180 The Cap Roux MPA (Saint-Raphaël, French Mediterranean): changes in fish assemblages within four years of protection Catherine Seytre and Patrice Francour Seytre, C., and Francour, P. 2009. The Cap Roux MPA (Saint-Raphaël, French Mediterranean): changes in fish assemblages within four years of protection. – ICES Journal of Marine Science, 66: 180 – 187. In recent decades, marine reserves have been established to protect ecosystem structure and biological diversity, or as management tools to combat the overexploitation of fish stocks. The Cap Roux Marine Protected Area (MPA) was established by professional fishers in December 2003, in the French Mediterranean between Cannes and Saint-Raphaël. It was implemented to enhance target fish stocks for local fisheries. The objective of this 3-year study was to investigate the initial responses of fish assemblages, using complementary methods: experimental net fishing performed by a professional fisher and underwater visual census. Within 3 years, this study detected early changes in the fish assemblages. The methods also detected an increase in abundance and diversity of fish, but also a decrease of seasonal fluctuations of the assemblage structure, which was characterized by winter values close to summer values in the protected zone but not outside of the MPA. These results helped clarify the dynamic by which fish assemblages respond to fishing prohibition in a newly created protected area. Keywords: early reserve effect, FAST method, fish assemblages, Mediterranean, MPA. Received 26 October 2007; accepted 2 June 2008; advance access publication 2 December 2008. C. Seytre and P. Francour: EA 4228 ECOMERS, Université de Nice-Sophia Antipolis, Parc Valrose, 06108 Nice cedex 2, France. Correspondence to P. Francour: tel: þ33 4 92 07 68 32; fax: þ33 4 92 07 68 49; e-mail: [email protected]. Introduction In recent years, the number of Marine Protected Areas (MPAs) has increased rapidly. The new generation of MPAs is made up largely of multiple-use reserves accommodating many different stakeholders, each with their own set of objectives, which can include: (i) protecting biodiversity and habitats, (ii) facilitating the recovery of damaged areas, (iii) preserving threatened species, (iv) restocking overexploited marine species, and (v) supporting tourism and education (e.g. Agardy, 1994; Francour et al., 2001; Guidetti, 2002; Gell and Roberts, 2003; Halpern, 2003). For fishery management, implementation of marine areas with a total prohibition on fishing (no-take areas) is considered to be the most relevant tool (Dugan and Davis, 1993; Olver et al., 1995; Sumaila, 1998; Jennings, 2001; Gell and Roberts, 2003). The effects of no-take marine reserves on fish assemblages are by now well studied. A “reserve effect”, characterized by increased diversity, abundance, and fish size, has been described (e.g. Garcı́a-Rubies and Zabala, 1990; Francour, 1994; Dufour et al., 1995; Halpern and Warner, 2002; but see Côté et al., 2001). Another characteristic of the reserve effect, called the “buffer effect” and characterized by a decrease in seasonal fluctuations in the structure of fish assemblages, has also been described (e.g. Francour, 1994). However, few data are available about the dynamics by which fish assemblages respond to fishing prohibition. In previous studies, a reserve effect typically appeared within 5 –10 years (Gell and Roberts, 2003), and some studies have highlighted earlier responses; for example, Russ and Alcala (1998) recorded an increase in biomass after 1 year of protection, and Halpern and Warner (2002) found general increases in density, biomass, and diversity within 1 –3 years. The Cap Roux MPA, a no-take area, was established as a management tool by professional fishers in December 2003, to sustain local small-scale fisheries. It has been monitored since 2005. In this paper, we present the results of 3 years of monitoring of fish assemblages to assess the initial responses of fish assemblages to protection. Fish diversity, size, and abundance were compared in the protected and non-protected zones, using underwater visual census (UVC) and experimental fishing. Fish assemblage structure and seasonal variability were compared using a new UVC method, the fish assemblage survey technique (FAST). Guidetti (2002) stressed that spatial and temporal variability could confound or obscure any reserve effect in the surveys. As a result, it could be more difficult to detect and measure the expected effects of protection on commercial fish (target fish). The survey procedure accounted for these issues using spatial and temporal replication. Material and methods Study site The 450-ha Cap Roux MPA is located between Cannes and Saint-Raphaël (northwestern Mediterranean, France) and extends from the shore to the 100-m isobath. All kinds of fishing (including professional fishing and recreational spearfishing and angling) are prohibited; until now, however, there # 2008 International Council for the Exploration of the Sea. Published by Oxford Journals. All rights reserved. For Permissions, please email: [email protected]. 