Species Richness and Genome Size Diversity in Hymenoptera with Different Developmental Strategies: A DNA Barcoding Enabled Study by João Lima A Thesis presented to The University of Guelph In partial fulfilment of requirements for the degree of Doctor of Philosophy in Integrative Biology Guelph, Ontario, Canada © João Lima, May, 2012 ABSTRACT Species Richness and Genome Size Diversity in Hymenoptera with Different Developmental Strategies: A DNA Barcoding Enabled Study João Lima University of Guelph, 2012 Advisors: Professor TR Gregory Professor RH Hanner Professor JD Shorthouse A species threshold was used to assign unidentified Hymenoptera into DNA barcode Operational Taxa (DbOT) for both an assessment of species richness in rose gall communities and as part of a broad scale survey of genome size diversity. The species threshold of 2.2% was calculated from minimum interspecific divergence of DNA barcode (COI, mtDNA) and internal transcribed spacer region 1 (ITS1, rDNA) sequences from both identified and unidentified Hymenoptera associated with rose galls induced by Diplolepis (Cynipidae). Analysis of both DNA barcodes and ITS1 sequences suggested that several described species of Diplolepis (Cynipidae), Periclistus (Cynipidae), and Torymus (Torymidae) require re-examination to define species boundaries. It was also determined that the total number of DbOTs is higher than previous estimates of species richness of Hymenoptera associated with rose galls induced by Diplolepis. Additionally, genome size estimations were determined for 51 DbOTs from all eight families of Hymenoptera associated with rose galls induced by Diplolepis, five of which did not have any previous genome size estimates. A subsequent large-scale survey of Hymenoptera enabled by the use of the DbOT approach produced genome size estimations for 309 DbOTs from 36 families in 13 superfamilies. It was shown that Hymenoptera do not have smaller genome sizes than other holometabolous orders, and that a parasitoid lifestyle does not appear to constrain genome size. The suggested positive relationship between genome size and development time was investigated by comparing mean genome size of taxa with known or apparent differences in development rate. It was concluded that statistical comparisons between taxa that are grouped in broad categories would be unlikely to detect significant differences in mean genome size because the range of biological features within such categories is highly variable. However, comparisons between interacting groups with narrowly defined development strategies determined that mean genome size was statistically smaller in taxa that obtained resources within a narrow window of opportunity. This result suggests that rapid development in relation to competitors may be important in species of Hymenoptera with higher mortality risk. ACKNOWLEDGMENTS I completed this PhD thesis with the help and support of many people, and I wish to thank everyone that was involved. With more time, paper, and personal reflection, I would include the name of everyone that held a door for me when I was trying to get to a meeting, anyone that shared a piece of paper and pen when I needed to take notes, and every audience member at each conference I presented a portion of the work from this PhD thesis. However, I recognize I cannot recall every interaction beginning from September 2007 up to and including my PhD defence date. I hope I have included names of individuals that I believe were relevant as either negative and/or positive influences on my thesis work. Please forgive any silly mistake if I have not included your name. Let me know about my silly omission error(s), and I will buy you a Coke. My PhD research program began with the generous support provided by the University of Guelph, College of Biological Sciences, Faculty Research Assistance Award to Dr. Ryan Gregory and Dr. Bob Hanner. I am grateful for this opportunity to pursue my doctorate degree, and this funding provided myself with the experience that I had believed would never be realized. From this beginning, the following acknowledgments developed. Thank you to my PhD advisory committee: Dr. Ryan Gregory, Dr. Bob Hanner, Dr. Joe Shorthouse, and Dr. Teri Crease. I appreciate the access to facilities and supplies required for this research. Each member of my committee provided guidance and feedback to a variety of issues during my graduate studies, and I believe I progressed forward despite the challenge of combining several independent and conflicting viewpoints. I was both delighted and inspired with repeated discussions with Dr. Ryan Gregory pertaining to Chapter Three and the final draft of my thesis. In the future, I hope to patiently listen to another person’s jumble of ideas, reflect wisely upon them, brainstorm possible pathways to improve the ideas, and then offer to listen again another day. I was also fortunate to have Dr. Teri Crease graciously accept my late invitation to participate as a committee member. I wish I had interacted with Dr. Teri Crease early in my post-graduate degree, but the honour and pleasure was postponed until my PhD candidacy exam. I believe that every following committee meeting, chapter review, and advisorstudent interaction was strengthened by Dr. Teri Crease’s involvement. Thank you. I am grateful for support provided by Ontario Centres of Excellence, Flowers Canada (Ontario), the Government of Canada through Genome Canada, and the Ontario Genomics iv Institute to the International Barcode of Life Project. This funding enabled the Canadian Centre for DNA Barcoding (University of Guelph) to carry out the sequence analysis on the specimens. I also thank the Ontario Ministry of Economic Development and Innovation for funding the ongoing development of Barcode of Life Data Systems (BOLD). Thank you to all the staff of the Biodiversity Institute of Ontario that was involved in amplifying the DNA barcode and ITS1 sequences, and I especially appreciate the assistance of Constantine Christopoulos, Liuqiong Lu, Jayme Sones, Janet Topan, and Rick Turner. From the Laurentian University, I am grateful to Dr. Joe Shorthouse for access to specimens from both the reference collection and various collecting trips. Thank you to Anne Kidd for assistance in entering data on specimen data spreadsheets of identified Diplolepis (Cynipidae) that had been selected by Dr. Joe Shorthouse. I am grateful for support provided by an NSERC Discovery Grant and the Laurentian University Research Fund awarded to Dr. Joe Shorthouse. It was a pleasure working with Brandy Smallwood on various tasks during my summer at Laurentian University, and it was enjoyable to sort through emergence jars daily to collect live Hymenoptera exiting rose galls. Thank you to Dr. Mery Martinez for granting me access to the -80ºC freezer in order to store Hymenoptera specimens during the summer. I am grateful for support provided by The Northern Research Fund and Northern Scientific Training Program which allowed me to collect Hymenoptera from Churchill, MB. The excellent staff and facilities available at The Churchill Northern Study Center were crucial to my survival and sanity while conducting my research in the subarctic. Better luck next time, Mama Polar bear! From the University of Guelph, I am grateful to Eugene Wong and Rachel Breese for introducing me to my first piston-driven air displacement pipette, well-plate, primer set, and thermocycler. Heather Braid provided additional technical support with DNA barcoding protocols whenever time permitted. Dr. Brain Husband and Paul Kron rescued my PhD research by providing excellent technical assistance, generous allotment of time, and a working flow cytometer. Working with Paul Kron for a few months was an unexpected soothing experience, and I benefitted from the opportunity to work in an environment that was both academically and technically superb and maintained a friendly atmosphere. Nick Jeffery and Tyler Elliot were helpful in academic and personal matters, and I wish I had not been relocated to a different office so early during my post-graduate studies. Nick Jeffery was very supportive with technical v assistance in understanding the interface programs of the three different models of flow cytometers that passed through the Gregory laboratory from 2008 to 2011. To my field collecting team members: Tyler Ellitot, Gláucia Lima, and John Wilson, I enjoyed our trips and I am greatful for your time and efforts in collecting the WeirdTinyFliers! Most important to me personally was the support and assistance from Gláucia Lima. Foram imbatíveis! Without Gláucia Lima’s support I would not have recovered from an unexpected medical emergency in sufficient time to begin my PhD graduate studies. Gláucia Lima was able to gather the medical team more rapidly than I would have been able to achieve in Brasil, and her persistence accelerated the appointment for the medical procedure and following treatments. Gláucia Lima’s involvement enabled me to arrive in Canada in the third week of September 2007 instead of forfeiting the position at the University of Guelph. I hope I never have to experience another medical emergency in a foreign country, but if I suffer such a misfortune, I would be lucky if Gláucia Lima would assist me again. Gláucia Lima also provided incredible support during the years of my PhD research. She provided additional security on field trips north of Cochrane, ON. Better luck next time, black bears! Gláucia Lima repeatedly collected insects on her own time and brought home bushels of leaf rolls, baskets of oak galls, and ziploc bags of WTFs. Most of them were Hymenoptera to boot! She is the most insect savvy civil engineer I personally know. She assisted me with sorting of live insects and complied with my strange requests to return any unnecessary insect back to the wild unharmed. She happily photographed hundreds of specimens despite their peculiar and unattractive characteristics. Thank you for correcting the grammar and spelling of my Portuguese. She also provided me with financial and personal support that was kind and generous throughout this post-graduate experience. I am indebted to you Gláucia Lima, and you should be aware that your involvement with me before and during this doctorate degree foi bom pra caramba! Thank you. P.S. Gláucia Lima, eu te amo! vi DEDICATION Para todos que nasceram sozinhos. Terceira ilha, Terceiro filho, Terceira vez! Conversa sobre a minha pesquisa Anônimo: Quem é seu orientador? Eu: Na verdade eu tenho três orientadores. Anônimo: Três? Nossa, parece você tem três esposas! Eu: Infelizemante, parace mais que eu tenho três sogras. Oração de São Francisco de Assis Senhor, fazei-me instrumento de vossa paz Onde houver ódio, que eu leve o amor Onde houver ofensa, que eu leve o perdão Onde houver discórdia, que eu leve a união Onde houver dúvida, que eu leve a fé Onde houver erro, que eu leve a verdade Onde houver desespero, que eu leve a esperança Onde houver tristeza, que eu leve a alegria Onde houver trevas, que eu leve a luz Ó Mestre, fazei que eu procure mais Consolar, que ser consolado Compreender, que ser compreendido Amar, que ser amado Pois, é dando que se recebe É perdoando que se é perdoado E é morrendo que se vive para a vida eterna vii TABLE OF CONTENTS List of Tables ........................................................................................................................... xii List of Figures .......................................................................................................................... xiii List of Appendices .................................................................................................................. xv CHAPTER ONE General introduction to lifestyles of Hymenoptera, DNA barcoding, and genome size ... 1 1.1 Lifestyles of Hymenoptera ..................................................................................... 2 1.2 DNA barcoding and Hymenoptera ......................................................................... 5 1.3 Identification without species names ...................................................................... 7 1.4 Insects: development and genome size .................................................................. 9 1.5 Hymenoptera: genome size estimates ..................................................................... 12 1.6 Common genome size estimation methods ............................................................ 12 1.7 Thesis objectives ..................................................................................................... 15 CHAPTER TWO Assessing species richness of gall inducers of the genus Diplolepis (Hymenoptera: Cynipidae), inquilines of the genus Periclistus (Hymenoptera: Cynipidae), and parasitoids (Hymenoptera, Chalcidoidea and Hymenoptera, Ichneumonoidea) associated with rose gall communities found in Canada ............................................................................................... 21 ABSTRACT ................................................................................................................ 22 INTRODUCTION ...................................................................................................... 23 2.1 Cynipid component communities ............................................................... 23 2.2 Cynipid galls ............................................................................................... 24 2.3 Rose gall inducers: Diplolepis .................................................................... 25 viii 2.4 Rose gall inquilines: Periclistus ................................................................. 26 2.5 Rose gall parasitoids ................................................................................... 28 2.6 Molecular identification tool: DNA barcoding............................................... 29 2.7 Objectives ................................................................................................... 32 MATERIALS AND METHODS ............................................................................... 33 2.8 Specimen collection and deposition............................................................ 33 2.9 DNA extraction and PCR amplification...................................................... 35 2.10 Sequence Analyses ................................................................................... 36 RESULTS .................................................................................................................... 37 2.11 Diplolepis: COI and ITS1 ......................................................................... 38 2.12 Periclistus: COI and ITS1 ......................................................................... 39 2.13 Torymus: COI and ITS1 ............................................................................ 41 2.14 Calculated species threshold ..................................................................... 42 2.15 Rose gall community species composition ............................................... 45 DISCUSSION .............................................................................................................. 46 2.16 Cynipidae morphology and DNA barcodes .............................................. 48 2.17 Gall morphology and inducer identification ............................................ 55 2.18 Parasitoids of rose galls and DNA barcodes ............................................ 58 2.19 Cryptic, synonymous, new, and unsampled species ................................ 60 CONCLUSION............................................................................................................ 63 ix CHAPTER THREE Patterns of genome size diversity in Hymenoptera and a test of possible development constraints: a large-scale study enabled by DNA barcoding .............................................. 84 ABSTRACT ................................................................................................................ 85 INTRODUCTION ...................................................................................................... 86 3.1 Hymenoptera feeding ................................................................................. 86 3.2 Definitions of larval feeding modes ........................................................... 86 3.3 Genome size and Hymenoptera .................................................................. 90 3.4 Objectives ................................................................................................... 92 MATERIALS AND METHODS .............................................................................. 94 3.5 Specimen collection and deposition ........................................................... 94 3.6 DNA extraction, PCR amplification, and sequence analyses .................... 96 3.7 Genome size estimation ............................................................................. 96 3.8 Other published data: Genome size estimations ......................................... 98 3.9 Data Analysis ............................................................................................. 98 RESULTS .................................................................................................................... 98 3.10 Range of Hymenoptera genome sizes ...................................................... 98 3.11 Genome size: dichotomous hypothesis .................................................... 101 3.12 Genome size: cleptoparasites and hosts ................................................... 101 3.13 Genome size: inquilines and inducers ...................................................... 102 DISCUSSION .............................................................................................................. 103 3.14 Range of Hymenoptera genome size ........................................................ 103 3.15 Genome size: dichotomous hypothesis .................................................... 106 x 3.16 Genome size: cleptoparasites and hosts .................................................... 109 3.17 Genome size: inducers and inquilines ...................................................... 110 3.18 Genome size and biologically relevant comparisons ............................... 111 CONCLUSION.............................................................................................................. 112 CHAPTER FOUR General discussion and conclusion ........................................................................................ 122 4.1 Identification challenges within this thesis ................................................. 