Econ 100 Exam 4 Maths practice worksheet solutions Solve for y 1. y = 2−5 3−4 2−6 3−3 2. y = 10−3 3−10 10−6 3−6 = 2 3 = 103 34 or = 1000 81 3. y = 5−3 3−5 5−6 36 = 4. y = 2−2 5−3 5−6 2−2 = 53 or 125 53 311 or dC Derive MPC ( dY ) and APC ( YC ) for the following: Solve for loge (y): 1. y 6 = x3 ⇒ loge (y) = 1 2 loge (x) 2. y −3 = x−4 ⇒ loge (y) = 3. y 7 = x2 ⇒ loge (y) = 2 7 4 3 loge (x) loge (x) 1. C = 10 + 0.6Y ⇒ dC dY = 0.6, C/Y = 2. C = 70+0.75Y ⇒ dC dY = 0.75, C/Y = 3. C = 10 + Y ⇒ Derive dy dx = −0.5e−0.5x + 2x 2. y = 15 + loge x + 3x ⇒ dy dx = ∂y ∂x 1 x 3. y = 32 + loge x + x4 ⇒ = 1 x 10 Y 70 Y +0.75 +1 dy dx + 4x3 = x1 +5x4 +12x3 ∂y ∂x 5. y = 12ez loge x + x5 loge z ⇒ 5x4 loge z = 27z + 5x4 3. y = 32z 2 + 18zx + 12x2 z 2 + 10x ⇒ 18z + 24xz 2 + 10 ∂y ∂x 4. y = 10xz + ex loge z + 13 loge z ⇒ 10z + ex loge z ∂y ∂x ∂y ∂L = dy dx 4. y = 72+loge x+x5 +3x4 ⇒ +3 = 15z + 5x4 z 2 2. y = 25z + 27xz + x5 + z 2 ⇒ 1−b 1−b(1−t) = 1, , C/Y = + 0.6 ∂y ∂x : 1. y = 15xz + x5 z 2 ⇒ Find dC dY 10 Y dy dx : 1. y = e−0.5x + x2 ⇒ Derive 125 177147 ∂y ∂G : 1−b 1−b(1−t) + y = a 1−b(1−t) − bL 1−b(1−t) = 12ez x + ∂y ∂x = 6. y = 15ez + 12ex + x loge z + z loge x ⇒ 12ex + loge z + xz = 7. y = e0.8x + e0.2z ⇒ + ∂y ∂x ∂y ∂x = 0.8e0.8x 8. y = 5ez + 3e0.9x + x2 loge z + 2z 3 loge (x2 ) + 3 ∂y = 2.7e0.9x +2x loge z+ 4zx +5x4 z −2 x5 z −2 ⇒ ∂x = e−f r 1−b(1−t) 1 + G 1−b(1−t) ⇒ ∂y ∂L + ∂y ∂G b = − 1−b(1−t) + 1 1−b(1−t) =
© Copyright 2026 Paperzz