181 Changes in fish assemblages in the Cap Roux MPA Table 1. Fish species sampled for the P. oceanica transects and for the FAST index. Fish family Figure 1. The Cap Roux MPA (Saint-Raphaël, French Mediterranean). The protected area is delimited by a solid line, the sampling stations are circled: two stations are located inside the protected zone (R1 and R2), two outside north (N1 and N2), and two outside south (S1 and S2). has been no permanent surveillance. A 4-year period of protection for this zone began in December 2003. It was renewed in January 2008 for an additional 6-year period (with the agreement of fishers and administrative and scientific authorities). Regular seasonal monitoring began in winter 2005. For the present study, three zones were considered: inside reserve (R), outside north (N), and outside south (S; Figure 1). In each zone, two stations were surveyed to allow spatial replication, an essential condition to avoid confusion in interpreting any difference between protected (R) and unprotected (N and S) areas. All sites display a similar biotope, with a mix of Posidonia oceanica seagrass beds and rocky areas (cliffs and seamounts) covered by photophilic algae and coralligenous concretions (Ballesteros, 2006). All sampling sites belong to the same geographical and physical zone. Sampling Two methods were used to survey fish assemblages: UVC and experimental netting. The classical UVC methods, transects performed on hard substrata or seagrass beds, do not accurately sample large mobile species, i.e. most of the target species (Harmelin-Vivien and Francour, 1992). Therefore, in addition to a classical transect method, we used a new method of UVC, the FAST, developed to take account of the main species targeted by small-scale fisheries. FAST index For each station, the data acquisition consists of six 15-min visual censuses covering all kinds of substrata (sand, seagrass, rock) between 0- and 20-m depth, along a random pathway using scuba diving. Censuses were spread over 2 days. The census is performed on a presence–absence basis and on a two-size-class basis (large fish, i.e. longer than two-thirds of the maximum size of each species, and small–medium fish, shorter than two-thirds of maximum size). The fish species included are all targeted by Species Transect FAST censuses Labridae Symphodus ocellatus x . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . Symphodus melanocercus x . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . Symphodus roissali x . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . Symphodus rostratus x . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . Symphodus cinereus x . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . Symphodus mediterraneus x . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . Symphodus doderleini x . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . Symphodus tinca x x . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . Coris julis x . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . Labrus merula x x . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . Labrus viridis x x . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . Sparidae Sarpa salpa x x . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . Diplodus annularis x x . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . Diplodus vulgaris x x . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . Diplodus sargus x x . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . Diplodus puntazzo x x . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . Diplodus cervinus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . Spondyliosoma cantharus x x . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . Sparus aurata x (L) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . Oblada sp. x . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . Boops boops x . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . Dentex dentex x x (L) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . Serranidae Serranus cabrilla x x . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . Serranus scriba x x . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . Epinephelus marginatus x (A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . Mullidae Mullus surmuletus x x . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . Mugilidae x x . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . Pomacentridae Chromis chromis x . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . Centracanthidae Spicara sp. x . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . Scorpaenidae Scorpaena porcus x . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . Scorpaena scorfa x . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . Congridae Conger conger x . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . Muraenidae Muraena helena x . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . Carangidae Seriola dumerili x . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . Sciaenidae Sciaena umbra x (A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . Sphyraenidae Sphyraena viridensis x For the FAST index, (A) means that all size classes and (L) only large individuals are considered as key and receive a higher coefficient than other species. professional and/or non-professional fishers (e.g. netfishing, spearfishing, or angling; Table 1). The species and the number of censuses were chosen for the FAST to be a relevant, rapid assessment method. For each of the six censuses, a mean index (MI) was calculated by applying a different coefficient according to the species and/or the size of the individuals observed. Some key species receive a higher coefficient (x2) than others (x1). Key species were those with high commercial value or that are endangered. For some key species, only the largest size class received a high coefficient (x2; Table 1). A coefficient of variation (CV) was then calculated from the six MI values obtained for each station. We also calculated a cumulative index (CI) in the same way as the MI, but this was calculated after pooling the six censuses. An additional index 182 C. Seytre and P. Francour Figure 2. FAST results between winter 2005 and summer 2007, inside and outside the Cap Roux protected zone. Results are expressed as a percentage of the maximum theoretical value except for the RSR. (a) MI; (b) CI; (c) coefficients of variation of the MI; (d) proportion of species for which small and large individuals are observed simultaneously; and (e) RSR. Reserve values are represented with solid lines, outside North by broken lines, and outside South by dotted lines. displayed the proportion of species for which the two size classes (small and large) were observed in the same census (SLP). A relative species richness (RSR) was calculated after pooling the six censuses. The MI is a proxy for density and size, whereas the CV of the MI gives an estimate of assemblage variability. The CI is a proxy for species richness and size distribution. MI and CI values are expressed as percentages of the maximum theoretical value (the value that would be obtained if all species and both size classes were observed). The CV and SLP are also expressed as percentages. The FAST index has been computed seasonally since the beginning of 2005 (spring 2005 is missing in N). For each zone, the FAST indices are calculated as the arithmetic mean of the two stations (geometric mean for the CV). An ordination of the FAST data by correspondence analysis (Benzécri, 1973; Hugh and Gauch, 1982; Greenacre, 1984; Digby and Kempton, 1987) was carried out. The 24 observations were characterized by the year of observation, season (cold and warm), and zone (R, N, and S), with two stations in each zone. To complete this approach and to observe the seasonal variability inside and outside the protected zone, a hierarchical clustering using Ward’s method on Euclidean distance and a K-mean clustering were performed on the FAST normalized data. The number of classes for the K-mean was determined from the previous hierarchical clustering dendrogram. Correspondence analysis and clustering methods were performed using Statistica 6.1 (StatSoft). 2 m wide in the P. oceanica meadow (10-m depth). Three size classes, defined by one-thirds of the maximum length of each species, were recorded. As for the FAST index, two stations were sampled for each zone (R, N, and S). Transect censuses were performed in the cold season (May 2007), when the temperature is below 188C, and in the warm season (September 2007), when temperature is above 208C. A minimum of 10 transects was conducted at each station in May and 20 in September. One station is missing in the N zone in May 2007. For each station in each season, surveys covered more than 2 days with the same weather conditions. As independence of data cannot be guaranteed between the two sampling periods, seasons were analysed separately. Data were analysed using a nested design: stations were considered as a random factor nested in zones, the fixed factor. Inclusion of the three zones in the analysis allowed us to test for spatial trends along the coast, as well as spatial trends associated with protection from fishing. Total density, total biomass, species richness, and densities of the four main fish families (Labridae, Sparidae, Serranidae, and Mullidae) were analysed using analysis of variance (ANOVA) after appropriate transformations to reach homogeneity of variance. Post hoc comparisons were performed using Tukey’s HSD test (Zar, 1999). These analyses were performed using Statistica 6.1 (StatSoft). The