123 4.2 Conclusions and synthesis .......................................................................... 127 REFERENCES ....................................................................................................................... 134 xi LIST OF TABLES CHAPTER ONE Table 1.1. Families of Hymenoptera known from Canada ........................................... 18 Table 1.2. Species of Hymenoptera available for genome size estimates .................... 19 CHAPTER TWO Table 2.1. Species of Diplolepis (Cynipidae) worldwide ............................................. 64 Table 2.2. Species of Periclistus (Cynipidae) in North America ................................ 65 Table 2.3. Species of parasitoid associated with rose galls induced by Diplolepis ..... 66 Table 2.4. Species of Torymus (Torymidae) associated with rose galls induced by Diplolepis ..................................................................................................................... 67 Table 2.5. Species of Diplolepis (Cynipidae) selected for DNA barcoding ................ 68 Table 2.6. Species of Periclistus (Cynipidae) selected for DNA barcoding ............... 69 Table 2.7. Species of Torymus (Torymidae) selected for DNA barcoding .................. 70 Table 2.8. Unidentified Hymenoptera exiting rose galls selected for DNA barcoding 71 Table 2.9. Periclistus (Cynipidae) associations with rose galls induced by Diplolepis 72 Table 2.10. Torymus (Torymidae) associations with rose galls induced by Diplolepis 73 Table 2.11. Species richness of Hymenoptera associated with rose galls induced by Diplolepis ..................................................................................................................... 74 CHAPTER THREE Table 3.1. Studies of genome size estimates of Hymenoptera by flow cytometry ....... 113 Table 3.2. Total number of genome size estimates of Hymenoptera ........................... 114 Table 3.3. Egg development time of oak and rose gall wasps .................................... 115 CHAPTER FOUR Table 4.1. Total number of genome size estimates of Insecta .................................... 132 xii LIST OF FIGURES CHAPTER ONE Figure 1.1. Genome size diversity of superfamilies within Hymenoptera as determined in previous studies ............................................................................................................. 20 CHAPTER TWO Figure 2.1. Amplification success of DNA barcodes from adults and larvae of Diplolepis (Cynipidae), Periclistus (Cynipidae), and Torymus (Torymidae) ............................... 75 Figure 2.2. NJ dendrogram of reference vouchers of Diplolepis (Cynipidae) ............. 76 Figure 2.3. NJ dendrogram of reference vouchers of Periclistus (Cynipidae) ............. 77 Figure 2.4. NJ dendrogram of reference vouchers of Torymus (Torymidae) ............... 78 Figure 2.5. NJ dendrogram of both reference and unidentified adult and larva specimens of Diplolepis (Cynipidae) ............................................................................................. 79 Figure 2.6. NJ dendrogram of both reference and unidentified adult and larva specimens of Periclistus (Cynipidae) ............................................................................................. 80 Figure 2.7. NJ dendrogram of both reference and unidentified adult and larva specimens of Torymus (Torymidae) ............................................................................................... 81 Figure 2.8. NJ dendrogram of unidentified adult and larva specimens of parasitoids (except Torymidae) associated with rose galls induced by Diplolepis ......................... 82 Figure 2.9. Schematic representation of post-DNA barcoding work protocol for species identification of DbOTs .............................................................................................. xiii 83 CHAPTER THREE Figure 3.1. Genome size diversity of superfamilies within Hymenoptera ................... 116 Figure 3.2. Genome size diversity of subfamilies within Braconidae .......................... 117 Figure 3.3. Genome size diversity of subfamilies within Ichneumonidae ................... 118 Figure 3.4. Genome size diversity of cleptoparasites and reported hosts .................... 119 Figure 3.5. Genome size diversity of inquilines and inducers ..................................... 120 Figure 3.6. Genome size diversity of orders within class Insecta ................................ 121 CHAPTER FOUR Figure 4.1. New genome size estimates within Hymenoptera ..................................... 133 xiv LIST OF APPENDICES Appendix 1. Taxa included in DNA barcoding of rose gall inhabitants, together with identification and collection information ……………….………................................. 160 Appendix 2. Genome size estimation of Hymenoptera with information on specimen Identification …………………….………………..……………................................. 195 Appendix 3. Genome size estimation of Hymenoptera with information on specimen collection and biology…………….…………………..…………................................. 220 Appendix 4. Published studies of genome size estimation of Hymenoptera with information on biology……………………….…………………................................. 238 xv CHAPTER ONE General introduction to lifestyles of Hymenoptera, DNA barcoding, and genome size 1 SUMMARY The current number of genome size estimates of Hymenoptera is limited in part by the difficulty in identifying described species and the large number of species that lack formal names. This is particularly significant in efforts to study genome size diversity in Hymenoptera with varying life histories, such as among different types of parasitoids. This chapter provides an overview of Hymenoptera biology as it relates to questions about genome size evolution in the order, reviews the state of knowledge of genome size diversity in these insects and the major questions that remain unresolved in this area, and summarizes the potential utility of DNA barcoding for enabling large-scale studies of Hymnoptera genome size diversity. 1.1 Lifestyles of Hymenoptera The order Hymenoptera is the sister lineage of all other holometabolous insects (Ishiwata et al. 2011) — i.e., insects that develop from an egg, through several larval instars, to a pupa stage, and finally emerge as an adult (Gauld and Bolton 1988). The order Hymenoptera contains over 115, 000 described species worldwide, and it is among the four most diverse groups of insects along with the orders Coleoptera (beetles), Diptera (flies), and Lepidoptera (butterflies and moths) (Sharkey 2007). The Hymenoptera are major constituents of terrestrial habitats because of their numerous interactions with other organisms via a diverse array of ecological lifestyles (Austin and Dowton 2000). They are important as herbivores, parasitoids, pollinators, predators, and scavengers (Sharkey 2007, Huber 2009). The type of food resource provided to larvae by the ovipositing female has been an important biological trait throughout the evolution of Hymenoptera and has resulted in a large variety of life histories (Gauld and Bolton 1988). Ancestral Hymenoptera fed on plant tissues, and the transition from phytophagy to forms of 2 carnivory (parasitoids and predators) has led to the greatest species diversity of the order (Sharkey 2007, Heraty et al. 2011) The predominant lifestyle in modern Hymenoptera is that of parasitoids where larvae directly obtain nourishment from a single host individual to complete their development, and in which death of the host always results (Gauld and Bolton 1988, Eggleton and Belshaw 1992, Godfray 1994, Quicke 1997). Approximately half the species of Hymenoptera are parasitoids (Gauld and Bolton 1988, Eggleton and Belshaw 1992, Godfray 1994, Quicke 1997, Grisssell 1999, Huber 2009). Although the term parasitoid is generally recognized by ecologists as a single trophic level, it actually encompasses a number of highly variable behaviours and strategies(Pennacchio and Strand 2006). In particular, parasitoids are functionally diverse in their interactions with hosts, and development of parasitoid progeny can be within the host (endoparasitoid) or externally on the surface of the host (ectoparasitoid). Different species attack a specific host life stage and their resulting progeny then leave the host at a specific life stage (Mills 1992, Godfray 1994, Quicke 1997). For example, some species of parasitoid will attack insect eggs and their progeny will exit from this host egg while other species of egg parasitoid have progeny which delay development until the larva stage of the host. The former parasitoid represents an “idiobiont” which paralyzes their host at the beginning of the association or prevents the host from moulting to the next stage whereas the latter parasitoid is a “koinobiont” which allows the host to continue development after the parasitoid begins feeding (Askew and Shaw 1986). This dichotomous grouping of parasitoids into idiobionts or koinobionts was initially proposed to allow comparative tests of host specificity (Askew and Shaw 1986), and it is also believed to organize differences in several life history traits between the two groups (Blackburn 1991, Godfray 1994, Quicke 1997, Mayhew and Blackburn 1999). 3 Size and development time are considered two of the most important fitness related life history traits that are generally in conflict with each other because limitations in aspects such as metabolism and resources do not allow an organism to grow both rapidly and large (Mackauer and Sequeira 1993, Harvey and Strand 2002, Harvey 2005). Size has been most often used in studies of intraspecific fitness because of its ease of measurement and its strong correlation with other fitness related measures such as fecundity and longevity (Godfray 1994, Quicke 1997). However, analysis of one of the best datasets of life history traits and ecological variables of parasitoids, which included 474 species from seven superfamilies and 25 families (Blackburn 1990), determined that body size did not correlate with either fecundity or longevity across parasitoid taxa (Mayhew and Blackburn 1999). It is possible that higher mortality of early host stages (young larvae) has selected for small egg size and higher fecundity in parasitoids, especially koinobionts, that attack these stages (Blackburn 1991), and small hosts generally produce small parasitoids (Godfray 1994, Quicke 1997). Development time has received less attention than size in studies of parasitoid fitness related life history traits, but it is important because of the trade-off between development time and adult size (Mackauer and Sequeira 1993, Harvey and Strand 2002, Harvey 2005). Rapid development may be advantageous to Hymenoptera that have high mortality risks; for example, Ichneumonoidea (Braconidae and Ichneumonidae) that attack exposed hosts (external foliage feeders) favour rapid development over size as compared to Ichneumonoidea that attack concealed hosts (fruit, seeds, stems) (Harvey and Strand 2002). Idiobionts generally attack concealed hosts because an exposed paralysed host, and the parasitoid consuming it, would be susceptible to general predation (Godfray 1994, Quicke 1997). Therefore, the protected habitat of idiobionts should favour longer development, but the Blackburn dataset determined that development time was shorter in 4 idiobionts as compared to koinobionts across a wide survey of parasitoids (Mayhew and Blackburn 1999). Knowledge about taxonomy and biology of species of Hymenoptera is hampered by the challenge of their identification because of both intraspecific morphological plasticity and small body size (Godfray and Shimada 1999, Gariepy et al. 2007, Grissell 1999, Stone et al. 2008, Huber 2009). Studies of life history traits of Hymenoptera, such as development time, are generally limited either by biology (parasitoid: Mayhew and Blackburn 1999) and/or taxonomy (Ichneumonoidea: Braconidae and Ichneumonidae: Harvey and Strand 2002) to facilitate the search for possible patterns. To support broad scale comparisons of development time between interacting species of Hymenoptera with different lifestyles and habitats, a simple and efficient tool is required for rapid species identification. 1.2 DNA barcoding and Hymenoptera It was proposed that DNA barcodes could be used to confidently link field collected organisms with a reference sequence of a previously identified species (Hebert et al. 2003). The selected DNA barcode region corresponds to nucleotide positions 1490-2198 of the Drosophila yakuba mitochondrial genome sequence, which is ~700 nucleotides of the 5’ end of the cytochrome c oxidase subunit 1 gene (Clary and Wolstenholme 1985). One of four nucleotides is located at each position along a single strand of DNA and this provides enormous variation in which to search for characters to identify species (Hebert et al. 2003). Coupled with a 2% rate of substitution per million years in mitochondrial DNA (Brown et al. 1979), separate species potentially acquire enough differences in nucleotides such that sequences are more different between species as compared to within species (Hebert et al. 2003). A query DNA barcode of an 5 unknown specimen can be compared to DNA barcodes of vouchered specimens on the Barcode of Life Database website (BoLD, www.barcodinglife.org). Confirmation of species identification is then assessed by user preference of criteria such as, but not limited to, closest match similarity or Neighbour-joining tree based methods. An advantage of the BoLD database is that reference DNA barcodes are accompanied with information on taxonomy and collection details of the vouchered specimen. Using DNA barcoding for identification of all metazoan taxa is ambitious (Hebert et al. 2003), and its application is useful in discriminating members of highly diverse taxa, such as insects, which are challenging to identify and are of ecological, economic and medical importance (Scudder 2009). The importance of species identification by DNA barcodes has been suggested for biosurveillance of released biological control agents (Hanner et al. 2009), detection of arthropod pests in globally traded plant materials (Floyd et al. 2010), and biomonitoring of pest Lepidoptera (deWaard et al. 2010). In fact, the utility of DNA barcoding as a rapid and accurate molecular tool for identification of Hymenoptera is accepted and recognized by several prominent researchers whose work includes both classical and molecular taxonomy (Smith et al. 2008, Sheffield et al. 2009, Ács et al. 2010, Boring et al. 2011, Santos et al. 2011). Additionally, DNA barcoding has been successfully used to distinguish closely related species of parasitoids (Monti et al. 2005), to quantify level of parasitism in the field (Gariepy et al. 2007, 2008), to discover cryptic species of parasitoids (Sha et al. 2006, Lotfalizadeh et al. 2007), and to assess host-parasitoid associations (Rougerie et al. 2010, Hrcek et al. 2011). The simplest and least contentious goal of DNA barcoding is to guide a non-specialist to species determination as would the role of an identification key or published description (DeSalle et al. 2005, Packer et al. 2009, Teletchea 2010). DNA barcoding has been widely 6 accepted by the scientific community as a valuable molecular identification tool that contributes data in the support of taxonomy and other biological sciences (i.e. ecology, forensics) (DeSalle et al. 2005, Waugh 2007, DeWalt 2011). The success of species identification by DNA barcoding requires an established library of DNA barcoding sequences of species from a reference collection (Casiraghi et al. 2010, Yassin et al. 2010).Unfortunately, the BoLD website does not contain a coverage of DNA barcodes that allows a query sequence of an unidentified individual to be confidently assigned to species or genera for most families of Hymenoptera (Santos et al. 2011). However, a sequence divergence threshold could be used as a surrogate approach for identification of Hymenoptera without the requirement of species names (Smith et al. 2005a, Smith et al. 2009, Santos et al. 2011). 