Biospheric Theory and Modelling An earth system’s approach to the sensitivity of the water cycle Maik Renner and Axel Kleidon Max-Planck-Institut für Biogeochemie, Jena, Germany 26. October 2016 EGU-Leonardo conference on the hydrological cycle, Ourense System (CERES, Wielicki et al. 1996) and the Solar Radiation and Climate Experiment (SORCE, Anderson and Cahalan 2005). These allow the determination of the top of available from ground-based radiation networks (Sect. 2). We use these observations to assess the radiation budgets as simulated in the latest modeling efforts performed within Fig. 1 Schematic diagram of the global mean energy balance of the Earth. Numbers indicate best estimates for the magnitudes of the globally averaged energy balance components together with their uncertainty ranges, representing present day climate conditions at the et al 2013, Clim. Dyn beginning of the twentyWild first century. Estimates and uncertainty Renner and Kleidon EGU-Leonardo 2016 ranges based on discussion in Sect. 5. Units Wm-2 Water cycle ~ radiation and convection 2 Systems’ perspective on earth Global climate model dynamic state equations sub-grid parameterisations natural system processes interacting at multiple time scales 3 Renner and Kleidon EGU-Leonardo 2016 Systems’ perspective on earth Global climate model dynamic state equations sub-grid parameterisations natural system processes interacting at multiple time scales Perfection is achieved, not when there is nothing more to add, but when there is nothing left to take away. Antoine de Saint-Exupery Can we formulate a simple earth system model which captures the most important (thermo)dynamics to predict the response to radiative changes? 3 Renner and Kleidon EGU-Leonardo 2016 A simple climate model energy balances as starting points energy balances: Ta Rs Rs Rs: R l: H: λE: heat engine Rs Rl H λE heat E=0 absorbed solar radiation net emission of terrestrial radiation sensible heat flux latent heat flux given: absorbed solar radiation Rs (= 240 W m-2) and surface temperature Ts (= 288 K) Ts radiation Rl H 4 Ta = 0 unknown: partitioning between Rl and H + λE? motion 4 Renner and Kleidon EGU-Leonardo 2016 Atmospheric heat engine thermodynamic limit on convective motion first law: energy budget Ta 0 = Jin Jout heat engine Rs Rl Jout G second law: entropy budget G power to generate motion Jin Jout Ta best case: Jin Ts Jout 0 Ta = Jin Ts Ts radiation heat motion Kleidon and Renner (2013) Hydrol. Earth Syst. Sci. 5 Renner and Kleidon EGU-Leonardo 2016 Atmospheric heat engine thermodynamic limit on convective motion first law: energy budget Ta 0 = Jin Jout heat engine Rs Rl G power to generate motion Jin heat G second law: entropy budget Ts radiation Jout Jout Ta best case: Jin Ts Jout 0 Ta = Jin Ts “Carnot” limit for G: G = Jin motion Kleidon and Renner (2013) Hydrol. Earth Syst. Sci. 5 Ts Ta Ts Renner and Kleidon EGU-Leonardo 2016 A simple climate model exchange of terrestrial radiation assume blackbody emission for surface and atmosphere: Ta Rl,s = Ts4 Rl,a = heat engine Rs Rl linearize emission: T 4 ⇡ R0 + kr (T H λE heat T0 ) results in simple expression for net longwave radiative exchange: Ts radiation 4 Ta Rl = Rl,s Rl,a = kr (Ts Ta ) motion Kleidon and Renner (2013) Hydrol. Earth Syst. Sci. 6 Renner and Kleidon EGU-Leonardo 2016 A simple climate model parameterization of heat fluxes convective heat fluxes depend on a rate of mass exchange, ρw: Ta H = cp ⇢w(Ts heat engine Rs Rl E = ⇢w(qs convective mass exchange s Ts radiation heat E = cp ⇢w (Ts s γ: E= H motion Kleidon and Renner (2013) Hydrol. Earth Syst. Sci. qa ) assume saturation for surface and atmosphere and linearize saturation vapor pressure curve with slope s ρw H λE Ta ) 7 Ta ) psychrometric constant Renner and Kleidon EGU-Leonardo 2016 Carnot limit for generating convection “Carnot” limit for G: G=H· Ta heat engine Rs Rl Ts Ta Ts use surface energy balance to express ∆T: G power to generate motion Ts Ta = Rs H kr E H λE Ts radiation heat motion Kleidon and Renner (2013) Hydrol. Earth Syst. Sci. 8 Renner and Kleidon EGU-Leonardo 2016 Carnot limit for generating convection “Carnot” limit for G: G=H· Ta heat engine Rs Rl Ts Ta Ts use surface energy balance to express ∆T: G power to generate motion Ts Ta = Rs H kr E maximize power G: H λE Ts radiation heat motion Kleidon and Renner (2013) Hydrol. Earth Syst. Sci. 8 Renner and Kleidon EGU-Leonardo 2016 Carnot limit for generating convection “Carnot” limit for G: G=H· Ta heat engine Rl G power to generate motion Ts Ta = heat Ts Rs H kr E maximize power G: H λE Ts radiation Ta use surface energy balance to express ∆T: power G Rs Ts ∆T G motion convective heat flux Kleidon and Renner (2013) Hydrol. Earth Syst. Sci. 8 Renner and Kleidon EGU-Leonardo 2016 A simple climate model flux partitioning at maximum convective power max. power limit predicts equal partitioning among radiative and turbulent fluxes: Ta heat engine Rs Rl G power to generate motion H λE Ts radiation heat Rl,opt = H= s+ s E= s+ Rs 2 Rs 2 Rs 2 motion Kleidon and Renner (2013) Hydrol. Earth Syst. Sci. 9 Renner and Kleidon EGU-Leonardo 2016 A simple climate model flux partitioning at maximum convective power max. power limit predicts equal partitioning among radiative and turbulent fluxes: Ta heat engine Rs Rl G power to generate motion H λE Ts radiation heat H= s+ s E= s+ consistent with “equilibrium evaporation” rate of Schmidt (1909) and Slayter & McIlroy (1961), Priestley and Taylor (1971) motion Kleidon and Renner (2013) Hydrol. Earth Syst. Sci. Rl,opt = Rs 2 Rs 2 Rs 2 9 Renner and Kleidon EGU-Leonardo 2016 A simple climate model surface energy partitioning on land (with added water balance constraint) Latent heat flux latent heat flux :1 1 100 150 climatological means λE 0 50 :1 1 modelled LE [Wm−2] (W m-2) power max. 250 200 150 0° ≤ latitude ≤ 15° 15° < latitude ≤ 38° 38° < latitude ≤ 66° 66° < latitude ≤ 90° 50 100 ERA−Interim data H + LE = Rs 2 0 turbulent heat fluxes -2)W/m2 ERA Interim, + LE, (WH m Radiative and turbulent partitioning, ERA−Interim 0 50 100 150 200 250 0 absorbed absorbed solar solar radiation, radiation SRB, W/m2 (W m-2) Kleidon, Renner, Porada (2014) Hydrol. Earth Syst. Sci. 50 100 150 ERA-Interim m-2) ERA−Interim, LE(W [Wm−2] 10 Renner and Kleidon EGU-Leonardo 2016 1.0 Maximum Power ERA−Interim 0.2 0.6 dRlu dRin Max Rln = Rsn /2 = Rlu (Ts ) imu mp owe r Rld @Rlu /@Rld = 1 @Rlu /@Rsn = 1/2 dRn dRin −0.2 Sensitivity to total incoming radiation Rin Sensitivity to type of radiative forcing 0 longwave change dominates Renner, Dhara and Kleidon, in prep. 0.5 1 shortwave change dominates ∆Rsn ∆Rin 11 Renner and Kleidon EGU-Leonardo 2016 Hydrologic Cycling and Surface Warming Evaporation rate: s Rs +s 2 Eopt = Kleidon and Renner (2013) ESD Kleidon, Kravitz, Renner (2015) GRL 12 Renner and Kleidon EGU-Leonardo 2016 Hydrologic Cycling and Surface Warming Evaporation rate: Relative sensitivity: s Rs Eopt = +s 2 1 1 @E ds 1 @E E= Ts + Rs E E @s dTs E @Rs Kleidon and Renner (2013) ESD Kleidon, Kravitz, Renner (2015) GRL 12 Renner and Kleidon EGU-Leonardo 2016 Hydrologic Cycling and Surface Warming Evaporation rate: Relative sensitivity: s Rs Eopt = +s 2 1 1 @E ds 1 @E E= Ts + Rs E E @s dTs E @Rs ≈ 2.2 % K-1 ≈ 1 % K-1 greenhouseinduced warming: 2.2 % K-1 solar-induced warming: 3.2 % K-1 Kleidon and Renner (2013) ESD Kleidon, Kravitz, Renner (2015) GRL 12 Renner and Kleidon EGU-Leonardo 2016 Hydrologic Cycling and Surface Warming s Rs Eopt = +s 2 1 1 @E ds 1 @E E= Ts + Rs E E @s dTs E @Rs Evaporation rate: Relative sensitivity: 15 ∆P/P (%) 10 Climate models 4xCO2 5 ≈ 2.2 % K-1 ≈ 1 % K-1 greenhouseinduced warming: 2.2 % K-1 solar-induced warming: 3.2 % K-1 Today 0 Climate models 4*CO2 - ∆Rs −5 −10 −2 −1 0 model sensitivity from Tilmes et al. (2013) JGR 1 2 3 4 5 6 Kleidon and Renner (2013) ESD Kleidon, Kravitz, Renner (2015) GRL ∆Ts (K) 12 Renner and Kleidon EGU-Leonardo 2016 Hydrologic Cycling and Surface Warming s Rs Eopt = +s 2 1 1 @E ds 1 @E E= Ts + Rs E E @s dTs E @Rs Evaporation rate: Relative sensitivity: 15 4xCO2 ∆P/P (%) 10 