Sparidae are mainly made up of targeted fish and the Labridae of non-targeted and prey fish. The Serranidae are predators that are targeted by recreational fishers, and the Mullidae by professional fishers. Transect censuses In addition to the FAST method, we surveyed fish along-transects, using the method described in Harmelin-Vivien et al. (1985) and Francour (1999). Fish were counted along-transects 20 m long by Experimental fishing To complement UVC and to produce data trusted by professional fishers, standardized experimental net fishing was also performed 183 Changes in fish assemblages in the Cap Roux MPA Figure 3. Ordination plot for the first two axes of correspondence analysis of (a) the FAST index MI, CI, CV, RSR, and SLP (see text for index abbreviations) and (b) the observations. The observations are identified by ZSTYY: Z zone (N, R, S); S station (1, 2), T temperature (C, cold; W, warm), YY year (06, 07). In (b), only major contributors to the inertia explained by the first two axes are mentioned: normal for axis 1, underlined for axis 2. in October 2006 and June 2007, using six trammel-nets 100 m long of the type used by professional fishers in the Cannes–SaintRaphaël area. A medium mesh size was used (7 knots 25 cm21 of net) between 25- and 30-m deep. Experimental fishing was established at two stations inside the reserve and two outside, one N and one S. Total fish abundance and species richness per 100 m of netting section (n ¼ 6 per station) were compared for the different stations and zones. The six replicates were performed simultaneously. As for the transect censuses, the two seasons were analysed separately using ANOVA, after appropriate transformation. Differences were identified using Tukey’s HSD test with Statistica 6.1 (StatSoft). Abundance of fish per 100 m of netting section of the most abundant family was also compared using a nested ANOVA. Results Fish assemblage survey technique Index For the MI, seasonal fluctuations were observed in all zones (Figure 2). Great differences between zones were not observed, however, except in winter 2006 and 2007, when values were slightly higher inside than outside the protected zone. The CI was higher inside than outside the reserve and was relatively stable inside the 184 C. Seytre and P. Francour Figure 4. Classification of all samples for the FAST parameters by a hierarchical clustering method using Ward’s method and Euclidian distance. A K-mean clustering method gathered the same observations according to three clusters (a, b, c). For observation abbreviations, see Figure 2. reserve after autumn 2005, but fluctuated seasonally outside the reserve (with lowest values in winter). During the first 3 years, the CV was relatively stable outside the reserve, but fluctuated inside the reserve until autumn 2006. There was no clear difference in RSR values between the three zones. Seasonal fluctuations in RSR were apparent in the three zones, with lowest values in winter; however, these fluctuations were lower in the no-take area (R) than outside it (N and S). The proportion of species for which small and large individuals were observed was always highest inside the protected zone, except in autumn 2006. Ordination The structure observed along axes 1 and 2 represents, respectively, 75.5 and 20.1% of the correspondence analysis total inertia (Figure 3a and b). The CV values and the MI (FAST method) made the greatest contribution to the inertia of the first axis. Among the observations, the main contributors to the inertia explained by axis 1 are the two R stations in the 2006 cold season and one S station in the 2007 cold season. These observations were characterized by high CV values. Two other stations also contributed to the inertia of the first axis: one N station in the 2006 and 2007 warm seasons and one R station in the 2007 warm season. Along this axis, the observations are mainly distributed into two groups according to the season. RSR and the proportion of species having SLP were the two variables that most contributed to the inertia of the second axis. The main contributors to the inertia of the second axis are the two R stations in the 2007 cold season, with a high SLP (more than 64%) and an R station in the 2006 warm-season station and an S station in the 2006 cold season with lower SLP. Classification The hierarchical clustering (Figure 4) separated three classes. The first two classes (a and b) are dominated by the cold- and warmseason observations, respectively. The third class (c) comprises the two 2006 inside-reserve cold-season observations. The 2007 inside-reserve cold-season observations were located in class a (with the warm-season observations). These results were confirmed by the K-mean clustering, when computed for three classes: the groups of observations were the same as given by the hierarchical clustering. P. oceanica transects No significant difference