1.3 Identification without species names Collection, sample preparation, and identification of a wide range of insect taxa to species level requires considerable costs, taxonomic expertise, and time that may be beyond the resources available for many research projects (Krell 2004, Derraik 2010, DeWalt 2011, Santos et al. 2011). Grouping specimens into morphological categories, such as Recognizable Taxonomic Units (RTUs), is a substitute for species identification when the primary objective of a study is to organize data by biology (i.e. idiobiont) or ecology (i.e. shared hosts) rather than to formally describe and name taxa (Oliver and Beattie 1993). Unfortunately, it has been repeatedly stated that morphological surrogate systems of species identification seek to exclude taxonomic experts or trivialize the importance of species identification (Goldstein 1997, Krell 2004). Collaboration with taxonomic experts is preferred and actively searched for during rapid biological assessments (Beattie and Oliver 1999), but expertise is often lacking due to constraints 7 of time or funding (Beattie and Oliver 1994). The usefulness of any morphological surrogate approach is increased when both taxonomic experts are involved to verify the categorized taxa and specimen data is made available on an information database (Beattie and Oliver 1994). However, when morphological characters are absent from specimens, molecular sequences may be analyzed to group specimens into categories of identification. Similarly to criticisms of the use of RTUs as morphological surrogate systems of species identification, DNA barcoding has been repeatedly criticized as a molecular method that excludes taxonomic experts or trivializes the importance of species identification (Will et al. 2005, Rubinoff 2006, Ebach and de Carvalho 2010). Despite repeated criticism of using a species threshold in biodiversity inventories, estimates of taxon richness among a species threshold and morphology were not significantly different for ants in Antsiranana, Madagascar (Smith et al. 2005a), or for parasitoids in Manitoba, Canada (Smith et al. 2009). The use of a species threshold does not suggest that alternative methods for species delimitation are not available and superior, but an integrative taxonomic method requires well sampled populations for which the morphology, geography, ecology, and behaviour of taxa are well known (DeSalle et al. 2005, Padial et al. 2010, Yassin et al. 2010). A species threshold has an important role in providing a rapid and inexpensive method of separating species of Hymenoptera when the majority collected will be of small sample size (i.e. singletons), be from undescribed species, and be from a large number of families within a narrow geographic area. The simplest method to increase the number of broad scale comparisons of development time between interacting species of Hymenoptera with different lifestyles and habitats would be to obtain live individuals of described species from cultures. However, the list of approved parasitoids that are sold within Canada only includes 39 species in two superfamilies from seven 8 families (Table 1.2, CFIA 2011). Additionally, the Hymenoptera listed within the programs of annual meetings of the Entomological Society of Canada (ESC) from 2007-2011 cover only eight superfamilies from 16 families (Table 1.2, ESC 2011), all of which are either pinned or preserved in ethanol. An optimistic estimate of the total number of live and identified Hymenoptera available for a comparative study of development time is 25 species in 2 superfamilies from 6 families (Table 1.2). Given the limitations of obtaining live Hymenoptera from a wide range of families with a variety of lifestyles from available cultures, field collections of Hymenoptera are necessary. The Canadian Hymenoptera include species from 21 superfamilies and 66 families (Table 1.1), but several families are rare (n ≤ 5 species) and not represented in each province or territory. Hymenoptera is estimated to include the greatest number of species of any insect order in Canada, and is also considered to have the greatest proportion of undescribed species (Masner et al. 1979). Because field collected Hymenoptera will most likely be both undescribed (Masner et al. 1979) and not available on the BoLD website (Santos et al. 2011), a species threshold is required to separate individuals into separate DbOTs when the genetic divergence between them is greater than a predetermined value. I will explore the use of a species threshold to categorize collected Hymenoptera into DbOTs to circumvent the limited number of live described species available for comparative studies of development time. 1.4 Insects: development and genome size Organismal growth is dependent upon size and division of cells and the amount of differentiation of cells, tissues, and organs (Hafen and Stocker 2003). Development in insects can be grossly divided into components of time and complexity where the former is the duration of components of the life cycle and the latter is the amount of morphological changes in a life 9 cycle (Gregory 2002). The amount of DNA contained in the haploid set of chromosomes of an organism, defined as C-value or genome size (Greilhuber et al. 2005), positively correlates with both cell size and cell division time because a large amount of DNA cannot physically fit into a small cell and a larger genome takes more time to replicate, respectively (Gregory 2002). Genome size is measured by weight or by number of base pairs, and the two measurements may be interconverted using the following formula (Doležel et al. 2003): or, [i.] Genome Size (Mbp)† = 0.978 109 mass [ii.] Genome Size (pg)‡ = Mbp 0.978 10 9 where, † Mbp is equal to 106 nucleotide base pairs ‡ mass is measured in picograms (10-12 g) The direct influence of genome size on the cellular properties of size and division time may influence organism level traits such as cell size, body part size, development time, developmental complexity, and ecological interactions (Gregory 2005). Genome size is positively correlated with sperm dimensions, such as sperm area of leaf beetles (Coleoptera: Chrysomelidae) (Petitpierre et al.1993) and sperm length of fruit flies (Diptera: Drosophilidae) (Gregory and Johnston 2008). Positive correlations of genome size and size of specific body parts have been reported using the wings of mosquitoes (Diptera: Culicidae) (Ferrari and Rai 1989) and fruit flies (Diptera: Drosophilidae) (Craddock et al. 2000), body length of aphids (Hemiptera: Aphididae) (Finston et al. 1995), and thorax length of fruit flies (Diptera: Drosophilidae) (Gregory and Johnston 2008). However, no significant correlation was found between genome size and head 10 width of ants (Hymenoptera: Formicidae) (Tsutsui et al. 2008) and genome size and intertegular span of bees (Hymenoptera: Apidae) (Tavares et al. 2010a). Size of any phenotypic trait is a combination of both number and size of cells (Hafen and Stocker 2003), and so positive correlations with genome size are not universal in all body parts and all insect taxa (Gregory 2005). Holometabolous insects have a pupa stage during their development which is absent from ametabolous and hemimetabolous insects, and the developmental complexity has led to the evolution of rapid life cycles (Truman and Riddiford 1999, 2002). Holometabolous insects have genome size below 2 pg (Gregory 2002), and it has been suggested that this threshold may be due to the extent of modifications occurring during the transformation of the pupa to the adult (Gregory 2002). Moreover, imaginal discs of holometabolous insects differentiate and develop during larval instars thereby reducing the time required for adult structures to form and support rapid life cycles (Truman and Riddiford 1999, 2002). Genome size is negatively correlated with total development time of mosquitoes (Diptera: Culicidae) (Ferrari and Rai 1989) and fruit flies (Diptera: Drosophilidae) (Gregory and Johnston 2008), and pupa development time of ladybird beetles (Coleoptera: Coccinellidae) (Gregory et al. 2003). An association of genome size and development time has not been investigated in previous studies with Hymenoptera (Gadau et al. 2001, Johnston et al. 2004, Honeybee Genome Sequencing Consortium (2006), Barcenas et al. 2008, Tsutsui et al. 2008, Lopes et al. 2009, Ardila-Garcia et al. 2010, Tavares et al. 2010a, Tavares et al. 2010b, Gokhman et al. 2011, Hanrahan and Johnston 2011). 11 1.5 Hymenoptera: genome size estimates Genome size has been estimated by several methods in 162 species of Hymenoptera, and these estimates include six superfamilies and 16 families (Figure 1.1, Gregory 2011). Species coverage is composed of 39.5 % ants (Formicidae), 24.1 % bees (Apidae), 19.8 % parasitoids (Aphelinidae, Braconidae, Encyrtidae, Eulophidae, Figitidae, Ichneumonidae, Mutillidae, Pteromalidae, Scoliidae, and Trichogrammatidae), 0.6 % sawflies (Cephidae), and 16.0 % wasps (Crabronidae, Sphecidae, and Vespidae) (Appendix 4, Gregory 2011). Since approximately 50 % of the species of Hymenoptera are parasitoids (Gauld and Bolton 1988, Eggleton and Belshaw 1992, Godfray 1994, Quicke 1997, Grisssell 1999, Huber 2009), this lifestyle is under represented in the current genome size estimates of Hymenoptera. Average number of genera per family with genome size estimates by all methods is 5.7 ± 9.02, but the average number of genera per family drops to 2.9 ± 2.11 when social Hymenoptera, such as ants and bees, are not included. In terms of coverage by number of families, genera, or species, Hymenoptera currently has the least number of genome size estimates in comparison to the other diverse holometabolous orders Coleoptera (beetles), Diptera (flies) and Lepidoptera (butterflies and moths) (Gregory 2011). 1.6 Common genome size estimation methods Whole genome sequencing is expensive and intensive both in terms of number of people and time required (Bennett and Leitch 2005, Gregory 2005), so it is not feasible as a routine method for determining genome size of most species. Currently, most animal genome size estimations are undertaken either by Feulgen densitometry or flow cytometry, which are complementary techniques with their own advantages and disadvantages (Bennett and Leitch 2005, Gregory 2005). 12 Feulgen stain reaction is a specific stain that stoichimetrically binds to DNA thus providing a measurement of the amount of DNA when compared to a standard with known genome size (Bennett and Leitch 2005, Gregory 2005). Cells are fixed to microscope slides, treated to the Feulgen stain reaction, and then the amount of light absorbed by the stained nuclei is calculated (Bennett and Leitch 2005, Gregory 2005). Haemocytes, muscles, and spermatozoa are preferred cell types of Hymenoptera prepared for the feulgen reaction (Gregory 2011). A major advantage of using Feulgen densitometry is that once cells are fixed on slides, these preparations can be re-examined at different times and locations making field work in remote areas possible and allowing collaboration with researchers in laboratories elsewhere. A major disadvantage is that the Feulgen stain reaction is time consuming and hinders analysis of a large number of taxa both intraspecifically and interspecifically (Gregory 2005). Flow cytometry uses a nucleus-staining fluorochrome that emits light when excited by a laser, and peak of fluorescence is measured and compared to peak of fluorescence of a standard with known genome size (Bennett and Leitch 2005, Gregory 2005). Thousands of cells from a specimen are suspended in a buffer solution and analyzed with a flow cytometer in less than five minutes. Muscles and neural ganglia are preferred cell types of Hymenoptera prepared for flow cytometry (Gadau et al. 2001, Johnston et al. 2004, Barcenas et al. 2008, Tsutsui et al. 2008, Lopes et al. 2009, Ardila-Garcia et al. 2010, Tavares et al. 2010a, Tavares et al. 2010b, Gokhman et al. 2011, Hanrahan and Johnston 2011). A major advantage to using flow cytometry is that many samples can be analyzed quickly allowing for larger replication of intraspecific genome size estimates and interspecific comparisons (Gregory 2005). A major disadvantage is that live or flash frozen cells are required which hinders analysis and 13 collaboration because the transport of live insects is strongly regulated and specimens may not arrive in a timely manner to permit analysis. Parasitoid and social Hymenoptera predominantly have female biased sex ratios (Godfray 1994, Quicke 1997), and so the probability of collecting live males from the field is low. Hence, obtaining spermatozoa from a wide range of families from many superfamilies for genome size estimation by Feulgen densitometry would not be practical. In contrast, muscles and neural ganglia required for flow cytometry would permit genome size estimation regardless of sex of the sample. It is necessary that the head or entire body of recently euthanized specimen is removed and damaged during genome size estimation in the flow cytometer, and so the specimen cannot be identified after processing for flow cytometry. The likelihood that field collected Hymenoptera can be identified to species while alive and then transported to the laboratory for processing for genome size estimation while still alive is low. Though female biased sex ratios are the norm for most species of Hymenoptera (Godfray 1994, Quicke 1997), males will be encountered periodically, and another complicating factor of identification is linking male and female specimens of the same species. For example, males of Ichneumonidae are generally smaller than females and their small size coupled with character-reduction and intraspecific variation makes them difficult to study (Aguiar and Santos 2010). This diverse order of insects contains identification characteristics that are peculiar to specific taxonomic levels (family, genus, species) and particular identification challenges are not equally shared among all taxa, but the challenge of species identification is nearly impossible if the specimen must remain alive or the entire head or body is missing. To successfully process species of Hymenoptera for genome size estimation, data independent of morphology is required for grouping individuals as species 14 without limitations of gender, lifestage (egg, larva, pupa, adult), or taxonomically relevant characters (antennae, head, thorax). 1.7 Thesis objectives The research theme of this thesis is to compare genome size of interacting species of Hymenoptera with different development strategies. To achieve this, it was necessary to collect live Hymenoptera from the field, and subsequently remove the legs and head from these unidentified individuals for DNA barcoding and flow cytomety protocols, respectively. In order to organize these unidentified individuals into species groups, molecular sequences of COI and ITS1 amplified from vouchered museum specimens were used to calculate a species threshold. Though Chapter Two and Chapter Three can be read as distinct independent studies, all sampled genera within the families of Hymenoptera involved the use of both DNA barcoding and flow cytometry. In order to limit redundancy in this thesis, the resultant molecular sequence and genome size data generated from these Hymenoptera were partitioned into either Chapter Two or Chapter Three, respectively. Thus, the chapters were written so as to emphasize distinct results during the development of a species threshold and the comparative analysis of genome size estimates, respectively. Each chapter examines a distinct aspect of the overall theme, but they both contribute to the same theme. The primary objectives of the thesis are divided as follows: Chapter Two A species threshold is calculated by using the test case of Hymenoptera associated with rose galls induced by Diplolepis (Cynipidae). The calculated species threshold will be critical to group unidentified Hymenoptera into species groups (DbOTs) in both Chapter Two and Chapter 15 Three. Using this species threshold, specimens are enumerated to examine whether or not the number of recognized species of Hymenoptera associated with rose galls induced by Diplolepis (Cynipidae) would increase, reduce or remain the same. This system was selected because it includes Hymenoptera of three superfamilies from eight families, and many of the species of Canadian Diplolepis (Cynipidae), Periclistus (Cynipidae), and Torymus (Torymidae) have been morphologically identified to species by JD Shorthouse and his graduate students. In order to calculate a species threshold, vouchered museum specimens from the JD Shorthouse reference collection at Laurentian University were selected for DNA barcoding, and in select cases ITS1 sequences were also amplified. In addition, genome size estimations were gathered from several species in each family for use in Chapter Three. Chapter Three Live Hymenoptera from 36 families were collected in order to analyse genome size diversity across a larger sample of superfamilies, families, and species than is currently available in the genome size dataset. Identification of field collected Hymenoptera into DbOTs was based on the species threshold calculated from the test case in Chapter Two. Coincidently, several DbOTs from all families within Chapter Two had genome size estimated. There is currently insufficient representation of different lifestyles, superfamilies and families among genome size estimates of Hymenoptera. Moreover, parasitoids are underrepresented in the data, which does not allow for a test of differences in mean genome size between the important dichotomy of parasitoid lifestyles, idiobionts and koinobionts. The idea that parasitoid lifestyles constrain genome size is put to the test by comparing genome size of lineages without a parasitoid ancestor to lineages that are derived from a parasitoid ancestor. Differences in mean genome size between 16 groups of Hymenoptera with different lifestyles are examined. Specific comparisons are made between idiobiont and koinobiont species within both Braconidae and Ichneumonidae, and between interacting species with suspected differences in development time and mortality risk. 17 Table 1.1 Superfamily Apoidea: Apoidea: Apoidea: Apoidea: Cephoidea: Ceraphronoidea: Ceraphronoidea: Chalcidoidea: Chalcidoidea: Chalcidoidea: Chalcidoidea: Chalcidoidea: Chalcidoidea: Chalcidoidea: Chalcidoidea: Chalcidoidea: Chalcidoidea: Chalcidoidea: Chalcidoidea: Chalcidoidea: Chalcidoidea: Chalcidoidea: Chalcidoidea: Chrysidoidea: Chrysidoidea: Chrysidoidea: Chrysidoidea: Cynipoidea: Cynipoidea: Cynipoidea: Diaprioidea: Evanioidea: Evanioidea: Evanioidea: Familiesδ of Hymenoptera known from Canada†. Family Ampulicidae‡ Apidae§ Crabronidae‡ Sphecidae Cephidae Ceraphronidae Megaspilidae Aphelinidae Chalcididae Encyrtidae Eucharitidae Eulophidae Eupelmidae Eurytomidae* Leucospidae Mymaridae Ormyridae Perilampidae Pteromalidae Signiphoridae Tetracampidae Torymidae Trichogrammatidae Bethylidae Chrysididae Dryinidae Embolemidae Cynipidae Figitidae¶ Ibaliidae Diapriidae Aulacidae Evaniidae Gasteruptiidae no. species† no. species† known + estimated known + estimated 977 403 18 135 135 50 37 130 25 317 54 1 65 45 21 410 8 5 82 41 42 34 60 3 310 136 4 300 20 4 12 Superfamily Ichneumonoidea: Ichneumonoidea: Mymarommatoidea: Orussoidea: Pamphilioidea: Platygastroidea: Proctotrupoidea: Proctotrupoidea: Proctotrupoidea: Proctotrupoidea: Proctotrupoidea: Siricoidea: Siricoidea: Stephanoidea: Tenthredinoidea: Tenthredinoidea: Tenthredinoidea: Tenthredinoidea: Tenthredinoidea: Trigonaloidea: Vespoidea: Vespoidea: Vespoidea: Vespoidea: Vespoidea: Vespoidea: Vespoidea: Vespoidea: Vespoidea: Vespoidea: Xiphydrioidea Xyeloidea Family Braconidae Ichneumonidae Mymarommatidae Orussidae Pamphiliidae Platygastridae∆ Heloridae Pelecinidae Proctotrupidae Roproniidae Vanhorniidae Anaxyelidae# Siricidae Stephanidae Argidae Cimbicidae Diprionidae Pergidae Tenthredinidae Trigonalidae Bradynobaenidae# Formicidae Mutillidae Pompilidae Rhopalosomatidae Sapygidae Scoliidae Sierolomorphidae Tiphiidae Vespidae Xiphydriidae Xyelidae 4030 7000 1 4 53 550 2 1 66 2 1 14 2 17 4 30 10 400 5 186 36 165 2 6 2 1 29 125 8 16 δ The order Hymenoptera includes 83 families divided among22 superfamilies worldwide according to the website “Hymenoptera – Assembling the Tree of Life Website (http://www.hymatol.org/)” and sources listed below‡§¶∆. † Masner et al. (1979). ‡ Not listed as a family in Masner et al. (1979) because formerly considered part of Sphecidae (Pulawski 2011). § Melo and Gonçalves (2005) consider the following former families of Apoidea as subfamilies of Apidae: Andrenidae, Colletidae, Halictidae, Megachilidae, and Melittidae. * Family is not listed in Masner et al. (1979), but species in this family are found in Canada. ¶ Liu et al. (2007) consider the following former families of Cynipoidea as a tribe or subfamily of Figitidae: Alloxystidae and Eucoilidae. ∆ Platygastridae includes the former family Scelionidae (Sharkey 2007). # Family is not listed in Masner et al. (1979), and is rare in Canada (Goulet and Hubert 1993). 