Ionic Lewis Dot Notation Gilbert N. Lewis American 1902 abbreviates valence e– configuration ns1 ns2 IA IIA + IIIA IVA VA VIA •• •• •• •• •• •• DH = lattice energy DHlatt = NaCl(s) DHfo = Born-Haber Cycle Born-Haber Cycle Similar to Hess’s Law: Why MgCl2? 1/2 Cl2(g) DHfo = NaCl(s) Mg(s) + Cl2(g) DHfo = ? DHlattice Mg(g) 2+:1– Cl(g) vs Mg+(g) 1+:1– + Cl–(g) Mg2+(g) DHfo = Born-Haber Cycle Why not NaCl2? AlCl3 + Cl2(g) DHf = ? NaCl2(s) like MgCl2 DHlattice –2180 kJ Na(g) 2 Cl(g) Na+(g) DHfo = 2 Cl–(g) + Born-Haber Cycle o Na2+(g) DHlatt NaCl –788 kJ DHfo = DHfo Na(s) DHlattice –2422 kJ 2 Cl(g) EA IE1 Na+(g) MgCl2(s) DHdissociation DHsublimation Na(g) = Max Fritz Born Haber German 1912 •• •• + •• •• Na(s) Cl– (g) VIIA • • •• •• •• •B• •C• •N• O• F• • • • •• •• •• •• • • • • Al • • Si • • P • S • Cl • Na • Mg • • • • •• •• •• •• 2 6 • • Ge • • As • Se • Br • ns np K• • • •• VIIIA • • •• •• •• •• • Sn • • Sb • Te • I • Xe not for transition metals • • • •• •• ΔH + ½ Cl2(g) ns2np1 ns2np2 ns2np3 ns2np4 ns2np5 • Li • Be • Na+ (g) Na(s) tool that describes molecular (mostly) + 3/2 Cl2(g) DHfo = ? AlCl3(s) Al(g) Al+(g) DHlatt NaCl –788 kJ + Al(s) 3 Cl(g) DHlattice –5458 kJ Al2+(g) 2 Cl–(g) Al3+(g) DHf o + 3 Cl–(g) = 1 Some Lattice Types CsCl NaCl Drawing Good Lewis Structures MgCl2 CaF2 1. # valence e– in atoms (± charge) must = # e– in structure ; always 2. determine connectivity: most metallic usually central; avoid small rings; H always terminal (1 e–) 1+ 1– 1+ 1– 2+ 1– 2+ 1– –667 kJ/mole –788 kJ/mole –2422 kJ/mole –2805 kJ/mole ZnS AlCl3 Al2O3 3. complete octet for each atom (except H); check against #1 4. remove/add required e– in pairs from/to central atom 5. if needed, move e– pairs from outside atoms to bond with central atom to complete octet again 6. formal charge minimized as much as possible (# and mag.) 2+ 2– 3+ 1– 3+ 2– –3526 kJ/mole –5458 kJ/mole –15270 kJ/mole Formal Charge ve– assigned formal charge 7 7 0 7 6 +1 •• 7 7 0 •• 6 6 0 •• •• •• •• •• 7 7 0 •• •• •• + •• – F F O •• •• •• •• •• •• F O F •• •• •• 6 7 –1 assign e– in molecule to each atom: 1. lone-pair e– belong to atom 2. bonding pairs split equally compare with ve– in atom 6. formal charge minimized as much as possible (# and mag.) 2
© Copyright 2026 Paperzz