among zones was observed for total density, total biomass, or species richness in May or September 2007 (Table 2). However, significant differences were found between stations for all three variables except for the total biomass in September (warm season). These between-station Table 2. Comparisons of fish assemblages of P. oceanica beds between protected and non-protected zones. Parameter Mean values (s.e.) Zone factor Station (zone) R N S d.f. MS F (p-value) d.f. MS F (p-value) May 2007 ..................................................................................................................................................................................................................................................................... Total biomass 323.8 (61.7) 295.9 (42.7) 370.4 (52.7) 2 0.053 0.219 (0.804) 3 1.218 4.985 (0.004) N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . .. . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . RSR 3.9 (0.4) 4.9 (0.4) 3.7 (0.3) 2 0.047 2.084 (0.134) 3 0.075 3.289 (0.027) N, S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . .. . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Density ..................................................................................................................................................................................................................................................................... Total 16.5 (2.4) 19.6 (4.2) 15.1 (1.6) 2 0.033 0.338 (0.715) 3 1.180 11.877 (0.000)N, S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . .. . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Labridae 2.2 (0.4) 4.8 (1.0) 2.8 (0.6) 2 0.261 3.001 (0.058) 3 0.165 1.903 (0.140) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . .. . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Sparidae 0.7 (0.1) 1.9 (0.3) 1.8 (0.4) 2 0.121 2.408 (0.101) R, S, N 2 0.026 0.518 (0.599) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . .. . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Serranidae 0.6 (0.2) 0.4 (0.1) 0.5 (0.2) 2 0.200 0.292 (0.748) 3 1.20 1.751 (0.167) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . .. . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Mullidae 0.05 (0.05) 0.05 (0.05) 0.0 (0.0) 2 0.017 0.500 (0.061) 3 0.033 1.0 (0.400) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . .. . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . September 2007 ..................................................................................................................................................................................................................................................................... Total biomass 6.1 (0.2) 86.2 (11.9) 86.3 (17.5) 2 4 622 0.411 (0.664) 3 18 940 1.683 (0.174) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . .. . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . RSR 104.8 (17.3) 6.1 (0.3) 5.4 (0.3) 2 6.775 2.371 (0.098) 3 15.942 5.579 (0.001) S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . .. . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Density ..................................................................................................................................................................................................................................................................... Total 31.1 (2.0) 35.8 (3.3) 31.4 (2.5) 2 282.0 0.906 (0.407) 3 2 880.8 0.358 (0.783) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . .. . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Labridae 12.8 (1.1) 16.9 (1.8) 13.2 (1.7) 2 0.137 1.841 (0.163) 3 0.485 0.280 (0.839) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . .. . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Sparidae 8.9 (1.2) 9.6 (2.0) 5.4 (1.0) 2 0.627 3.887 (0.024) R, N, S 3 0.297 1.839 (0.144) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . .. . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Serranidae 0.9 (0.1) 0.6 (0.1) 0.3 (0.1) 2 0.233 5.996 (0.003) R, N, S 3 0.20 6.512 (0.000) S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . .. . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Mullidae 0.15 (0.1) 0.10 (0.05) 0.0 (0.0) 2 0.233 2.509 (0.783) 3 0.033 9.251 (0.000) S, R Differences between zones: inside reserve (R), outside reserve north (N), and south (S) and between stations were tested by nested analysis of variance (ANOVA). Tukey’s HSD tests were performed when ANOVA detected significant differences. Post hoc results are given after the p-value in the table. 