18 Table 1.2 Species of Hymenoptera available for genome size (GS) estimates. Number of species with GS estimates Superfamily: Apoidea: Apoidea: Apoidea: Cephoidea: Chalcidoidea: Chalcidoidea: Chalcidoidea: Chalcidoidea: Chalcidoidea: Chalcidoidea: Chalcidoidea: Chalcidoidea: Chalcidoidea: Chalcidoidea: Cynipoidea: Cynipoidea: Diaprioidea: Ichneumonoidea: Ichneumonoidea: Platygastroidea: Siricoidea: Vespoidea: Vespoidea: Vespoidea: Vespoidea: Family Apidae Crabronidae Sphecidae Cephidae Aphelinidae Chalcididae Encyrtidae Eucharitidae Eulophidae Eupelmidae Eurytomidae Mymaridae Pteromalidae Trichogrammatidae Cynipidae Figitidae Diapriidae Braconidae Ichneumonidae Platygastridae Siricidae Formicidae Mutillidae Scoliidae Vespidae previous studies 39 5 5 1 4 0 2 0 1 0 0 0 2 3 0 4 0 10 1 0 0 64 4 1 16 162 † CFIA‡ 0 0 0 0 6 (4) 0 4 (1) 0 2 (1) 0 0 2 9 (1) 6 (3) 0 0 0 10 (4) 0 0 0 0 0 0 0 39 (14) § ESC 0 0 0 0 0 0 0 0 0 † Species listed in Appendix 2, Appendix 3, Appendix 4, and www.genomesize.com. ‡ Number in parentheses provide the number of species whose genome size was estimated in previous studies. CFIA = Canadian Food Inspection Agency, www.inspection.gc.ca/english/plaveg/protect/dir/biocontrole.shtml. § Species names are not listed in all abstracts of programs of the Entomological Society of Canada (ESC) from 2007-2011, so instead families are indicated, www.esc-sec.ca/ annmeet.html. The number of species is not explicitly mentioned in several abstracts within the programs of annual meetings of the Entomological Society of Canada; therfore, an exact number of species cannot be tallied. Many of the insects are pinned or preserved in ethanol and cannot have their genome size estimated by flow cytometry. 19 Idiobiont Koinobiont Equivocal (Idio/Koino) Hymenoptera Superfamily 2.00 1.50 0.00 Genome size (pg) 1.00 Ectoparasitoid Endoparasitoid Equivocal (Ecto/Endo) 0.50 Herbivore Xyleoidea Pamphiliodea Tenthredinoidea Cephoidea n= 1 Siricoidea Xiphydrioidea Orussoidea Stephanoidea Ceraphronoidea Megalyroidea Trigonalyoidea paraphyletic Evanoidea Chrysidoidea Vespoidea‡ n = 85 Apoidea‡ n = 49 Ichneumonoidea† n = 11 Platygastroidea Cynipoidea† n= 4 Proctotrupoidea Diaprioidea Chalcidoidea† n = 12 Mymarommatoidea Figure 1.1. Genome size diversity of superfamilies of Hymenoptera as determined in previous studies (n = 162 species, Appendix 4). Development syndrome of parasitoids is mapped onto the tree from Sharkey et al. (2011). Some superfamilies include several larval feeding modes: † Inducers or inquilines, ‡ cleptoparasite, § predator. Height of genome size bar represents number of species. 20 CHAPTER TWO Using DNA barcoding to estimate species richness of gall inducers of the genus Diplolepis (Hymenoptera: Cynipidae), inquilines of the genus Periclistus (Hymenoptera: Cynipidae), and parasitoids (Hymenoptera, Chalcidoidea and Hymenoptera, Ichneumonoidea) associated with rose gall communities found in Canada 21 ABSTRACT Based on the combined results of sequencing both the DNA barcode region of cytochrome c oxidase I (COI) and the internal transcribed spacer region 1 (ITS1), a species threshold was calculated to estimate species richness of inducers, inquilines, and parasitoids associated with rose galls induced by cynipids of the genus Diplolepis. Both identified and unidentified individuals were assigned to a DNA barcode Operational Taxon (DbOT) using pairwise genetic distance and Neighbour-joining tree based methods. Specimens were categorized into separate DbOTs when a group of DNA barcodes had a mean intercluster sequence divergence from its nearest neighbour of 2.2%. A total of 18 species of Diplolepis, 7 species of Periclistus, and 6 species of Torymus were identified using morphological features of the adults, but DNA barcodes grouped specimens of Diplolepis, Periclistus, and Torymus into 24, 12, and 12 DbOTs, respectively. Representatives from six other families of Hymenoptera associated with rose galls induced by Diplolepis were also DNA barcoded, and the total number of DbOTs increased the previous estimate of species richness. Sequencing of two molecular markers, mtDNA and rDNA, revealed the need for taxonomic revision of several taxa, and the categorization of these DbOTs can guide future taxonomic investigations. 22 INTRODUCTION 2.1 Cynipid component communities The majority of the 1300 described species of gall wasps (Hymenoptera: Cynipidae) induce galls on leaves, stems, or roots of oaks (Quercus) and roses (Rosa) (Rokas et al. 2003, Ronquist and Liljeblad 2001, Harper et al. 2004). Galls are highly visible structures which attract several species of Hymenoptera with different feeding ecologies. For example, some species are phytophagous and feed only on gall tissues while other species are parasitoids and feed on larvae within the gall (Askew et al. 2006). Parasitoids are important members of component communities because they contribute to most of the species richness and inflict high levels of mortality (Hayward and Stone 2005). The assemblage of all inhabitants associated with a population of galls induced by the same gall wasp species is referred to as a component community, and populations of galls induced by each species of gall wasp is thought to support a unique gall community (Shorthouse 1993, Shorthouse 2010). Interactions among and between cynipid species and parasitoid species are complex (Hayward and Stone 2005), and construction of qualitative or quantitative food webs to understand these interactions are challenging (Kaartinen et al. 2010). Many gall component communities are known to contain a few morphologically indistinguishable species of both cynipids and parasitoids (Abrahamson et al. 1998, PujadeVillar and Plantard 2002, Hayward and Stone 2005, Lotfalizadeh et al. 2007, Güçlü et al. 2008, Liljeblad et al. 2009, Pénzes et al. 2009, Ács et al. 2010, Kaartinen et al. 2010). Addition of molecular identification tools to aid in both the species determination and the discovery of new species has recently been viewed as necessary to increase resolution in food web studies 23 associated with cynipid galls (Kaartinen et al. 2010) and external foliar feeding lepidoptera (Hrcek et al. 2011, Smith et al. 2011). The major aim of this study was to assess species richness in the communities associated with rose galls induced by Diplolepis by using a species threshold. Morphologically identified species of Cynipidae (Genera: Diplolepis and Periclistus) and Torymidae (Genera: Torymus) had both COI and ITS1 sequences amplified in order to calculate a species threshold. Afterwards, unidentified adult and larval specimens of Diplolepis, Periclistus, Torymus, and parasitoids from six families were either matched to DNA barcodes of morphologically identified species or were were assigned to unknown species based on the calculated species threshold. This approach was then adapted for use in the broader study of Hymenoptera genome size diversity reported in Chapter Three. 2.2 Cynipid galls Plant galls are structures induced by another organism by which shelter, nourishment, and protection is provided to the gall inducer (Stone and Schönrogge 2003). Inducers manipulate undifferentiated plant cells to develop into structures which include the formation of novel plant cells that do not exist elsewhere in the plant (Weis et al. 1988, Harper et al. 2004, Shorthouse et al. 2005). Gall induction is a form of herbivory because the gall wasp larvae continually stimulate the production of new plant cells to supply nutrients directly to themselves until they pupate (Shorthouse 1993). Host plant selection by inducers is critical to guarantee proper initiation, growth and maturation of the gall. Most genera of gall inducers are typically restricted to closely related congeneric plant species, usually within the same plant genus (Abrahamson et al. 1998, Ronquist and Liljeblad 2001). Gall development is influenced by both the species of 24 inducer and the plant, but overall gall morphology is controlled by the inducer (Shorthouse 1993, Ronquist and Liljeblad 2001, Stone and Schönrogge 2003). Gall morphology is treated as an extended phenotype of each species of inducer (Stone and Cook 1998) and because the number of host plant associations are limited, several genera of cynipid wasps have been described based on gall-associated characters rather than on the phenotype of the inducer themselves (Melika and Abrahamson 2000, Melika and Bechtold 2001, Liljeblad et al. 2008). 2.3 Rose gall inducers: Diplolepis Gall wasps in the genus Diplolepis are restricted to inducing galls on Rosa with each species of plant hosting at least one species of Diplolepis (Shorthouse 1993, Shorthouse 2010). Worldwide, the estimated number of described species of Diplolepis is 43 (Table 2.1), but most of their diversity is found within North America and over one third of species of Diplolepis are found within Canada (Shorthouse 1993, Shorthouse 2010). Examination of adults from museum vouchers, species descriptions and gall descriptions from the literature have identified 16 species of Diplolepis within Canada (Brooks and Shorthouse 1998, Shorthouse 2010). Additional undescribed species of Diplolepis have been collected within Canada (Ritchie 1984, Shorthouse and Ritchie 1984, Shorthouse 1988), but little is known about the identification, biology, or gall morphology of these rarer species (Table 2.1). Species identification based on adult morphology is challenging throughout Cynipidae, and current identification morphological features for the delineation and separation of species and genera require revision (Melika and Abrahamson 2000, Ács et al. 2007). Some species of Diplolepis are difficult to distinguish because few have been described in sufficient detail and an identification key is lacking (Shorthouse 1993, Shorthouse 2010). Phylogenetic relationships of 25 several species of Diplolepis have been investigated using characters from adult morphology, gall morphology, and molecular sequences from two mitochondrial gene regions, cytochrome b and 12S rRNA (Plantard et al. 1998). The results of that study could not reject the hypothesis that several species might be synonyms, such as between D. nebulosa, D. ignota, and D. variabilis, and between D. centifoliae and D. nervosa (Plantard et al. 1998). Gall inducer identification within some genera has been complicated by reliance on gall morphology (Melika and Abrahamson 2000, Melika and Bechtold 2001, Liljeblad et al. 2008). Galls induced by different species can be very similar such as the stem galls of D. inconspicuis and D. nodulosa (Brooks and Shorthouse 1997). In addition, gall morphology can be variable within an inducer species, such as the single-chambered or multi-chambered galls of D. verna, the shiny or smooth galls of D. dichlocera, and the three gall forms of D. triforma (Shorthouse and Ritchie 1984). Investigating species boundaries of Diplolepis independent of morphology is warranted because adult identification is challenging. 2.4 Rose gall inquilines: Periclistus Inquilines have lost the ability to induce their own galls (Ronquist 1994), and are obligatorily dependent on completing their development within galls of inducers (Brooks and Shorthouse 1998, Shorthouse 1998). Inquilines do not feed on the bodies of the inducers and thus are not considered as either parasitoids or predators, yet the inducer is killed directly by the ovipositor of the female adult (Shorthouse 1998). The genus Periclistus (Hymenoptera: Cynipidae) includes 17 described species worldwide, and all members of the genus are restricted to galls induced by Diplolepis to complete their larval development (Ritchie 1984, Ronquist and Liljeblad 2001, Shorthouse 1973, 1998). Galls induced by Diplolepis are host to at least one 26 species of inquiline (Ritchie 1984, Table 2.2), but it is difficult to identify several species of Periclistus and several host records are probably invalid (Ritchie 1984). For example, P. pirata was considered to be associated with galls induced by D. polita in Alberta (Shorthouse 1973, Shorthouse 1980), but it was later determined that the inquiline in question was an undescribed species (Ritchie 1984). Furthermore, after morphological examination of Periclistus from galls induced by species of Diplolepis within Canada and from several reference collections of North America, it was concluded that the species of Periclistus designations were valid (Shorthouse 1975). However, a revision of Nearctic Periclistus demonstrated that three of the seven species of Periclsitus were invalid based on morphological evidence, and a total of six new species were recognized increasing the current number of North American species of Periclistus to 12 (Ritchie 1984, Table 2.2). New species descriptions of Periclistus by Ritchie (1984) were not published and so those specific names are considered nomina nuda (nom. nud.). However, for ease of comparison, the same species names that appeared in the PhD dissertation of Ritchie (1984) will be used in this study, but those species names are written within quotation marks followed by (nom. nud.). One of the newly identified species, “P. weldi (nom. nud.)” has been frequently identified as P. pirata, and the highly variable morphology of “P. weldi (nom. nud.)” suggests the presence of even more cryptic species (Ritchie 1984). By definition, cryptic species are two or more species that cannot be distinguished using morphological characters, and thus individuals are all classified under one species name (Bickford et al. 2007). The genus Periclistus is another example within Cynipidae that would benefit from a re-examination of species boundaries independent of morphology. 27 2.5 Rose gall parasitoids Parasitoids are an important source of mortality for Diplolepis, Periclistus, and other Hymenoptera inhabiting rose galls (Shorthouse et al. 2005, Shorthouse 2010). Parasitoid diversity is intermediate within gall communities as compared to communities of hosts feeding externally on leaves or which bore into plant tissue, and this is potentially due to the visibility of galls and the relatively immobile hosts contained within (Hawkins 1994). Considering cynipid communities only, parasitoid diversity of galls induced by Diplolepis appears to be intermediate relative to the cynipid tribes Cynipini and Aylacini of the Palearctic (Askew et al. 2006). Parasitoids from seven families and 18 genera exit from a population of galls induced by the same species of Diplolepis (Table 2.3). The majority of parasitoids associated with rose galls are from the superfamily Chalcidoidea, and most are ectoparasitic idiobionts which prevent further host development as they feed on the host from outside its body (Stone et al. 2002). The few species of Eulophidae (Chalcidoidea) and Ichneumonidae (Ichneumonoidea) associated with rose galls are endoparasitic koinobionts which allow the host to continue development as they consume the host from inside its body. Studies of cynipid gall communities and food webs require accurate identifications, which is done by rearing insects within galls to adulthood and/or dissecting galls to search for eggs and larvae. Identification of adult parasitoids of gall communities is generally more challenging compared to cynipids, and identification of immature stages to species-level is nearly impossible (Kaartinen et al. 2010). A preliminary examination of species richness of Hymenoptera exiting galls induced by species of Diplolepis is possible if specimens could be grouped independent of morphology. Members of the family Torymidae are proportionally the most abundant parasitoid family to exit galls induced by Diplolepis in the Palearctic region (Askew et al. 2006), and Torymidae 28 has the second largest number of described species associated with galls induced by Diplolepis (Table 2.3). The genus Torymus includes 323 species worldwide (Grissell 1995), with 11 species associated with galls induced by Diplolepis in North America (Table 2.4). Identification of Torymidae based on adult morphology is challenging, and the genus Torymus is especially difficult due to morphological uniformity of several species (Gómez et al. 2008). For example, identification keys to the species of Torymus are predominantly restricted to adult females, and two species associated with galls induced by Diplolepis, T. bedeguaris and T. solitarius, are difficult to distinguish and are only separated in the last couplet of an identification key based on number of setae and trichomal sensillae in females (Grissell 1995, Rempel 2002). Identification of species of Torymus, especially males, appears to be challenging; for example, undescribed Canadian species collected in a previous study (Shorthouse and Brooks 1998) were not included in the most recent list of species of Torymus associated with galls induced by Diplolepis (Rempel 2002). The genus Torymus is an example of a well-recognized parasitoid glineage within rose gall communities that would benefit from a re-examination of species boundaries independent of morphology. 