MATH 136 The Natural Logarithm Function Exercises 1. Solve for x and simplify completely: 1 (a) 8 e −3x = 8 € (b) 3 e −x / 2 = 15 (d) 4 ln(x + 6) = 2 (e) ln(4 − 3x) = −5 € € 2. Evaluate f ′(x) : x5 (b) f (x) = ln sec x 3 (a) f (x) = 4x ln(6x) (d) f (x) = ln (c) 50e x / 4 = 100 cos 2 x (c) f (x) = ln 8 x tan 4 x x3 (e) f (x) = ln 2 (4 − x) x 3 sin x cos x € (f) f (x) = € ln(4 x) x5 Solutions 1. (a) e −3x = 1 1 gives −3 x = ln . Thus, 64 64 1/ 3 1 1 1 −1 1 1 = ln 4 . x = − ln − ln = = − ln = ln 64 4 4 3 64 --------------------------------------------------------------------------------------------------------------------- x 1 −2 = ln5 . Thus, x = −2 ln 5 = ln 5 = ln . 25 2 --------------------------------------------------------------------------------------------------------------------(b) e − x/ 2 = 5 gives − x = ln2 and x = 4 ln2 = ln2 4 = ln16 . 4 --------------------------------------------------------------------------------------------------------------------(c) 50e x / 4 € = 100 gives e x / 4 = 2. So € (d) 4 ln(x + 6) € So x + 6 = e 1/2 and x = e1/ 2 − 6 . = 2 gives ln(x + 6) = 1 / 2 . € € --------------------------------------------------------------------------------------------------------------------−5 € and x = 4 − e . (e) ln(4 − 3x) = −5 gives 4 − 3x = e−5 . So 4 − e−5 = 3x 3 --------------------------------------------------------------------------------------------------------------------- € 6 € € 2. (a) Apply product rule: f ′(x) = 12x 2 ln(6x) + € 4x 3 = 12x 2 ln(6x) + 4x 2 . 6x --------------------------------------------------------------------------------------------------------------------- 5 sec x tan x 5 = − tan x . − x sec x x --------------------------------------------------------------------------------------------------------------------- (b) f (x) = 5 ln x − ln sec x . Then f ′(x) = (c) f (x) = 2 ln( cos x ) − 8 ln x − 4 ln( tan x ) . (− sin x) 8 sec2 x 8 4sec 2 x = −2tan x − − . − −4 cos x x tan x x tan x --------------------------------------------------------------------------------------------------------------------1 1 (d) f (x) = ln x + ln sin x − ln cos x . Then 2 3 1 1 1 cos x −sin x 1 1 − = + cot x + tan x . f ′(x) = × + × 2 x 3 sin x cos x 2x 3 -------------------------------------------------------------------------------------------------------------------- x3 3 2 3 2 = 3ln x − 2ln 4 − x . Then f ′(x) = − (e) f (x) = ln . (−1) = + 2 x 4−x x 4−x (4 −€x) --------------------------------------------------------------------------------------------------------------------4 × x 5 − ln(4 x) × 5x 4 1− 5ln(4 x) = €6 (f) f ′(x) = 4 x 10 x x Then f ′(x) = 2 € €
© Copyright 2026 Paperzz