185 Changes in fish assemblages in the Cap Roux MPA Table 3. The experimental net fishing results of October 2006 and June 2007. Parameter Mean values (s.e.) Zone factor Station (zone) factor R OR d.f. MS F (p-value) d.f. MS F (p-value) October 2006 ..................................................................................................................................................................................................................................................................... Total 3.75 (0.62) 1.08 (0.26) 1 0.761 26.369 (0.000) 2 0.132 4.581 (0.023) R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . Scorpaenidae 1.25 (0.35) 0.25 (0.13) 1 2.113 6.704 (0.017) 2 1.205 3.824 (0.039) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . Species richness 2.67 (0.35) 1.08 (0.26) 1 15.042 17.524 (0.000) 2 4.208 4.903 (0.018) R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . June 2007 ..................................................................................................................................................................................................................................................................... Total 9.33 (1.62) 2.17 (0.56) 1 1.729 33.686 (0.000) 2 0.33 6.440 (0.007) OR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . Scorpaenidae 3.08 (0.5) 0.75 (0.28) 1 0.873 24.544 (0.000) 2 0.119 3.354 (0.055) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . Species richness 4.92 (0.59) 1.58 (0.34) 1 66.667 25.806 (0.000) 2 5.083 1.968 (0.166) The fish abundance is expressed as the mean number of fish per 100 m netting section, and the species richness as the mean number of fish species or the mean number of Scorpaenidae per 100 m netting section. Data for two zones, reserve (R) and outside reserve (OR), were tested by analysis of variance, and differences were identified by Tukey’s HSD test. For the Station (zone) factor, post hoc results are given after p-value in the table. differences were the result of the outside-reserve stations, mainly N stations in May, but also S for the RSR. In September, these differences were mainly located in the S zone, but also in the R zone when testing the total density values. Differences among zones were observed for density of Sparidae in May and September and for density of Serranidae in September 2007. In May 2007, the highest Sparidae density was outside the reserve. However, in September 2007, the highest densities were inside the reserve for Sparidae and Serranidae. A difference between stations was observed in September for density of Labridae and was caused by the R and outside S stations. Experimental netfishing Fish abundance and species richness per netting section were significantly lower outside the reserve (p , 0.001; Table 3). Significant between-station differences were observed in October 2006 for species richness and fish abundance. These differences were the result of the two inside-reserve station observations. In June 2007, only the fish abundance recorded outside the reserve exhibited a significant difference between stations. Scorpaenidae were the most abundant, and few or no differences in density were observed between stations, whereas significant differences were observed in October and June between zones. Discussion Despite the popularity of marine reserves as a management tool, decisions on the design and location of most existing reserves have largely been the result of political and social processes (Francour et al., 2001; Halpern, 2003). The implementation of the Cap Roux marine reserve by the professional fishers of the Saint-Raphaël Prud’homie de Pêche was a political decision. However, the MPA is located in a remote area (there are no buildings along the shore on this part of the coast), with shallow bays covered by dense P. oceanica beds and deeper, rocky areas covered by intact coralligenous concretions. These conditions allow the development of healthy benthic communities. The main objective of this study was to observe the dynamics of the fish assemblages following establishment of this protected area, because few such data on other areas were available, and none was from the Mediterranean. The traditional UVC along transects did not reveal an evident reserve effect after 4 years of protection. Transects were performed only on P. oceanica seagrass beds; Francour (1994) pointed out that the reserve effect is less evident for fish assemblages in P. oceanica meadows than in rocky areas. Conversely, they exhibit a buffer effect, characterized by a decrease in seasonal fluctuations in biomass, density, or diversity. Although total density and richness did not respond significantly to protection, two fish families seemed sensitive to protection in the last survey (autumn 2007), Sparidae and Serranidae. Both are targeted by professional and non-professional fishers. Biomass, species richness, and total density exhibited some fluctuations in the N and S zones, and the lower variation observed inside the reserve for these variables could be caused by an early buffer effect. As many of the fish sampled by this method are not targeted by fishers, the fishing pressure could have been expected to demonstrate indirect effects through trophic cascades (Pinnegar et al., 