2.6 Molecular identification tool: DNA barcoding Studies utilizing a 658 base pair region of the mitochondrial gene cytochrome c oxidase subunit I (COI) have demonstrated the ability of that marker to confidently link field collected organisms with a reference sequence of a previously identified species (Hebert et al. 2003). The barcode region of COI corresponds to nucleotide positions 1490-2198 of the Drosophila yakuba mitochondrial genome (Clary and Wolstenholme 1985). Immature life stages (egg, larva, pupa) or fragmentary insect parts (host remains) can also be confidently associated using a DNA 29 barcode reference sequence (Miller et al. 2005, Caterino et al. 2006). Some advantages of sequencing loci within mitochondrial DNA (mtDNA) for Hymenoptera specimens are that mtDNA lacks introns, rarely recombines, has few indels, and there are several robust primers available to allow amplification across several taxa (Hebert et al. 2003). These advantages have allowed for wide scale adoption of DNA barcoding as an identification tool for a variety of animals around the world (www.barcodinglife.org). Species and lifestages which are challenging to separate morphologically should include additional data independent of both morphology and mitochondrial DNA to support species identification by DNA barcodes (DeSalle et al. 2005). To supplement grouping of specimens via DNA barcodes, nuclear loci such as the internal transcribed spacer regions (ITS1 and ITS2) between the 5.8S, 18S, and 28S rRNA genes in ribosomal DNA (rDNA) can also be sequenced. The rapid rate of evolution of ITS1 and ITS2 facilitates the hypothesized separation of closely related taxa (Rokas et al. 2002, Ji et al. 2003). However, some hypervariable regions of ITS1 and ITS2 make accurate alignment difficult, and manual assembly of sequences is quite challenging unless limited to conserved regions. Molecular Operational Taxonomic Units (MOTU) can be defined for specimens with molecular sequences amplified in order to aid identification (Floyd et al. 2002). Sequences generated from nuclear or mitochondrial genomes are selected based on researcher preference and so MOTUs are not readily comparable between laboratories. However, the DNA barcode is defined as a specific number of basepairs in a particular region of COI in the mitochondrial genome (Clary and Wolstenholme 1985, Hebert et al. 2003), such that specimens with DNA barcodes amplified are considered as unique from other molecular studies. Therefore, using the simple nucleotide sequence analysis of Neighbor-joining (NJ) tree building with Kimura two- 30 parameter (K2P) genetic distances, DNA barcodes of specimens that cluster together below a selected species threshold can be defined as DNA barcode Operational Taxa (DbOT). Such clusters may not actually represent different species, but unique DbOTs can be submitted to further taxonomic hypothesis testing using additional data obtained from morphological, genetic (i.e. nuclear genes, genome size), and/or behavioural studies of well-sampled populations collected from locations throughout their geographic distributions. A species threshold based approach has been used for initial estimates of richness in bioinventory studies of ants (Formicidae) (Smith et al. 2005a) and parasitoids (Braconidae, Cynipidae, Diapriidae, Ichneumonidae) (Smith et al. 2009, Santos et al. 2011). Those studies either applied the species threshold of 3% proposed by Hebert et al. (2003) based on Lepidoptera species or applied more than one species threshold (1.6% and 2%) loosely based on the ant species threshold of 1.9% (Smith et al. 2005b). Thus far, a species threshold for Hymenoptera has not been calculated using species of parasitoid or Cynipidae. Species boundaries of Diplolepis, Periclistus, and Torymus associated with rose galls induced by Diplolepis have been based exclusively on morphological evidence, but species identification is challenging in these genera (Ritchie 1984, Shorthouse 1993, Rempel 2002, Gómez et al. 2008, Shorthouse 2010) and some species are suspected to be synonyms (Ritchie 1984, Plantard et al. 1998). By initially accepting the priori morphological identifications, both DNA barcodes and ITS1 sequences can be used to calculate a species threshold which would provide initial evidence to corroborate the splitting or lumping of described species. Afterwards, the species threshold could be used to provide an inital estimate of richness of other Hymenoptera associated with rose galls induced by Diplolepis. 31 2.7 Objectives The uncertainty of species designation based only on adult morphology of Hymenoptera hampers the study of diversity of Hymenoptera associated with rose galls induced by cynipids of the genus Diplolepis. The ability to perform detailed investigations into the biology, ecology, or systematics of any species is impeded without accurate identifications. Hymenoptera include some of the most difficult insects to identify (Godfray and Shimada 1999, Gariepy et al. 2007, Stone et al. 2008), and thus gall inducers, inquilines, and parasitoids would benefit from DNA barcoding to assist species identification and estimation of species richness. Objective 2.A.: To determine whether or not morphology and DNA barcoding identify the same species of Diplolepis, Periclistus, and Torymus. Average sequence divergence will be calculated among well-supported sister clusters to calculate a species threshold in order to count the number of DbOTs using DNA barcodes of both identified and unidentified specimens. Both COI and ITS1 regions will be sequenced from morphologically identified reference species of Diplolepis, Periclistus, and Torymus to assess the number of DbOTs. It is expected that DNA barcodes will corroborate the identity of reference species of Diplolepis, Periclistus, and Torymus, and DNA barcodes will match specimens that have not been morphologically examined to the reference species. Objective 2.B.: To employ a species threshold to catalogue richness of Hymenoptera associated with rose galls induced by Diplolepis Using the species threshold caluclated in Objective 2.A., richness will be estimated for eight families of Hymenoptera associated with rose galls induced by Diplolepis. It is expected 32 that total richness of Hymenoptera associated with rose galls induced by Diplolepis within Canada would be lower than richness of Hymenoptera associated with galls induced by Diplolepis collected across the continent of North America, north of Mexico. The threshold developed as part of this study also played an integral role in enabling the genome size survey of other Hymenoptera presented in Chapter Three. Materials and Methods 2.8 Specimen collection and deposition The JD Shorthouse reference collection at Laurentian University in Sudbury, ON, includes rose gall inhabitants collected over the past 42 years. The accumulation of specimens within this reference collection was due to the efforts of JD Shorthouse and his students. They removed mature rose galls induced by species of Diplolepis from Rosa (leaves, stems, or roots) and collectively placed within Whirl-Pak® bags according to structural distinctiveness of each rose gall type. Each group collection of a rose gall type from a sampling site was assigned a collection number, and relevant field data such as collection date and geographic site were recorded. Hence, each unique collection contained from one to hundreds of rose galls induced by a species of Diplolepis. If mature galls had been collected in the fall, then they were subjected to cold temperature (4°C) for four months to break diapause of gall inhabitants. If mature galls had remained outside during the winter until the following spring, then they were subjected to room temperature (~ 20°C) to break diapause of gall inhabitants. This reference collection covers a wide geographical area across Canada, and contains specimens from locations in the United States and outside North America (Appendix 1). 33 Curators, contributors and volunteers of this reference collection obtained adult insects as they exited galls and initially preserved them in 70% ethanol. At a later time, specimens of Diplolepis, Periclistus, and Torymus were mounted and morphologically identified to species by JD Shorthouse, AJ Ritchie (1984), and SJ Rempel (2002), respectively. Morphologically identified species of Diplolepis (n = 532, Table 2.5), Periclistus (n = 131, Table 2.6), and Torymus (n = 99, Table 2.7) were selected for DNA barcoding. All morphologically identified species of Diplolepis, Periclistus, and Torymus are deposited in the JD Shorthouse reference collection. Unidentified adult specimens of Diplolepis (n = 32) (n = 80), Periclistus (n = 444), Torymus (n = 252), and adult parasitoids (n = 45), other than Torymidae, associated with rose galls induced by Diplolepis were also selected for DNA barcoding. In addition, mature galls were collected and brought to the nearest laboratory (University of Guelph, Laurentian University) to break diapause, as described above. As adult insects exited galls, they were individually placed alive into microcentrifuge tubes and stored at -80°C at the University of Guelph until processed for DNA barcoding (Appendix 1). Unidentified specimens from the reference collection (n = 853) and collected from the field (n = 468) were identified to family (Table 2.8) using morphological keys of Gauld and Bolton (1988) and Gibson et al. (1997). Further information about specimens and collection details are available on the Barcode of Life Data Systems (www.barcodinglife.org) under the projects DIPNA (Diplolepis exiting rose galls of North America), PERNA (Periclistus exiting Diplolepis galls of North America), ROSE (Community members exiting Diplolepis galls of North America), and TORNA (Torymus exiting Diplolepis galls of North America). 34 2.9 DNA extraction and PCR amplification One or two legs were removed from each adult and transferred to an ethanol-filled well of a 96-well microtitre plate and shipped to the Biodiversity Institute of Ontario in Guelph, Ontario, Canada. Ethanol was allowed to evaporate before 50 μL of a mixture of 5 mL of Insect Lysis buffer (Ivanova et al. 2006) and 500 μL of Proteinase K (20mg/L) was added to each well. Afterwards, the 96-well plate was incubated overnight at 55°C. Total genomic DNA was extracted using the Standard Glass-fibre Protocol and a liquid-handling robot. DNA extracts were resuspended in 30 μL of ddH2O before carrying out the PCR reactions (Ivanova et al. 2006). The DNA barcode region of COI gene was amplified using a pair of the following primers (www.barcodinglife.org): Lep-F1, 5'-ATTCAACCAATCATAAAGATATTGG-3' Lep-R1, 5'-TAAACTTCTGGATGTCCAAAAAATCA-3' MLep-F1, 5'-GCTTTCCCACGAATAAATAATA-3' MLep-R1, 5'-CCTGTTCCAGCTCCATTTTC-3' or PCR reactions were carried out in 96-well plates in 12.5 μL volumes containing: 2.5 mM MgCl2, 5 pmol of each primer, 20 mM dNTPs, 10 mM Tris-HCL (pH 8.3), 50 mM of KCl, 10-20 ng (1 to 2 µL) of genomic DNA and 1 unit Taq DNA polymerase (Platinum® Taq DNA polymerase, Invitrogen). PCR thermocycling profile was: 1 cycle of 60 seconds at 94°C, 5 cycles of 40 seconds at 94°C, 40 seconds at 45°C and 60 seconds at 72°C, followed by 35 cycles of 40 seconds at 94°C, at 51°C and 60 seconds at 72°C, with final extension of 5 minutes at 72°C. 35 PCR products were visualized on a 2% agarose E-gel (Invitrogen), and positive single bands were selected for bi-directional sequencing with the BigDye Terminator Cycle Sequencing Kit on an ABI3730xl DNA Analyzer (Applied Biosystems) at the Biodiversity Institute of Ontario. The primers Lep-F1 and Lep-R1 amplified a DNA barcode of > 500 bp for most Diplolepis and Periclistus specimens < 10 years old. However, the primers MLep-F1 and MLep-R1 amplified mini DNA barcodes of < 500 bp for Diplolepis and Periclistus specimens > 10 years old and for most Chalcidoidea regardless of age (Appendix 1). The ribosomal ITS1 region between 18S and 5.8S genes (position 1843-2805, Ji et al. 2003) was amplified using the following primers (www.barcodinglife.org): CAS18sF1, 5'-TACACACCGCCCGTCGCTACTA-3' CAS5p8sB1d, 5'-ATGTGCGTTCRAAATGTCGATGTTCA-3' PCR reactions and visualization of PCR products were carried out as described above. The ITS1 thermocycling profile was as follows: 1 cycle of 2 minutes at 94°C, 40 cycles of 20 seconds at 94°C, 40 seconds at 57°C and 2 minutes at 72°C, with final extension of 5 minutes at 72°C. Combination of specimen age and their preliminary storage within 70% ethanol did not allow amplification of the entire ITS1 region (Appendix 1). 2.10 Sequence Analyses Contigs of COI and ITS1 sequences were assembled using Sequencher v4.5 (Gene Codes) and aligned using CLUSTALX in MEGA v5.0 (Tamura et al. 2011) and manual adjustments by eye to improve the alignment. All DNA barcode sequences were inspected for indels, stop codons, or length variation to limit inclusion of non-target gene regions. Separate 36 analyses were performed on mtDNA and ITS1 sequences. Intraspecific and interspecific pairwise sequence divergence for mtDNA was calculated using the Kimura-2-parameter (K2P) distance model with pairwise deletion in MEGA v5.0 and visualized as a Neighbour-Joining (NJ) dendrogram with bootstrap analysis of 500 replicates. Intraspecific and interspecific pairwise sequence divergence for conserved regions of ITS1 was calculated using the number of differences method with pairwise deletion in MEGA v5.0 and visualized as a Neighbour-Joining (NJ) dendrogram with bootstrap analysis of 500 replicates. To estimate the number of potentially undescribed and cryptic species, a threshold value of species separation was calculated based among sequence divergences found among the morphologically identified species of Diplolepis, Periclistus, and Torymus. Average interspecific sequence divergence was calculated among species of the three genera from the reference collection. The minimum average sequence divergence between nearest neighbour species was then used as a threshold value for species separation for both identified and unidentified individuals of Hymenoptera associated with rose galls induced by Diplolepis. RESULTS The barcode region was successfully sequenced for 1168 individuals representing both identified and unidentified individuals of Diplolepis, Periclistus, Torymus, and other parasitoids associated with rose galls induced by Diplolepis (Figure 2.1). This represents a cumulative success of 56.1 % in amplification of DNA barcodes of specimens collected from the year 1915 to 2010 (n = 2083). Amplification success of DNA barcodes increased from 15.5 % for species of Diplolepis collected before the year 1998 (n = 277) to 77.4 % for specimens collected afterwards (n = 464, Figure 2.1). There was also an increase in amplification success of DNA 37 barcodes for species of Periclistus from 19.8 % (n = 131) to 55.1 % (n = 499) for specimens collected before the year 1998 and afterwards, respectively (Figure 2.1). Increase in amplification success of DNA barcodes for species of Torymus was from 66.7 % (n = 48) to 69.2 % (n = 354) for specimens collected before the year 1998 and afterwards, respectively (Figure 2.1). 2.11 Diplolepis: COI and ITS1 A DNA barcode was amplified from 255 of 532 morphologically identified individuals of Diplolepis, and coverage included 13 common Canadian species, two exotic species found within Canada (D. eglanteriae, D. rosae), and two species found outside of Canada (D. californica, D. fructuum). Eleven described species of Diplolepis had one unique cluster of sequences each allowing for their identification by DNA barcodes (Figure 2.2). Four described species of Diplolepis had more than one cluster (Figure 2.2), and three leaf gall inducers shared DNA barcodes (Figure 2.2). One example of misidentification was detected when a specimen of D. nebulosa (DNE-AB1, Rose 432) appeared to share a DNA barcode with D. gracilis. However, re-examination of the mesopleuron determined that the specimen was actually D. gracilis. An ITS1 sequence between 385–394 bp was amplified from specimens of D. bicolor (n = 3), D. eglanteriae (n = 1), D. fructuum (n = 1), D. ignota (n = 3), D. nebulosa (n = 2), D. rosaefolii (n = 2), and an unidentified individual whose DNA barcode grouped within the D. ignota/D. nebulosa/D. variabilis cluster (n = 1) (Figure 2.2, Appendix 1). Sequencing results suggest the separation of D. bicolor into two species and also the separation of D. rosaefolii into two species. Mean number of differences of ITS1 sequences between individuals of D. bicolor 38 and between individuals of D. rosaefolii was four and six, respectively (Figure 2.2). However, mean number of differences of ITS1 sequences between individuals of D. ignota/D. nebulosa/D. variabilis/D. sp. was one. This low number of differences along with the identical DNA barcodes suggests a taxonomic synonymy of D. ignota, D. nebulosa, and D. variabilis (Figure 2.2). Considering morphologically identified species of Diplolepis with both DNA barcodes and ITS1 sequences, maximum intraspecific divergences were as follows: D. bicolor (3.1%), D. eglanteriae (0.0%), D. fructuum (0.0%), D. rosaefolii (4.1%), and the D. ignota/D. nebulosa/D. variabilis group (1.3%) (Figure 2.2). Because of the challenges of morphological identification of Diplolepis, average interspecific sequence divergence was calculated between sister clusters supported by both DNA barcodes and ITS1 sequences instead of among morphologically identified species. Average interspecific sequence divergence between sister clusters of D. bicolor and sister clusters of D. rosaefolii was 3.0% and 4.1%, respectively (Figure 2.2). 2.12 Periclistus: COI and ITS1 A DNA barcode was amplified from 26 of 131 morphologically identified individuals of Periclistus, and coverage included 7 of 9 species associated with rose galls induced by Diplolepis. Unfortunately, no DNA barcode was amplified from reference specimens of “P. gracilicolus (nom. nud.)” and of “P. vancouverensis (nom. nud)”. Four described species of Periclistus had one unique cluster of sequences each allowing for their identification by DNA barcodes (Figure 2.4). One described species of Periclistus had more than one cluster (Figure 2.4), and two species shared DNA barcodes (Figure 2.3). An ITS1 sequence could not be amplified from the identified specimens of Periclistus from the reference collection (Figure 2.3). Instead, recently collected specimens of Periclistus (n 39 = 28) which were not identified to species by morphology but were identified by matching their DNA barcodes to reference specimens of Periclistus were sampled for ITS1 amplification (Figure 2.3). An ITS1 sequence between 698–706 bp was amplified for the following groups: “P. ashmeadi (nom. nud.)”/“P. cataractans (nom. nud.)”/P. sp. (n = 7), “P. fusicolus (nom. nud.)”/P. sp. (n = 3), P. pirata/P. sp. (n = 6), “P. weldi (nom. nud.)”/P. sp. (n = 5), and seven unidentitified individuals (P. sp.) (Appendix 1, Figure 2.3). Sequencing results support the separation of “P. fusicolus (nom. nud.)”/P. sp. into two species and also the separation of P. pirata/P. sp. into two species (Figure 2.3). Mean number of differences of ITS1 sequences between individuals of “P. fusicolus (nom. nud.)”/P. sp. and between individuals of P. pirata/P. sp. were 12 and three, respectively (Figure 2.3). However, mean number of differences of ITS1 sequences between individuals of “P. ashmeadi (nom. nud.)”/“P. cataractans (nom. nud.)”/P. sp. was zero. This low number of differences along with the identical DNA barcodes supports a taxonomic synonymy of “P. ashmeadi (nom. nud.)” and “P. cataractans (nom. nud.)” (Figure 2.3). Considering unidentified individuals of Periclistus which had both DNA barcodes and ITS1 sequences amplified and grouped with morphologically identified species of Periclistus, maximum intraspecific divergences were as follows: “P. ashmeadi (nom. nud.)”/“P. cataractans (nom. nud.)”/P. sp. (1.1%), “P. fusicolus (nom. nud.)”/P. sp. (3.4%), P. pirata/P. sp. (2.8%), and “P. weldi (nom. nud.)”/P. sp. (0.0%). Because of the challenges of morphological identification of Periclistus, average interspecific sequence divergence was calculated between sister clusters supported by both DNA barcodes and ITS1 sequences instead of among morphologically identified species. Average interspecific sequence divergence between sister clusters of P. pirata/P. sp. and sister clusters of “P. fusicolus (nom. nud.)”/P. sp. was 3.1% and 2.9%, respectively (Figure 2.3). The smallest average interspecific sequence divergence was 2.3% 40 between sister clusters of “P. ashmeadi (nom. nud.)”