QS015
1.
MODEL 3
a) Simplify
2 5
3 2
.
[3 marks]
b) Solve the equation log 2 ( x 2 2) 1 log 2 ( x 5) .
[4 marks]
2.
Find the solution set of the inequalities x 3x 4 6
[5 marks]
3.
Given the complex number z and its conjugate z satisfy the equation z z 2 z i 12 6i .
Find z .
[7 marks]
4.
Solve the equations of 8 x 17 2 x 2 x 9 .
[7 marks]
5.
a)
If the second term and the fifth term of the geometric progression are
1
respectively, find the first term and the common ratio.
32
1
and
4
[5 marks]
1
b)
Expand 1 3x 3 in ascending powers of x , up to and including the term in x 3 .
State the range of values of x for which the expansion is valid. Hence, evaluate
3
6.
1.03 correct to four decimal places.
4 1 2
Given that A 2 3 1 and B
1 3 1
[7 marks]
0 5 5
1 6 8
3 13 14
a) Find AB as a single matrix.
b) By using the result in (a), solve the following system linear equations.
4 x y 2 z 13
2 x 3 y z 9
x 3 y z 7
[12 marks]
5
QS015
MODEL 3
Final Answers
1.
a)
b)
2 15 2 10
x 4 or -2
2.
1
{ x : 5 x }
2
3.
z 3 3i , z 3 i
4.
x 8
5.
a)
r
b)
1 x x2
a)
b)
5I
x 2 , y 3 , z 4
6.
1
1
, a
2
2
5 3
1
1
x ..... ,the expansion is valid if x , 1.0099 (4 dp)
3
3
3
6
QS015
MODEL 3
Answer Scheme
2 5
1. a)
3 2
=
2 5
3 2
3 2
3 2
2 5 3 2
=
3 2
= 2 5( 3 2)
2 15 2 10
b) log 2 ( x 2 2) log 2 ( x 5) 1
x2 2
1
log 2
x
5
2
x 2
21
x5
x 2 2x 8 0
x 4x 2 0
x 4 or 2
2. x 3x 4 6
3x 4 6 x
Using basic definition,
3 x 4 6 x AND 3 x 4 (6 x )
4x 2
2 x 10
1
x
x 5
2
5
Solution set
1
2
1
{ x : 5 x }
2
7
QS015
MODEL 3
3. Let z x iy , z x iy
z z 2 zi 12 6i
( x iy )( x iy ) 2i ( x iy ) 12 6i
x 2 y 2 i 2 2 xi 2i 2 y 12 6i
x 2 y 2 2 y 2 xi 12 6i
Comparing real parts
x 2 y 2 2 y 12 -----------(1)
Substitute (2) into (1)
32 y 2 2 y 12
compare imaginary parts
2 x 6 , x 3 ------(2)
y2 2y 3 0
y 3 y 1 0
y 3 or 1
z 3 3i , z 3 i
4.
8 x 17 2 x 2 x 9
Squaring both sides
8 x 17 2 8 x 17 2 x 2 x 2 x 9
8 x 8 2 (8 x 17)(2 x)
4 x 4 16 x 2 34 x
16 x 2 32 x 16 16 x 2 34 x
2 x 16 , x 8 .
5.
1
1
………(1) , T5 ar 4
……….(2)
4
32
ar 4
1 1
(2) (1) ,
ar
32 4
1
r3
8
1
r
2
1
By substituting r into (1),
2
1
1
a
2
4
1
a
2
a)
T2 ar
8
QS015
MODEL 3
11
1 1 1
1
1 2
3
1
3 3
3x 2 3 3 3 3x .....
b) 1 3 x 1 (3 x)
3
2!
3!
5
= 1 x x 2 x 3 .....
3
The expansion is valid if 3x 1
1
3
x
3
1
3
1
1
x
3
3
1
1.03 1 0.03 3
1
1 3(0.01) 3
So, we can use the above expansion by substituting x 0.01 .
5
2
3
3
1.03 1 0.01 0.01 0.01 ....
3
= 1 0.01 0.0001 0.00000167
1.00990167
= 1.0099 ( 4 decimal places)
6.
a)
4 1 2 0 5 5
AB 2 3 1 1 6 8
1 3 1 3 13 14
1 0 0
5 1 0 0 = 5 I
1 0 0
b)
AB 5 I
1
A 1 = B
5
0 5 5
1
1 6 8
5
3 13 14
4 1 2 x 13
2 3 1 y = 9
1 3 1 z 7
9
QS015
MODEL 3
AX B
X A 1 B
0 5 5 13
1
= 1 6 8 9
5
3 13 14 7
0 45 35
1
13 54 56
5
39 117 98
10
1
15
5
20
2
= 3
4
x 2 , y 3 , z 4
10
© Copyright 2026 Paperzz