2000). In the present study, target fish (Sparidae, Dentex dentex, Serranidae, and Scorpaenidae) are primarily predators. An increase in abundance of these fish, as observed by UVC and experimental fishing (at least for the Scorpaenidae), could affect the density and species richness of lower trophic levels (i.e. Symphodus spp. and microphagous fish such as Chromis chromis or Boops boops). The two other survey methods, FAST and experimental fishing, demonstrated stronger reserve effects than UVC on P. oceanica. The CI was always higher and less variable inside the reserve than outside (N and S). However, the MI was not clearly different between the three zones. This means that, after pooling stations, there were more species or larger fish inside the marine reserve than outside it, but this was variable, as demonstrated by the high values of CV. These results were supported by the results of ordination and clustering, in which season seemed to be the main factor explaining the difference between classes of FAST observations. Little difference was observed between the protected and the non-protected zones during the warm season. However, for cold-season observations, the pattern is different inside and outside the protected zone. The observations made inside the reserve in the cold season clustered close to the warm-season observations, whereas outside the reserve, cold- and warm-season observations clustered separately. This confirms previous results that revealed that the main effect of this early protection on the fish assemblage is a decrease in seasonal fluctuations inside the MPA. Seasonal fluctuations in fish assemblages in the Mediterranean are typical in winter, owing to changes in bathymetric distribution, as observed for Mullus surmuletus by Machias et al. (1998) and for Diplodus annularis and Sarpa salpa by Francour (1997). Some behavioural changes have also been proposed (e.g. Kotrschal, 186 1983): species could be less active, hidden, or aggregated in specific sites during winter. Diel variations of the fish assemblage could also change over the year, as proposed by Nash and Santos (1998). These processes could lead to decreased density and richness values in UVC but also for fishing gears. Two main considerations led us to use experimental fishing: first, to survey a part of the fish assemblage that is difficult to sample with UVC (such as nocturnal and homochromic species); and second, to use a method trusted by professional fishers. In the trammel-nets, the most abundant fish were Scorpaena spp., species that are difficult to sample with UVC. The other genera were mainly Spondyliosoma, Diplodus, and Muraena. Important differences were measured for the total abundance, species richness, and Scorpaenidae density between zones. Very low values were recorded outside the MPA. These differences were more important in June 2007 than October 2006. This trend is consistent with the high fishing pressure exerted outside the reserve (unpublished data from the Saint-Raphaël Prud’homie de Pêche). The total prohibition of fishing inside the reserve, even if some poaching is both possible and probable, allowed us to observe a clear reserve effect with this method for both seasons, with more evidence in June 2007. The increase in abundance and size of target fish observed by the FAST method and experimental fishing provided a good indicator of an early reserve effect. Even if spillover processes are not yet visible, as in older MPAs (e.g. Abesamis et al., 2006), these results allowed us to convince professional fishers of the usefulness of such MPAs and to extend the protection for 6 years. In conclusion, two methods highlighted an early reserve effect: (i) experimental fishing yielded significantly higher density and species richness inside the protected zone, and (ii) the FAST method indicated a decrease in seasonal fluctuations within the Cap Roux MPA. Fishing pressure is not constant throughout the year as a consequence of weather conditions and market demand for fish. Perhaps a combination of migration and fishing pressure during the warm season leads to a decrease in richness and/or density during the beginning of the cold season, and this could explain the seasonal patterns of differences observed between the protected zone and outside it. Acknowledgements We thank Christian Decugis and Elisabeth Tempier from the Saint-Raphaël Prud’homie de Pêche for their commitment, Christian Ubbizzoni for carrying out the experimental fishing, and the divers Pascaline Bodilis, Julien Gratiot, and Jean-Michel Cottalorda, for helping with the underwater observations. References Abesamis, R. A., Russ, G. R., and Alcala, A. C. 2006. Gradients of abundance of fish across no-take marine reserve boundaries: evidence from Philippine coral reefs. Aquatic conservation: Marine and Freshwater Ecosystems, 16: 349 – 371. Agardy, M. T. 1994. Advances in marine conservation: the role of marine protected areas. Trends in Ecology and Evolution, 9: 267– 270. Ballesteros, E. 2006. Mediterranean coralligenous assemblages: a synthesis of present knowledge. Oceanography and Marine Biology: an Annual Review, 44: 123 – 195. Benzécri, J. P. 1973. L’analyse des Données. II. L’Analyse des Correspondances. Dunod, Paris. 