/“P. cataractans (nom. nud.)”/P. sp. and “P. fusicolus (nom. nud.)” /P. sp. (Figure 2.3). 2.13 Torymus: COI and ITS1 A DNA barcode was amplified from 63 of 99 morphologically identified individuals of Torymus, and coverage included all 6 species associated with induced by Diplolepis in Canada. Three described species of Torymus had one unique cluster of sequences each allowing for their identification by DNA barcodes (Figure 2.4).Two described species of Torymus had more than one cluster (Figure 2.4), and two species shared DNA barcodes (Figure 2.4). An ITS1 sequence could not be amplified from the identified specimens of Torymus from the reference collection (Figure 2.4). Instead, recently collected specimens of Torymus (n = 8) which were not identified to species by morphology but were identified by matching their DNA barcodes to reference specimens of Torymus were sampled for ITS1 amplification (Figure 2.4). An ITS1 sequence between 377–450 bp was amplified for the following groups: T. bedeguaris/T. sp. (n = 1), T. bedeguaris/T. solitarius/T. sp. (n = 3), T. chrysochlorus/T. sp. (n = 2), and two unidentitified individuals (T. sp.) (Appendix 1, Figure 2.4). Sequencing results support the separation of T. chrysochlorus/T. sp. into two species and also the separation of T. bedeguaris/T. sp. into two species (Figure 2.4). Mean number of differences of ITS1 sequences between individuals of T. chrysochlorus/T. sp. and between individuals of T. bedeguaris/T. sp. were 5 and 14, respectively (Figure 2.4). However, mean number of differences of ITS1 sequences between individuals of T. bedeguaris/T. solitarius/T. sp. was zero. This low number of differences along with the identical DNA barcodes supports a taxonomic synonymy of T. bedeguaris and T. solitarius (Figure 2.3). Unfortunately, ITS1 sequences were not generated for individuals within 41 several COI clusters of T. bedeguaris, T. bicoloratus, T. chrysochlorus, and T. solitarius, and so there is no additional support from molecular sequences of taxonomic splitting of these species. Considering unidentified individuals of Torymus which had both DNA barcodes and ITS1 sequences amplified and grouped with morphologically identified species of Torymus, maximum intraspecific divergences were as follows: T. bedeguaris/T. sp. (13.8%), T. chrysochlorus/T. sp. (13.3%), and T. bedeguaris/T. solitarius/T. sp. (3.2%). Because of the challenges of morphological identification of Torymus, average interspecific sequence divergence was calculated between sister clusters supported by both DNA barcodes and ITS1 sequences instead of among morphologically identified species. Average interspecific sequence divergence between sister clusters of T. chrysochlorus/T. sp. and of T. bedeguaris/T. sp. was 10.3% (Figure 2.4). 2.14 Calculated species threshold Based on average interspecific sequence divergence between sister clusters of Diplolepis, Periclistus, and Torymus, the minimum species threshold calculated was 2.3% (Figure 2.2, 2.3, 2.4). Based on this result, the total number of morphologically identified species of Diplolepis, Periclistus, and Torymus was counted by separating clusters of DNA barcodes of into DbOTs when their genetic divergence from a nearest neighbour was ≥ 2.2%. Assignment of DbOTs with the species threshold was not influenced by any prior morphological identification. For example, all morphologically identified individuals of D. fusiformans (n = 9), three morphologically identified individuals of D. nebulosa, and four unidentified individuals of Diplolepis were combined into DbOT14 (Figure 2.5, Appendix 1). In addition, assignment of DbOTs with the species threshold was not influenced by maximum value of intraspecific genetic variation. For 42 example, DbOT20 of D. spinosa has a maximum genetic divergence of 3.3%, and the DNA barcodes of DbOT20 (n = 39) were not subdivided because there were no distinct groups with a genetic divergence of 2.2% between them. Application of the species threshold of 2.2% did not lead to further splitting of any morphologically identified species group which had both DNA barcodes and ITS1 sequences to support their synonymy (Figure 2.2, 2.3, 2.4). For example, the species groups of D. ignota/D. nebulosa/D. variabilis/D. sp., “P. ashmeadi (nom. nud.)”/“P. cataractans (nom. nud.)”/P. sp., and T. bedeguaris/T. solitarius/T. sp. remained as one DbOT each (Figure 2.2, 2.3, 2.4). Using the species threshold, total species richness of both identified and unidentified individuals of Diplolepis, Periclistus, and Torymus was evaluated by separating all clusters of DNA barcodes into DbOTs when their genetic divergence from a nearest neighbour was 2.2% (Figure 2.5, 2.6, 2.7). A DNA barcode was amplified from 153 of 209 unidentified adult and larval specimens of Diplolepis, and most specimens grouped with the reference species allowing for their identification (Figure 2.5, Appendix 1). In total, 143 unidentified adult and larval specimens of Diplolepis were tentatively identified to species based on external gall morphology by JD Shorthouse while 10 unidentified adults of Diplolepis which were examined morphologically by JD Shorthouse were not identified to species (Appendix 1). Unidentified specimens possibly included another exotic species found within Canada (“D. mayri” = DbOT10) and a second DbOT for “D. triforma” (Figure 2.5). However, adults of DbOT10 and adults and larvae of DbOT19 were not morphologically examined, and their tentative identity is based on matching DNA barcodes and external gall morphology and not based on adult morphology. Seven described species of Diplolepis (D. bassetti, D. bicolor, D.polita, D. radicum, D. rosaefolii, D. spinosa, D. triforma) were split into two DbOTs each while morphologically 43 identified D. nebulosa shared DNA barcodes with D. fusiformans, D. gracilis, and the D. ignota/D.variabilis group (Figure 2.5). The total number of DbOTs of Diplolepis delimited with both identified and unidentified specimens was 24 (Figure 2.5). A DNA barcode was amplified from 275 of 499 unidentified adult and larval specimens of Periclistus, and most specimens grouped with described species allowing for their identification (Figure 2.6, Appendix 1). Two described species of Periclistus (“P. fusicolus (nom. nud.)”, P. pirata) were split into two DbOTs while two described species of Periclistus (“P.ashmeadi (nom. nud.)”, “P. cataractans (nom. nud.)”) were clumped into one DbOT (Figure 2.6). The total number of DbOTs of Periclistus delimited with both identified and unidentified specimens was 12 (Figure 2.6). Species of Periclistus have a mean association of 3.2 ± 1.72 galls of Diplolepis, and the mean number of species of Periclistus per species of Diplolepis is 2.7 ± 0.95 (Table 2.9). Species of Periclistus do not appear to be gall specific by species of Diplolepis or gall location, and species of Periclistus are able to attack and successfully develop from either leaf or stem galls (Table 2.9). The apparent gall specificity of DbOT 28, DbOT29, and DbOT31 may be explained by having sequenced less than six specimens from one collection site (Figure 2.6, Appendix 1). A DNA barcode was amplified from 214 of 303 unidentified adult and larval specimens of Torymus, and most specimens grouped with described species allowing for their identification (Figure 2.7, Appendix 1). Torymus chrysochlorus and T. bicoloratus were split into four and two DbOTs, respectively (Figure 2.7). Many individuals identified as T. bedeguaris and T. solitarius were clumped together into one DbOT (Figure 2.7). The total number of DbOTs of Torymus delimited with both identified and unidentified specimens was 12 (Figure 2.7). 44 Species of Torymus had a mean association of 2.7 ± 1.50 galls of Diplolepis, and the mean number of species of Torymus per species of Diplolepis is 2.7 ± 2.81 (Table 2.10). Species of Torymus do not appear to be gall specific by species of Diplolepis or gall location, and species of Torymus are able to attack inhabitants from either leaf or stem galls. The apparent gall specificity of DbOT37, DbOT38, DbOT39, DbOT42, DbOT46, DbOT47, and DbOT48 may be explained by having sequenced less than six specimens each (Figure 2.7, Appendix 1). However, Torymus DbOT41 appear to specifically attack inhabitants of stem galls (Table 2.10), and Torymus DbOT43 appears to specifically attack inhabitants of leaf galls (Table 2.10). 2.15 Rose gall community species composition Species identifications of several Hymenoptera associated with rose galls induced by Diplolepis were not available from the reference collection so richness was counted by separating clusters of DNA barcodes of adult and larval stages from unidentified parasitoids into DbOTs when their genetic divergence from a nearest neighbour was 2.2%. A DNA barcode was amplified from 188 of 310 individuals from the families Eulophidae, Eupelmidae, Eurytomidae, Ichneumonidae, Ormyridae, and Pteromalidae associated with rose galls induced by Diplolepis. The number of DbOTs of parasitoids counted using the species threshold was 24 (Figure 2.8). Based on morphological identifications from several studies (Barron 1977, Ritchie 1984, Rempel 2002, Universal Chalcidoid Database), the total number of species of inquiline and parasitoid potentially exiting from rose galls induced by Diplolepis was 41 (Table 2.11). Using DNA barcoding, the total number of inquiline and parasitoid DbOTs was 46 (Table 2.11). The total number of species of Periclistus and Torymus increased by 22%, and 50%, respectively (Table 2.11). Noteworthy is that the morphology-based tally of species of inquiline and parasitoid 45 encompasses more than 100 years of collections spanning the continent of North America, north of Mexico (Table 2.11), while the DNA barcoding based tally is mostly restricted to collections within Canada within the last 10 years (Table 2.11). The molecular results represent the minimum number of DNA barcodes that could be generated due to readily available primer pairs and limits of specimen age, so the total number of species of inquiline and parasitoid is probably much larger. In fact, the total number of species within each family associated with rose galls induced by Diplolepis was usually equal or larger for the molecular based tally, with the exception of Eurytomidae (Table 2.11). Fewer specimens of Eurytomidae were selected in this study because a separate graduate study focussing on DNA barcoding of Eurytomidae was recently undertaken (Shorthouse pers. comm.). Since the molecular based tally usually increased the total number of species of inquiline and parasitoid (Table 2.11), then it is likely that the total number of species of inducer is probably higher than previously expected (Figure 2.5, Table 2.5). DISCUSSION DNA barcoding is a molecular identification tool that can assist in grouping similar specimens of any life stage or gender based on the premise that each species has a unique cluster of COI sequences that are distinguishable from COI sequences of other species (Hebert et al. 2003, Miller et al. 2005, Caterino et al. 2006). Any criteria assigned to assign clusters of COI sequences to DbOTs is open to debate, and the applicability of a species threshold in one specific study system does not imply that all studies require the same criteria. In other words, the delimitation of DbOTs within this study was suitable for these Hymenoptera specimens associated with rose galls induced by Diplolepis because the species threshold was supported by both COI and ITS1 sequences (Figure 2.2, 2.3, 2.4). Previous studies of biodiversity inventories of unidentified Hymenoptera have suggested using a species threshold ranging from 1.6-3% 46 (Smith et al. 2005a, 2005b, 2009, Santos et al. 2011). Including data of this study, a species threshold between 1.6-3% for Hymenoptera collected within a narrow geographic area has the support of both molecular and morphological data from three families in three superfamilies (Chalcidoidea: Torymidae, Cynipoidea: Cynipidae, Vespoidea: Formicidae). This suggests that the species threshold of 2.2% used in this study is appropriate as a preliminary estimate of richness within a narrow geographic area. At this time, it is not possible to definitively compare the accuracy of species identifications of Diplolepis, Periclistus, and Torymus between morphology and DNA barcodes because the membership of several species is unstable (Ritchie 1984, Plantard et al. 1998, Schick et al. 2010) or researchers stated that identification of individuals was questionable (Ritchie 1984, Rempel 2002). An important perspective of the findings of this study is that some morphologically identified species of Diplolepis sharing DNA barcodes (D. ignota, D. nebulosa, and D. variabilis) (Figure 2.2) were hypothesized to be one species in other studies (Beutenmüller 1908, Kinsey 1922, Olson 1964, Shorthouse 1975, Plantard et al. 1998), and the splitting of morphologically identified D. polita (Figure 2.2) was also previously hypothesized (Schick et al. 2010). However, several morphologically identified individuals, such as D. nebulosa (Figure 2.2, 2.5), that shared DNA barcodes with many different species may indicate misidentification rather than synonymy. Without solid taxonomic support to evaluate species identifications a posteriori, the differences in species identification between morphology and molecules in this study merely highlight taxa that require reassessment. The species coverage of Diplolepis, Periclistus, and Torymus that were DNA barcoded in this study was fundamental to calculate a species threshold that is typical among closely related species with restricted sampling. Despite that the entire collection of Hymenoptera associated 47 with rose galls induced by Diplolepis were sampled over a wide geographic area (Appendix 1), most morphologically identified species and unidentified specimens were either collected from a narrow geographic area or had a small sample size (Figure 2.5, 2.6, 2.7, 2.8, Appendix 1). Interspecific sequence divergence is expected to decrease with thorough sampling of a taxon over its geographic range (Meyer and Paulay 2005), but the restricted collection in this study means that it would be unlikely that specimens sampled would significantly reduce interspecific divergences. Most importantly, the purpose of the species threshold applied in this study is to count species richness by separating the small samples of regionally collected Hymenoptera associated with rose galls induced by Diplolepis into DbOTs. This threshold should not be applied universally to any community of Diplolepis throughout the world as a means of species discovery without a test based on identified species collected in the same areas. Therefore, any application of this species threshold to systems involving expanded sampling of Hymenoptera or different higher taxa, such as Coleoptera, Diptera, and Lepidoptera, is not recommended without review and potential adjustment. 2.16 Cynipidae morphology and DNA barcodes Hymenoptera are among the most difficult insects to identify (Godfray and Shimada 1999, Gariepy et al. 2007), and specimens from the families examined in this study are recognized as challenging. Gallwasp (Hymenoptera: Cynipidae) identification has been impeded by substantial intraspecific variation in morphological characters, and the well studied oak gallwasps (Cynipini) highlight some of the difficulties encountered with cynipid identification (Melika and Abrahamson 2000, Melika and Abrahamson 2007). Several keys of cynipids lack adequate species descriptions, confuse the identity of several species, and do not contain 48 adequate diagnostic characters (Shorthouse 1993, Rokas et al. 2003, Ács et al. 2007, Melika and Abrahamson 2000, 2007). Prior to the 1960s, morphological terminology was inconsistent; hence, several species descriptions require re-examination and need to be updated with current terminology (Melika and Abrahamson 2000). In addition, completeness of notauli, number of antennal flagellomeres, pubescence of thorax and terga, and the shape of scutellar foveae and terga are morphological characters that are currently recognized to vary intraspecifically and thus insufficient to separate many cynipid taxa (Melika and Abrahamson 2000). Oak gallwasps are cyclically parthenogenetic and the two generations differ in gall location and the morphological traits of both the adult insect and the gall are different (Rokas et al. 2003, Liljeblad et al. 2008). The boundaries of species of Cynipidae based solely on host plant choice, gall morphology, or adult morphology has caused extensive taxonomic difficulties, but it is most severe in species in the Nearctic (Rokas et al. 2003). Identification of species of Diplolepis and Periclistus has been difficult due to the selected distinguishing morphological characters between taxa and the unexpected intraspecific morphological variation found. The type species for the genus, Diplolepis rosae, was originally placed within Cynips (Rohwer and Fagan 1917), and confusion between Diplolepis specimens and several other genera has been considerable. At least four species of Diplolepis have been originally described as type-species for other genera within Cynipidae (Dalla Torre and Kieffer 1910, Weld 1952), and several other species of Diplolepis have been described as new species within the genera Andricus, Antron, Atrusca, Aylax, Ceroptres, Disholcaspis, Dros, Dryocosmus, Periclistus, Plagiotrochus, and Sphaeroteras (Dalla Torre and Kieffer 1910, Weld 1952, Burks 1979, Ritchie 1984, Alonso-Zarazaga and Pujade-Villar 2006). Transfers between genera have 49 also occurred with described species of Periclistus within the genera Aylax, Ceroptres, Cynips, Diplolepis, and Eumayria (Dalla Torre and Kieffer 1910, Weld 1952, Burks 1979, Ritchie 1984). Variation related to both morphology and body colouration has been reported within Cynipidae, and the absence of data independent of morphology has led to potentially several cryptic species being lumped together during a formal description of one species (Ritchie 1984, Nieves-Aldrey and Medianero 2011). Morphological variation within Diplolepis has been reported for the thoracic sutures of both D. rosae (Ritchie and Peters 1981) and D. radicum (Kinsey 1922, Shorthouse 1988), and the flanged hind femur of D. radicum (Shorthouse and Ritchie 1984, Shorthouse 1988). Similarly, morphological variation within Periclistus has been reported for the median line of the mesoscutum of “P. fusicolus (nom. nud.)” and the sculpturing of the pronotal bridge of “P. weldi (nom. nud.)” (Ritchie 1984). In addition, distinct abdominal and leg