Climate models 4xCO2 5 +5 K Today 0 ≈ 2.2 % K-1 ≈ 1 % K-1 greenhouseinduced warming: 2.2 % K-1 solar-induced warming: 3.2 % K-1 Climate models 4*CO2 - ∆Rs −5 −10 −2 −1 0 model sensitivity from Tilmes et al. (2013) JGR 1 2 3 4 5 6 Kleidon and Renner (2013) ESD Kleidon, Kravitz, Renner (2015) GRL ∆Ts (K) 12 Renner and Kleidon EGU-Leonardo 2016 Hydrologic Cycling and Surface Warming s Rs Eopt = +s 2 1 1 @E ds 1 @E E= Ts + Rs E E @s dTs E @Rs Evaporation rate: Relative sensitivity: 15 -5 K 4xCO2 ∆P/P (%) 10 Climate models 4xCO2 5 +5 K Today 0 ≈ 1 % K-1 greenhouseinduced warming: 2.2 % K-1 solar-induced warming: 3.2 % K-1 Climate models 4*CO2 - ∆Rs G −5 ≈ 2.2 % K-1 −10 −2 −1 0 model sensitivity from Tilmes et al. (2013) JGR 1 2 3 4 5 6 Kleidon and Renner (2013) ESD Kleidon, Kravitz, Renner (2015) GRL ∆Ts (K) 12 Renner and Kleidon EGU-Leonardo 2016 Hydrologic Cycling and Surface Warming Analogy: Increasing the temperature of a pot on a stove 13 Renner and Kleidon EGU-Leonardo 2016 Hydrologic Cycling and Surface Warming Analogy: Increasing the temperature of a pot on a stove Reduced cooling by lid (“greenhouse”) 13 Renner and Kleidon EGU-Leonardo 2016 Hydrologic Cycling and Surface Warming Analogy: Increasing the temperature of a pot on a stove Reduced cooling by lid (“greenhouse”) Increased heating by plate (“solar”) 13 Renner and Kleidon EGU-Leonardo 2016 Hydrologic Cycling and Surface Warming Analogy: Increasing the temperature of a pot on a stove Reduced cooling by lid (“greenhouse”) Increased heating by plate (“solar”) Solar geoengineering: Compensate temperature increase by lid by reducing the heating 13 Renner and Kleidon EGU-Leonardo 2016 Summary and Conclusions Earth systems’ approach • • atmosphere as a heat engine • • thermodynamic optimality - state of maximum power trade-off between temperature gradient and the turbulent heat flux allows first order predictions on earth system Conclusion: • type of radiative change (SW <-> LW) is key to predict response of temperature and water cycle • 2.2% / K increase of water cycle by greenhouse warming understood by saturation vapour pressure constrained by surface energy balance 14 Renner and Kleidon EGU-Leonardo 2016 References Dhara, C., Renner, M., & Kleidon, A. (2016). Broad climatological variation of surface energy balance partitioning across land and ocean predicted from the maximum power limit. Geophysical Research Letters, 43(14), 2016GL070323. https://doi.org/10.1002/2016GL070323 Kleidon, A., Kravitz, B., & Renner, M. (2014). The hydrological sensitivity to global warming and solar geoengineering derived from thermodynamic constraints. Geophysical Research Letters, 2014GL062589. https://doi.org/10.1002/2014GL062589 Kleidon, A., & Renner, M. (2013a). A simple explanation for the sensitivity of the hydrologic cycle to surface temperature and solar radiation and its implications for global climate change. Earth System Dynamics, 4(2), 455–465. https://doi.org/10.5194/esd-4-455-2013 Kleidon, A., & Renner, M. (2013b). Thermodynamic limits of hydrologic cycling within the Earth system: concepts, estimates and implications. Hydrol. Earth Syst. Sci., 17(7), 2873–2892. https:// doi.org/10.5194/hess-17-2873-2013 Kleidon, A., Renner, M., & Porada, P. (2014). Estimates of the climatological land surface energy and water balance derived from maximum convective power. Hydrology and Earth System Sciences, 18(6), 2201–2218. https://doi.org/10.5194/hess-18-2201-2014 Tilmes, S., Fasullo, J., Lamarque, J.-F., Marsh, D. R., Mills, M., Alterskjær, K., … Watanabe, S. (2013). The hydrological impact of geoengineering in the Geoengineering Model Intercomparison Project (GeoMIP). Journal of Geophysical Research: Atmospheres, 118(19), 11,036-11,058. https:// doi.org/10.1002/jgrd.50868 Wild, M., Folini, D., Schär, C., Loeb, N., Dutton, E. G., & König-Langlo, G. (2013). The global energy balance from a surface perspective. Climate Dynamics, 1–28. https://doi.org/10.1007/ s00382-012-1569-8 Thank you! 15 Renner and Kleidon EGU-Leonardo 2016
© Copyright 2026 Paperzz