619 pp. C. Seytre and P. Francour Côté, I. M., Mosqueira, I., and Reynolds, J. D. 2001. Effects of marine reserve characteristics on the protection of fish populations: a meta-analysis. Journal of Fish Biology, 59A: 178 – 189. Digby, P. G. N., and Kempton, R. A. 1987. Multivariate Analysis of Ecological Communities. Chapman and Hall, London. 206 pp. Dufour, V., Jouvenel, J-Y., and Galzin, R. 1995. Study of a Mediterranean reef fish assemblage. Comparisons of population distributions between depths in protected and unprotected areas over one decade. Aquatic Living Resources, 8: 17 – 25. Dugan, J. E., and Davis, G. E. 1993. Applications of marine refugia to coastal fisheries management. Canadian Journal of Fisheries and Aquatic Sciences, 50: 2029– 2042. Francour, P. 1994. Pluriannual analysis of the reserve effect on ichthyofauna in the Scandola natural reserve (Corsica, northwestern Mediterranean). Oceanologica Acta, 17: 309– 317. Francour, P. 1997. Fish assemblages of Posidonia oceanica beds at Port-Cros (France, NW Mediterranean): assessment of composition and long-term fluctuations by visual census. Marine Ecology, 18: 157 – 173. Francour, P. 1999. A critical review of adult and juvenile fish sampling techniques in Posidonia oceanica seagrass beds. Naturalista Siciliana, 23: 33 – 57. Francour, P., Harmelin, J. G., Pollard, D., and Sartoretto, S. 2001. A review of marine protected areas in the northwestern Mediterranean region: siting, usage, zonation and management. Aquatic Conservation: Marine and Freshwater Ecosystems, 11: 155– 188. Garcı́a-Rubies, A., and Zabala, M. 1990. Effects of total fishing prohibition on the rocky fish assemblages of Medes Islands marine reserve (NW Mediterranean). Scientia Marina, 54: 317– 328. Gell, F. R., and Roberts, C. M. 2003. Benefits beyond boundaries: the fishery effects of marine reserves. Trends in Ecology and Evolution, 18: 448– 455. Greenacre, M. J. 1984. Theory and Application of Correspondence Analysis. Academic Press, London. 364 pp. Guidetti, P. 2002. The importance of experimental design in detecting the effects of protection measures on fish in Mediterranean MPAs. Aquatic Conservation: Marine and Freshwater Ecosystems, 12: 619– 634. Halpern, B. S. 2003. The impact of marine reserves: do reserves work and does reserve size matter? Ecological Applications, 13: S117– S137. Halpern, B. S., and Warner, R. R. 2002. Marine reserves have rapid and lasting effects. Ecology Letters, 5: 361– 366. Harmelin-Vivien, M., and Francour, P. 1992. Trawling or visual censuses? Methodological bias in the assessment of fish populations in seagrass beds. Marine Ecology, 13: 41 –51. Harmelin-Vivien, M., Harmelin, J. G., Chauvet, C., Duval, C., Galzin, R., Lejeune, P., Barnabé, G., et al. 1985. Evaluation visuelle des peuplements et populations de poissons: méthodes et problèmes. Revue d’écologie (La Terre et la Vie), 40: 467 –539. Hugh, G., and Gauch, J. R. 1982. Multivariate Analysis in Community Ecology. University Press, Cambridge, UK. 298 pp. Jennings, S. 2001. Patterns and prediction of population recovery in marine reserves. Reviews in Fish Biology and Fisheries, 10: 209– 231. Kotrschal, K. 1983. Northern Adriatic rocky reef fishes at low winter temperatures. Marine Ecology, 4: 275– 286. Machias, A., Somarakis, S., and Tsimenides, N. 1998. Bathymetric distribution and movements of red mullet Mullus surmuletus. Marine Ecology Progress Series, 166: 247– 257. Nash, R. D. M., and Santos, R. S. 1998. Seasonality in diel catch rate of small fishes in a shallow-water fish assemblage at Porto Pim Bay, Faial, Azores. Estuarine, Coastal and Shelf Science, 47: 319– 328. Olver, C. H., Shuter, B. J., and Minns, C. K. 1995. Toward a definition of conservation principles for fisheries management. Canadian Journal of Fisheries and Aquatic Sciences, 52: 1584– 1594. Changes in fish assemblages in the Cap Roux MPA Pinnegar, J. K., Polunin, N. V. C., Francour, P., Chemello, R., Harmelin-Vivien, M., Hereu, B., Milazzo, M., et al. 2000. Trophic cascades in fisheries and protected area management of benthic marine ecosystems. Environmental Conservation, 27: 179– 200. Russ, G. R., and Alcala, A. C. 1998. Natural fishing experiments in marine reserves 1983– 1993: community and trophic responses. Coral Reefs, 17: 383– 397. 187 Sumaila, U. R. 1998. Protected marine reserves as fisheries management tools: a bioeconomic analysis. Fisheries Research, 37: 287– 296. Zar, J. H. 1999. Biostatistical Analysis, 4th edn. Prentice-Hall, New Jersey. 663 pp. doi:10.1093/icesjms/fsn196
© Copyright 2026 Paperzz