Minns, C. K. 1995. Toward a definition
of conservation principles for fisheries management. Canadian
Journal of Fisheries and Aquatic Sciences, 52: 1584– 1594.
Changes in fish assemblages in the Cap Roux MPA
Pinnegar, J. K., Polunin, N. V. C., Francour, P., Chemello, R.,
Harmelin-Vivien, M., Hereu, B., Milazzo, M., et al. 2000.
Trophic cascades in fisheries and protected area management of
benthic marine ecosystems. Environmental Conservation, 27:
179– 200.
Russ, G. R., and Alcala, A. C. 1998. Natural fishing experiments in
marine reserves 1983– 1993: community and trophic responses.
Coral Reefs, 17: 383– 397.
187
Sumaila, U. R. 1998. Protected marine reserves as fisheries management tools: a bioeconomic analysis. Fisheries Research, 37:
287– 296.
Zar, J. H. 1999. Biostatistical Analysis, 4th edn. Prentice-Hall, New
Jersey. 663 pp.
doi:10.1093/icesjms/fsn196