colour variants of several species of Diplolepis from various populations have been reported. For example, D. polita from the United States are entirely black (Dalla Torre and Kieffer 1910), but those from Alberta to Ontario, Canada have reddish-brown abdomen and legs (Shorthouse 1973). Similar abdominal and leg colour variants have also been reported for specimens of D. radicum collected from different regions within Canada (Shorthouse 1988). The pigmented radial wing area (cloud) of D. variabilis is only present sometimes (Bassett 1890). It is important to emphasize that cynipid identification by morphology is difficult due to either few diagnostic morphological characters or high variability in available characters. Recently, molecular identification tools, such as DNA barcoding, have been accepted by several cynipid taxonomists as a useful tool in species identification of inducers and inquilines (Stone et al. 2008, Liljeblad et al. 2008, Pénzes et al. 2009, Ács et al. 2010, Kaartinen et al. 2010, Nieves- 50 Aldrey and Medianero 2011). By including molecular data in species identification, intraspecific variation of morphological charaters can be more easily recognized. Of the 17 morphologically identified species of Diplolepis used in this study, only eight species were composed of one DbOT (Figure 2.5). Three species of Diplolepis (D. ignota, D. nebulosa, and D. variabilis) had identical DNA barcodes, and this was not surprising given they were previously suspected to be conspecific based on adult morphology (Beutenmüller 1908, Kinsey 1922, Olson 1964), gall morphology (Shorthouse 1975), and sequences from two mitochondrial genes (cytochrome B, 12S) (Plantard et al. 1998). Possible synonymy between D. centifoliae and D. nervosa, and between D. nebulosa, D. ignota, and D. variabilis had been suggested in an earlier study with mtDNA sequences (Plantard et al. 1998). More recent molecular and morphological data supported the hypothesis that D. centifoliae, D. kiefferi and D. rosarum are junior synonyms of D. nervosa (Pujade-Villar and Plantard 2002). Unfortunately, additional molecular and morphological data has not been collected for D. nebulosa, D. ignota, and D. variabilis so definitive nomenclatural decisions will have to await a generic revision. After DNA barcoding unidentified specimens of Diplolepis, the number of DbOTs increased to 24 which suggests there are more Canadian species of Diplolepis to discover (Figure 2.5). Of the seven morphologically identified species of Periclistus used in this study, only three species had one DbOT (Figure 2.6). Two species of Periclistus (“P. ashmeadi (nom. nud.)” and “P. cataractans (nom. nud.)”) had identical DNA barcodes, and this was unexpected since they were considered to be distinct species (Ritchie 1984). Possible synonymy of species of Periclistus had only been suggested between “P. cataractans (nom. nud.)” and “P. gracilicolus (nom. nud.)” (Ritchie 1984), but this study could not amplify DNA barcodes from reference specimens of “P. gracilicolus (nom. nud.)” so it is not known whether they would group as one 51 DbOT (Figure 2.6). Few specimens of “P. gracilicolus (nom. nud.)” were examined morphologically by Ritchie (1984) due to their rarity, and this limited examination of morphological variation from several populations to determine if the specimens exiting from D. gracilis galls were the same species (Ritchie 1984). The limited number of specimens of “P. gracilicolus (nom. nud.)” examined, their small size, and the fact that they were collected in 1972, did not support successful amplification with the primer pairs used in this study. Based on DNA barcodes from this study, it has been determined that two species of Periclistus attack galls induced by D. gracilis (Table 2.9) as opposed to the previous determination that only one species of Periclistus exits from these galls (Ritchie 1984). However, it is unknown if either DbOT33 or DbOT36 is “P. gracilicolus (nom. nud.)”, and these unidentified DNA barcoded specimens would have to be morphologically compared to the species in the revision of Periclistus (Ritchie 1984). The morphologically variable “P. fusicolus (nom. nud.)” and P. pirata both had two DbOTs each while the morphologically variable “P. weldi (nom. nud.)” had only one DbOT (Figure 2.6, Table 2.9). Ritchie (1984) preferred to lump together specimens such as “P. fusicolus (nom. nud.)” so as to limit further inflation of the number of species names within Periclistus. The current study found that DbOT34 of “P. fusicolus (nom. nud.)” is associated with galls of D. bassetti, D. bicolor, D. nodulosa, and D. triforma (Table 2.9) while DbOT35 is associated with D. bassetti and D. fusiformans (Table 2.9). The first species description of D. triforma stated that inquilines from this gall are rare (Shorthouse and Ritchie 1984), but since then, several studies have reported that inquilines do not attack any D. triforma galls (WiebesRijks and Shorthouse 1992, Lalonde and Shorthouse 2000, Shorthouse et al. 2005, Leggo and Shorthouse 2006a, 2006b). Despite the limits imposed by specimen age and the primers used in 52 this study, it has been determined that both Periclistus DbOT26 and DbOT34 do attack galls of D. triforma (Table 2.9). The two DbOTs of P. pirata (DbOT26 and DbOT27, Figure 2.6, Table 2.9) were expected because identification of this species is difficult (Ritchie 1984). Though “P. weldi (nom. nud.)” was stated as being morphologically variable, it was nonetheless considered one species (Ritchie 1984), and this decision is supported by the presence of one DbOT. This study determined that “P. weldi (nom. nud.)” attacks the leaf galls induced by D. bassetti, D. bicolor, and D. polita, and also stem galls induced by D. spinosa (Table 2.9). The mean diameter of the single-chambered galls of D. bassetti, D. bicolor, and D. polita is approximately 4.5 mm, 9 mm, and 4 mm, respectively, and the multi-chambered gall of D. spinosa is approximately 23 mm total with an average of 16.5 chambers per gall (Shorthouse 2010). It is likely that range of chamber size and host gall location affects the variability of morphology of Periclistus. Seven species of North American Periclistus have been described and each was known to attack galls of only one species of Diplolepis (Shorthouse 1975). According to Ritchie (1984), only four of these species are valid, with one species placed in synonymy with P. pirata, two species transferred to other genera (Diplolepis and Eumayria), and six new species recognized. Accordingly, a total of ten species of Periclistus are known from North America. In this study, seven species of Periclistus were DNA barcoded (Figure 2.6), and data suggests that three species are valid, two species are potential synonyms, and two species should be split into more than one species. In addition, DNA barcoding of unidentified specimens of Periclistus increased the number of DbOTs from 7 to 12, suggesting that more species of Periclsitus are likely to occur within Canada (Figure 2.3, Figure 2.6). None of the DNA barcoded species of Periclistus were determined to be monophagous when organized by species of Diplolepis or gall location (Table 2.9). Species of Periclistus are associated with 2.7 ± 0.95 species of Diplolepis, and each species 53 of Diplolepis has an average of 3.2 ± 1.72 species of Periclistus associated with their galls. All these results are similar to other studies that focussed on inquilines of oak galls such that recognized species have been suggested to require splitting apart or lumping together, and new species were discovered despite the large accumulation of expert knowledge of cynipid taxonomy in those gall systems (Stone et al. 2008, Liljeblad et al. 2009, Pénzes et al. 2009, Ács et al. 2010, Kaartinen et al. 2010). A further complication with accurate cynipid identification is the unofficial synonymization of species without a published revision of the genus. Weld (1952) described D. lens as a new species that produces lens-shaped galls on Rosa leaves throughout western USA. The most recent catalogue of Diplolepis species in America north of Mexico also considered D. lens to be distinct from D. rosaefolii which induces similar galls but is distributed in the eastern USA and throughout Canada (Burks 1979). However, based only on adult morphology, it had been suggested that D. lens is a junior synonym of D. rosaefolii rather than a separate species (Shorthouse and Brooks 1998). Considering morphologically identified D. rosaefolii of this study, they had a maximum intraspecific divergence of 4.1 % (Figure 2.2). Thus, the two DbOTs of D. rosaefolii either support the previous taxonomic view that D. lens and D. rosaefolii are separate species with western and eastern distributions, respectively (Weld 1952, Burks 1979), or another lens-shaped gall inducer is present in Canada. Unofficial synonymy has also been suggested between, but not limited to, the root gall inducers D. radicum and D. ostensackeni, the root gall inducers D. semipiceus and D. fulgens, and between the stem gall inducers D. spinosa and D. tuberculatrix (Shorthouse 1988). Noteworthy is that both morphologically identified D. radicum and D. spinosa of this study had maximum intraspecific divergence > 3% (Figure 2.2), and each species was separated into two DbOTs (Figure 2.5). Once again, it is undetermined if 54 the separate DbOTs support the traditional taxonomic view that D. ostensackeni and D. tuberculatrix are separate species from D. radicum and D. spinosa, respectively (Weld 1952, Burks 1979), or if another root gall inducer and stem gall inducer, respectively, are present within Canada. Unfortunately, the root gall inducers D. semipiceus and D. fulgens were not examined in this study, and thus tests of species boundaries for them remain open to future examination. 2.17 Gall morphology and inducer identification It has been unequivocally demonstrated that gall development is controlled by the inducer (Shorthouse 1993, Ronquist and Liljeblad 2001, Stone and Schönrogge 2003), and the diversity of gall morphology found on the same plant has attracted the attention of ecologists for hundreds of years. Consequently, the hypothesis that each inducer produces a species specific and unique gall has been reported in several cynipid reviews and studies (Shorthouse 1993, Ronquist and Liljeblad 2001, Schönrogge et al. 2002, Stone and Schönrogge 2003, Harper et al. 2004, Shorthouse et al. 2005). However, within a cynipid species that has both asexual and sexual generations, induced galls differ in morphology, plant organ attacked, and plant species attacked (Stone and Cook 1998, Stone and Schönrogge 2003, Stone et al. 2008). Gall morphology of an asexual generation within cynipid species is structurally more complex than the sexual generation, and as a result, galls from sexual generations lack many distinguishing characters that allow distinction between inducer species (Schönrogge et al. 2002, Stone et al. 2008). Interestingly, species of Diplolepis are univoltine and do not exhibit alternation of generations, hence, gall morphology is the result of a sexual generation although parthenogenesis is widespread due to Wolbachia infection (Plantard et al. 1998, Plantard and Solignac 1998). 55 Within a specific generation, gall morphology is more variable between species than within species (Stone and Schönrogge 2003), but speciation within a genus of Cynipidae does not automatically result in distinct gall morphology (Stone and Cook 1998). Like any biological character, gall morphology can be variable within an inducer species (Shorthouse and Ritchie 1984, Plantard et al. 1998, Shorthouse 2003), such as the singlechambered or multi-chambered galls of D. verna, the shiny or smooth galls of D. dichlocera, the spiny or spineless galls of D. nervosa, D. mayri and D. spinosa, and the three gall forms of D. triforma. In a few cases, gall morphology is indistinguishable between species (Dailey and Campbell 1973, Brooks and Shorthouse 1997, Shorthouse 2003), such as comparing galls of D. inconspicuis with those of D. nodulosa, galls of D. eglanteriae with those of D. nervosa, and galls of D. bassetti with the rare hairy gall forms of D. polita (Shorthouse pers. comm). Several species of Diplolepis reported to have indistinguishable galls between species or variable gall forms within species also had multiple DbOTs, such as D. bassetti, D. polita, D. spinosa, and D. triforma (Figure 2.5). Furthermore, if gall morphology is a reliable proxy for inducer identification, then gall characters would have distinguished D. mayri from D. fructuum (Güçlü et al. 2008) and would have suggested the synonymy of D. centifoliae, D. kiefferi, and D. rosarum with the valid species, D. nervosa (Pujade-Villar and Plantard 2002). As opposed to using external gall morphology as a surrogate for inducer identification, studies of internal gall morphology may offer a new set of characters. For example, histological examination of galls of D. lens (Shorthouse 1975) and galls of D. rosaefolii (LeBlanc and Lacroix 2001) have shown that the galls differ in number of sclerenchymal layers and location of vascular tissue. This example also suggests that D. lens is a distinct species from D. rosaefolii, and it also highlights the potential of internal gall morphology characters to complement data from adult morphology 56 and molecular sequences in order to identify species. Perhaps examination of gall morphology via histological techniques instead of examination of external gall characters would aid with inducer identification, but no studies have developed a key based on histological gall characters. Galls can be readily collected in large quantities during a single collection period, and such mass collections can easily overlook the necessary separation of different galls unless sufficient care is taken to individually inspect every gall (Kinsey 1920). Considering D. nebulosa in this study, DNA barcoding identified one specimen as a leaf gall inducer (D. gracilis) and three specimens as an undescribed species. These four specimens were re-examined morphologically post-DNA barcoding, and it was confirmed that they were not D. nebulosa. It is plausible that galls from different species of inducer were accidentally included in a collection sample of leaf galls of D. nebulosa, thereby confusing the identity of these specimens. Therefore, adult specimens must be examined morphologically or molecularly to identify a specimen to species because collective samples of galls thought to be of one species may be contaminated with other galls. Gall morphology can be affected by factors independent of species of inducer such as plant species (Weis et al. 1988, Stone and Schönrogge 2003, Shorthouse 1988, Shorthouse 2010), stage of plant tissue development (Shorthouse and Ritchie 1984), and other gall inhabitants (Brooks and Shorthouse 1998, Shorthouse 1998, Leggo and Shorthouse 2006b). Stem galls of D. spinosa are weakly spined to smooth when R. woodsii is attacked, but the stem galls have many thick spines when R. blanda is attacked (Shorthouse 1988, Shorthouse 2010). Depending on the amount of leaf unfolding near a stem bud, one of three alternate gall types will be induced by D. triforma (Shorthouse and Ritchie 1984). Morevoer, both inquilines (Periclistus) and parasitoids within the families Eurytomidae and Torymidae are able to modify 57 gall morphology (Brooks and Shorthouse 1998, Shorthouse 1998, Leggo and Shorthouse 2006b). Though identification of inducers is narrowed by using external gall morphology, especially when species are not closely related, the practice of identifying inducers based on gall morphology has been repeatedly criticized (Shorthouse 1993, Abrahamson et al. 1998, Drown and Brown 1998, Liljeblad et al. 2008). 2.18 Parasitoids of rose galls and DNA barcodes In addition to inducers and inquilines (Hymenoptera: Cynipidae), inhabitants of rose galls induced by Diplolepis include Hymenoptera from six families within Chalcidoidea (Eulophidae, Eupelmidae, Eurytomidae, Ormyridae, Pteromalidae, Torymidae,) and one family within Ichneumonoidea (Ichneumonidae) (Table 2.3). The proportion of each family depends on the gall system under consideration (Askew et al. 2006). Currently, identification of most parasitoids of rose gall communities is less resolved than for species of Diplolepis and Periclistus, and this study used a species threshold to provide an estimate of species richness. The total number of DbOTs of parasitoid was larger than total number of species of parasitoid reported from literature in four of seven families despite limited sampling (Figure 2.8, Table 2.3, Table 2.11). Synonymous and cryptic species of parasitoids have been found in other molecular studies of oak gall (Abrahamson et al. 1998, Hayward and Stone 2005, Liljeblad et al. 2008, Pénzes et al. 2009, Ács et al. 2010, Kaartinen et al. 2010) and rose gall communities (Pujade-Villar and Plantard 2002, Lotfalizadeh et al. 2007, Güçlü et al. 2008), and the larger number of DbOTs found in this study is not unexpected. Further molecular and morphological studies of parasitoids associated with rose galls induced by Diplolepis are required to determine the validity of DbOTs as species and to begin formal taxonomic descriptions. 58 Of the six morphologically identified species of Torymus analyzed in this study, four have species-specific DNA barcodes, but only two species had one DbOT (Figure 2.7). Initially, it would appear that since T. flavicoxa and T. magnificus have one DbOT each, their identity by morphology and DNA barcoding are congruent. However, the sample size of these two species of Torymus was small (Figure 2.7, Table 2.7), and it is likely that further sampling will reveal additional DbOTs. By DNA barcoding unidentified specimens of Torymus, the number of DbOTs increased from 7 to 12 suggesting that additional species of Torymus will be discovered within Canada (Figure 2.4, Figure 2.7). Rempel (2002) reported that many specimens of T. bedeguaris are difficult to distinguish from those of T. solitarius using available taxonomic keys. This was clearly reflected by the DNA barcoding results of those specimens (Figure 2.4). In addition, T. bedeguaris exiting from galls induced by exotic Diplolepis sampled from Canada (D. mayri, D. rosae) were reported to be morphologically distinct from T. bedeguaris exiting from galls induced by native Diplolepis (Rempel 2002). Morphologically identified T. bedeguaris exiting from exotic Diplolepis galls were not available for DNA barcoding, so this study cannot add molecular data to support that observation. Eleven species of Torymus associated with rose galls induced by Diplolepis are considered valid (Table 2.4), yet only six species were identified from 30 years of rose gall collections within Canada (Rempel 2002). This is unusual because unidentified species of Torymus have been recorded exiting Canadian D. rosaefolii galls during the same time period (Brooks and Shorthouse 1998). Adult identification of species within Torymidae is difficult because of morphological uniformity, the incompleteness of identification keys, and nomenclatural problems (Graham et al. 1998, Grissell 2004, Gómez et al. 2008). Molecular studies of described species of Torymidae associated with cynipid galls have found evidence of 59 cryptic species in Torymus (Kaartinen et al. 2010) and Megastigmus (Aebi et al. 2007). One of the species of Torymus species suggested to be composed of two cryptic species, T. flavipes, is a parasitoid of oak cynipids and also associated with galls of D. eglanteriae, D. mayri, D. rosae, and D. spinosa (Table 2.4, Kaartinen et al. 2010). The DNA barcoding results for Diplolepis and Periclistus in this study and similar findings in other studies of Cynipidae and/or Torymidae (Aebi et al. 2007, Kaartinen et al. 2010) indicate that future taxonomic studies of Torymus associated with Canadian rose galls induced by Diplolepis will undoubetedly result in the discovery of new species. 