Name: __________________ 1 Class: Date: _____________ dz if z = x ln x + 5y , x = sin t , and y = cos t . ( ) dt Use the Chain Rule to find a. dz = dt x + ln ( x + 5y ) x + 5y cos t x ( sin t ) x + 5y b. dz = dt x + ln ( x + 5y ) x + 5y sin t + x ( cos t ) x + 5y c. dz = dt x + ln ( x + 5y ) x + 5y sin t + 5x ( cos t ) x + 5y d. dz = dt x + ln ( x + 5y ) x + 5y cos t + 5x ( sin t ) x + 5y e. dz = dt x + ln ( x + 5y ) x + 5y cos t 5x ( sin t ) x + 5y Problem code: stet. 14.05.04m 2 Use the Chain Rule to find a. b. c. Problem code: stet. 14.05.05m PAGE 1 dw if w = x e y /z , x = t 2 , y = 8 dt dw = e y /z dt t + x + 3xy 2 z z dw = e y /z dt 2t dw = e y /z dt 2t d. x + 3xy 2 z z x z 3xy z 2 e. t , and z = 4 + 3t . dw = e y /z dt t x z 3xy dw = e y /z dt 2t + x z 3xy z z 2 2 Name: __________________ 3 Use the Chain Rule to find Class: Date: _____________ z and z if z = x , x = s e 5t , and y = 2 + s e s t y a. z = 1 e 5t s y b. z = 5s e 5t + 3sx e 2 s y y c. z = 5s e 5t y s d. z = 5s e 5t + 3sx e 2 s y y e. z = 1 e 5t y s x e 2 y 3t 3t 3sx e 2 y x e 2 y z = 5s e 5t t y , 3t 3t 3t , z = 5 e 5t + t y , , , 3sx e 2 y x e 2 y 3t . 3t 3t z = 1 e 5t y t x e 2 y z = 5 e 5t t y x e 2 y 3t z = 5s e 5t + 3sx e 2 y t y 3t 3t Problem code: stet. 14.05.08m 4 Let W ( s , t ) = F ( u ( s , t ) , v ( s , t ) ) , where F, u and v are differentiable, u (1, 0 ) = 2 , u u (1, 0 ) = 1 , v (1, 0 ) = 3 , v (1, 0 ) = 1 , v (1, 0 ) = 9 , F t s W (1, 0 ) and W (1, 0 ) . s W (1, 0 ) = ________ W (1, 0 ) = ________ s t Problem code: stet. 14.05.14 PAGE 2 t t u ( 2, 3 ) = s (1, 0 ) 5 , and F v = 7, ( 2, 3 ) = 18 . Find Name: __________________ 5 Date: _____________ Use a tree diagram to write out the Chain Rule for u = f ( x , z ) , where x = x ( r , b , c ) and z = z ( r , b , c ) . Assume all functions are differentiable. a. b. c. d. e. Problem code: stet. 14.05.17m PAGE 3 Class: u = r u = c u x u x u z u z x r x c z r z c , u = b u x u z x b z b , u = u x + u z , u = u x + u z , u = u x + u z r x r z r b x b z b c x c z c u = r u = c u + x u + x u z u z x + r x + c z r z c u = r u + x x + r u z u = , b z r u + x x + b u = r u x x r u z u = , z b r u x x b u = b u + u x z u z u = , c z b u + x x + c , u z u = , z c b u x x c x + z b b u z z c u z z c , Name: __________________ Class: Date: _____________ 6 dy = dx F x F y = F F x y 2 dy if y 6 + x 2 y 5 = 7 + y e x . Use the given equation to find dx dy = a. dx 6y dy = b. dx 5 5 5 4 e 2xy e 2 + 5x y x 5 2xy 2 2xy e 6y + 5x y 2xy 6y dy = c. dx 5 2 x 2xy e 4 x 2 2 + 5x y 2xy 4 x 4 x 5 4 x 2 2 dy = 6y + 5xy e e. 2 dx x 2 5 2xy e 2x y 2 e 2 5 dy = 6y + 5xy + e d. 2 dx x 2 5 2xy e 2x y x 2 5 + e x 2 Problem code: stet. 14.05.28m 7 (x,y) is T ( x , y ) , measured in degrees Celsius. A bug crawls so that its position after t seconds is given 1 by x = 1 + t , y = 6 + t , where x and y are measured in centimeters. The temperature function satisfies 3 T ( 2, 7 ) = 4 and T ( 2, 7 ) = 9 . How fast is the temperature rising on the bug's path after 3 seconds? The temperature at a point x dT = dt y ________ C/s Problem code: stet. 14.05.35 8 The pressure of 1 mole of an ideal gas is increasing at a rate of 0.08 kPa/s and the temperature is increasing at a rate of 0.17 K/s. Use the equation P V = 8.31T to find the rate of change of the volume when the pressure is 10 kPa and the temperature is 340 K. Please round your answer to the nearest hundredth. dV = dt Problem code: stet. 14.05.41 PAGE 4 ________ L/s ANSWER KEY Homework 14.5 Math 22 Spring 2007, Bauerle 1. e 2. c 3. e 5. b 6. a 7. 4 ANSWER KEY Page 1 53 157 8. 2.12 4.
© Copyright 2026 Paperzz