2.19 Cryptic, synonymous, new, and unsampled species Any identification key (molecular or morphological) is a preliminary guide to a species name, but the final determination of species identity may require additional evidence that is beyond the scope of the key. Generation of DNA barcodes for reference specimens cannot confirm species identification if the species status of the reference specimen is unstable. The utility of any identification key (morphological or molecular) is dependent upon correct species delimitation. At the moment, post-inspection of adult morphology or external gall morphology will not unambiguously identify several specimens because of inconsistent morphological terminology and use of inadequate diagnostic characters for species descriptions (Shorthouse 1993, Melika and Abrahamson 2000, Rokas et al. 2003, Ács et al. 2007, Melika and Abrahamson 2007). Cryptic species are two or more species that cannot be distinguished using currently defined morphological characters defined, and thus individuals are all classified under one species name (Bickford et al. 2007). If more than one DbOT is generated from one 60 morphologically identified species (Figure 2.9a), then it still must be determined which DbOT belongs to the type specimen of the described species and which DbOT is the new species. Synonymous species are actually different species names incorrectly applied to individuals that are actually one species. If one DbOT is generated from more than one morphologically identified species (Figure 2.9b), it is considered preliminary evidence of synonymy. The next step is to re-examine individuals with new morphological characters, new molecular regions, or new biological data (i.e. behaviour, ecology, etc.). When a new DNA barcode is not found within the current reference database, it cannot be immediately confirmed whether the new DbOT is a new species or an unsampled species (Figure 2.9c). These two species categories are similar in that individuals from a new DbOT have not had their DNA barcode previously uploaded to the database, but the species categories are distinct in that the one of the unsampled species is named while the new species has never been named. As a solution, congeneric specimens that have not been included in the DNA barcode database should be examined morphologically and also have their DNA barcodes amplified and added to the reference database. A DNA barcoding library could be created for all described species of Diplolepis, and this is feasible because the estimated number of described species is 43 (Table 2.1). Even though many vouchers of species would be > 10 years old, the extra cost of developing internal primer pairs for a small number of degraded specimens would be low. While awaiting the collection of DNA samples from holotypes, other priority species can be sampled within Canada such as D. arefacta, D. fulgens, and D. semipiceus because they are suspected to be synonyms of other species or because they induce very similar galls to other Diplolepis species (Ritchie and Shorthouse 1984, Shorthouse 1988). A more comprehensive DNA barcoding library could be similarly constructed for all described species of Periclistus and Torymus associated with rose galls. Increasing the DNA barcode reference 61 database of inducers, inquilines, and parasitoid specimens from regions outside of Canada is necessary to determine which exotic species have entered Canada. In the 1950s, D. rosae was introduced into North America along with several exotic parasitoid species of Orthopelma (Ichneumonidae), Pteromalus (Pteromalidae), and Torymus (Torymidae) (Csóka et al. 2004). Since that time, both D. eglanteriae and D. mayri have also been introduced into North America (Table 2.1), but it is not known which exotic inquilines and parasitoids have also been introduced (Table 2.2, Table 2.4). Though there are no standard criteria to identify all insects with molecular data (Cognato 2006), there are also no standard criteria to identify all insects with morphological data. Molecular keys allow researchers the freedom to select preferred DbOT thresholds to group taxa (Cognato and Sun 2007), and the selected thresholds are easily understood and open to review by the scientific community. However, the use of morphological keys does not allow the scientific community the ability to track the decisions made at every couplet by the user. A simple species threshold was calculated to identify taxa within this study, and it is concluded that several morphologically identified taxa require re-examination. Possible misidentification of a few individuals of D. nebulosa, T. bedeguaris, and T. solitarius suggest that larger sample sizes should be collected from the same areas and examined with additional morphological and molecular data. It cannot be definitively concluded at this time whether or not any of the recognized species of Diplolepis, Periclistus, and Torymus are synonyms or require splitting into two or more species. The individuals within each DbOT (Appendix 1) require expert examination to distinguish misidentifications and mislabeling, and to possibly match individuals with reference specimens. Species descriptions should be updated with current terminology and appropriate characters, and include images from scanning electron microscopy, and include 62 molecular sequence data, such as a DNA barcode. Future studies that include DNA barcoding as an identification tool can foster interest in future taxonomic study and revision of challenging genera such as the Hymenoptera associated with rose galls induced by Diplolepis. CONCLUSION The necessity of a molecular identification tool, such as DNA barcoding, is supported by several researchers that require identification of a wide variety of species of Hymenoptera. The identification of Cynipidae, which is often based on early species descriptions, morphological keys, or gall morphology, is recognized as an area in which additional methods could be of signficiant benefit. The challenge of identification is even greater for parasitoids associated with cynipid galls. Identification based on morphological characters of adult insects or galls is not rejected by the results of this study, but the organization of new character sets requires guidance from molecular identification tools, such as DNA barcoding. This study shows that a molecular identification tool, such as DNA barcoding, is quick and effective for grouping taxa as DbOTs that may require new data to confirm species identification. This current study counted 72 DbOTs of morphologically identified species of Diplolepis, Periclistus, Torymus, and several unidentified Hymenoiptera. Using DNA barcoding, species richness of all rose gall communities of Diplolepis could be examined with unprecedented resolution. In addition, the use of DNA data provided a threshold for the operational assignment of unidentified (or, indeed, unnamed) species that enables large-scale surveys of other traits, such as genome size (Chapter Three). 63 Table 2.1. Species of Diplolepis (Cynipidae) worldwide. Species of Diplolepis† D. arefacta D. ashmeadi D. bassetti D. bicolor D. brunneipes D. californica D. dichlocera D. eglanteriae D. fructuum D. fulgens D. fusiformans D. gracilis D. ignota D. inconspicuis D. japonica D. lens D. mayri D. nebulosa D. neglecta D. nervosa D. nigriceps D. nitidus D. nodulosa D. oregonensis D. ostensackeni D. polita D. pustulatoides D. radicum D. radoszkowskii D. rosae D. rosaefolii D. semipiceus D. similis D. spinosa D. spinosissimae D. terrigena D. triforma D. tuberculatrix D. tumida D. variabilis D. variegatus D. verna D. weldi Gall location stem stem leaf leaf n/a stem stem leaf fruit root stem leaf leaf stem leaf leaf leaf leaf stem leaf n/a n/a stem stem root leaf leaf root n/a leaf leaf root stem stem leaf root stem stem stem leaf n/a stem leaf Gall collected within Canada (rare) (exotic) (rare) (rare) (exotic) (exotic) (rare) † As listed by Dailey and Campbell (1973), Burks (1979), Ritchie (1984), Shorthouse and Ritchie (1984), and Askew et al. (2006). 64 Table 2.2. Species of Periclistus (Cynipidae) in North America. Periclistus species† Rose gall associations‡ P. arefactus D. inconspicuis D. neglecta “P. ashmeadi (nom. nud.)” D. ignota D. nebulosa P. brandtii D. mayri (exotic) D. rosae (exotic) P. californicus D. californica D. neglecta P. caninae D. eglanteriae (exotic) “P. cataractans (nom. nud.)” D. lens D. rosaefolii “P. fusicolus (nom. nud.)” D. fusiformans D. nodulosa D. triforma “P. gracilicolus (nom. nud.)” D. gracilis P. piceus D. polita P. pirata D. bassetti D. bicolor D. dichlocera D. ignota D. nebulosa D. neglecta D. nodulosa D. polita D. radicum D. rosae D. spinosa D. triforma D. tuberculatrix D. tumida “P. vancouverensis (nom. nud.)” D. inconspicuis D. neglecta “P. weldi (nom. nud.)” D. nebulosa D. nodulosa D. bassetti D. bicolor D. ignota D. variabilis D. polita D. polita D. spinosa † Identified by Ritchie (1984). Species descriptions of Periclistus by Ritchie (1984) were not published and so those specific names are considered nomina nuda. However, for ease of comparison, the same species names that appeared in his PhD dissertation (Ritchie 1984) will be used in this study, but those species names are written within quotation marks and include (nom. nud.). ‡ As listed by Ritchie (1984). 65 Table 2.3. Species of parasitoid associated with rose galls induced by Diplolepis. Superfamily Family species† Chalcidoidea Eulophidae Aprostocetus hesperius A. rosae A. zosimus Eupelmidae Eupelmus dryorhizoxeni E. urozonus E. vesicularis Eurytomidae Eurytoma acuta E. calcarea E. discordans E. flavicrurensa E. hebes E. hecale E. imminuta E. incerta E. iniquus E. longavena E. obtusilobae E. spongiosa E. terrea Ormyridae Ormyrus nitidulus O. rosae Pteromalidae Cyrtogaster vulgaris Torymidae Glyphomerus stigma Ichneumonoidea Ichneumonidae Exeristes roborator Baryscapus evonymellae Chrysocharis pentheus Minotetrastichus frontalis Sycophila wiltzae Tenuipetiolus ruber Mesopolobus fasciiventris Pteromalus bedeguaris Spaniopus dissimilis P. rosae Monodontomerus aereus Torymus bedeguaris T. bicoloratus T. chrysochlorus T. flavicoxa T. flavipes T. magnificus T. osborni T. rhoditidis T. solitarius T. tubicola T. varians Orthopelma califomicum O. occidentale O. mediator † As listed by Barron (1977), Rempel (2002), and the Universal Chalcidoid Database (www.nhm.ac.uk/researchcuration/research/projects/chalcidoids/). 66 Table 2.4. Species of Torymus (Torymidae) associated with rose galls induced by Diplolepis. Torymus species† Rose gall associations‡ T. bedeguaris† D. bicolor D. nebulosa D. rosaefolii D. eglanteriae (exotic) D. nodulosa D. spinosa D. gracilis D. polita D. triforma D. ignota D. radicum D. variabilis D. mayri (exotic) D. rosae (exotic) T. bicoloratus† D. bicolor D. gracilis D. nebulosa D. nodulosa D. polita D. spinosa D. triforma D. variabilis T. chrysochlorus† D. arefacta D. bassetti D. bicolor D. californica D. dichlocera D. fusiformans D. gracilis D. ignota D. lens D. nebulosa D. polita D. radicum D. rosae (exotic) D. rosaefolii D. spinosa D. triforma D. variabilis T. flavicoxa† D. radicum D. spinosa D. terrigena T. flavipes D. eglanteriae (exotic) D. mayri (exotic) D. rosae (exotic) D. spinosa T. magnificus† D. radicum T. osborni D. sp. T. rhoditidis D. sp. T. solitarius† D. bicolor D. nebulosa D. nodulosa D. polita D. radicum D. spinosa D. triforma D. variabilis T. tubicola D. polita T. varians D. sp. † Identified by Rempel (2002). ‡ As listed by Rempel (2002) and the Universal Chalcidoid Database (www.nhm.ac.uk/researchcuration/research/projects/chalcidoids/). 67 Table 2.5. Species of Diplolepis (Cynipidae) selected for DNA barcoding. Diplolepis species† individuals processed for DNA barcoding (n) D. bassetti 27 D. bicolor 20 D. californica 24 D. eglanteriae 6 D. fructuum 20 D. fusiformans 33 D. gracilis 20 D. ignota 20 D. lens 1 D. mayri 10 D. multispinosa 2 D. nebulosa 30 D. nodulosa 23 D. oregonensis 2 D. ostensakeni 2 D. polita 45 D. radicum 40 D. rosae 15 D. rosaefolii 60 D. spinosa 70 D. triforma 40 D. tubercularis 1 D. variabilis 21 Total † Identified by JD Shorthouse. 68 532 Table 2.6. Species of Periclistus (Cynipidae) selected for DNA barcoding. Periclistus species† individuals processed for DNA barcoding (n) P. arefactus 12 “P. ashmeadi (nom. nud.)” 17 “P. cataractans (nom. nud.)” 9 “P. fusicolus (nom. nud.)” 17 “P. gracilicolus (nom. nud.)” 12 P. piceus 12 P. pirata 20 “P. vancouverensis (nom. nud.)” 12 “P. weldi (nom. nud.)” 20 Total 131 † Identified by Ritchie (1984). New species descriptions of Periclistus by Ritchie (1984) were not published and so those specific names are considered nomina nuda. However, for ease of comparison, the same species names that appeared in his PhD dissertation (Ritchie 1984) will be used in this study, but those species names are written within quotation marks and include (nom. nud.). 69 Table 2.7. Species of Torymus (Torymidae) selected for DNA barcoding. Torymus species† individuals processed for DNA barcoding (n) T. bedeguaris 44 T. bicoloratus 7 T. chrysochlorus 23 T. flavicoxa 7 T. magnificus 4 T. solitarius 14 Total † Identified by Rempel (2002). 70 99 Table 2.8. Unidentified Hymenoptera exiting rose galls selected for DNA barcoding. individuals processed for DNA barcoding (n) Unidentified† taxa Adult Larva Diplolepis (Cynipidae) 199 10 Periclistus (Cynipidae) 496 3 Torymus (Torymidae) 302 1 Parasitoids (excluding Torymidae) 290 20 1287 34 Total † Specimens were not identified to species. 71 Table 2.9. Periclistus (Cynipidae) associations with rose galls induced by Diplolepis. D. polita leaf D. radicum root D. rosaefolii leaf D. spinosa stem D. triforma stem D. variabilis leaf “P. fusicolus (nom. nud.)” P. sp. DbOT36 stem DbOT35 D. nodulosa DbOT34 leaf P. sp. D. nebulosa DbOT33 leaf “P. ashmeadi /cataractans (nom. nud.)” D. ignota DbOT32 leaf P. sp. D. gracilis DbOT31 stem “P. weldi (nom. nud.)” D. fusiformans DbOT30 leaf P. piceus D. bicolor DbOT29 leaf P. sp. D. bassetti DbOT28 Gall location DbOT27 Diplolepis species† DbOT26 P. pirata Species of Periclistus‡ or DbOT§ † Identified by JD Shorthouse. Most identifications were based on adults, but some were based on external gall morphology. ‡ Identified by Ritchie (1984). § Figure 2.3 and Figure 2.6. Richness of species of Periclistus based on intercluster threshold of 2.2%. 72 Table 2.10. Torymus (Torymidae) associations with rose galls induced by Diplolepis. DbOT48 T. sp. DbOT46 T. bicoloratus T. bedeguaris/solitarius DbOT45 DbOT47 T. bedeguaris DbOT44 DbOT43 T. chrysochlorus DbOT42 leaf DbOT41 D. ignota DbOT40 leaf T. magnificus D. gracilis DbOT39 leaf T. sp. D. bicolor DbOT38 Gall location T. flavicoxa Diplolepis species† DbOT37 Species of Torymus‡ or DbOT§ D. mayri (exotic) leaf D. nebulosa leaf D. nodulosa stem D. polita leaf D. radicum root D. rosaefolii leaf D. spinosa stem D. triforma stem D. variabilis leaf † Identified by JD Shorthouse. Most identifications were based on adults, but some were based on external gall morphology. ‡ Identified by Rempel (2002). § Figure 2.4 and Figure 2.7. Richness of species of Torymus based on intercluster threshold of 2.2%. 73 Table 2.11. Species richness of Hymenoptera associated with rose galls induced by Diplolepis. D. polita 4 4 D. radicum 1 2 D. rosaefolii 1 1 D. spinosa 1 1 D. triforma 1 D. variabilis 1 5 2 1 1 2 1 2 12 2 4 7 2 1 3 9 2 5 13 4 1 5 9 2 2 2 7 4 6 10 4 2 1 1 1 1 1 2 4 3 4 2 1 3 1 1 1 1 1 2 1 1 1 1 1 1 4 1 2 1 5 2 1 1 2 4 12 2 1 1 1 1 3 7 1 6 2 4 1 4 2 12 4 1 2 9 4 8 2 2 12 2 6 16 1 4 13 3 Total unique 9 4 2 13 3 1 1 8 11 7 1 5 3 2 5 12 species (n) Total species 41 46 richness (n) † Identified by JD Shorthouse. Most identifications were based on adults, but some were based on external gall morphology. ‡ As listed by Barron (1977), Ritchie (1984), Rempel (2002), and the Universal Chalcidoid Database (www.nhm.ac.uk/researchcuration/research/projects/chalcidoids/). § Figure 2.6, Figure 2.7, and Figure 2.8. Species richness is based on intercluster threshold of 2.2%. 74 Species richness 3 3 1 Torymidae (Torymus) D. nodulosa 1 Pteromalidae 3 1 Ormyridae D. nebulosa 2 Ichneumonidae 3 6 1 Eurytomidae D. ignota 1 2 Eupelmidae 1 3 Eulophidae D. gracilis Cynipidae (Periclistus) 1 Species richness 1 8 Torymidae (Torymus) D. fusiformans 4 Pteromalidae 2 4 Ormyridae 2 1 Ichneumonidae D. bicolor Eurytomidae 1 Eupelmidae D. bassetti Eulophidae Diplolepis species† Cynipidae (Periclistus) Number of species identified within Family (n) Morphological identification‡ Molecular identification (DbOT)§ 7 failure success Number of Diplolepis specimens 200 150 100 50 0 Number of Periclistus specimens 200 150 100 50 0 150 100 2010 2000 1990 1980 1970 1960 1950 1940 1930 0 1920 50 1910 Number of Torymus specimens 200 Year Figure 2.1. Amplification success of DNA barcodes from adults and larvae of Diplolepis (Cynipidae), Periclistus (Cynipidae), and Torymus (Torymidae). The DNA barcodes were amplified with either a standard LEP primer set or a mini-barcode LEP primer set. A failure was considered as either no amplification of a DNA barcode sequence or amplification of contaminant DNA. 75 DNA barcode mtDNA 2% 100 100 100 97 (n = 5) Identification† ITS1 rDNA‡ 2 D. eglanteriae (n = 19) D. bicolor (n = 24) D. bassetti (n = 17) D. polita (n = 20) D. fructuum (n = 15) D. rosae (n = 18) D. rosaefolii (n = 2) 99 (n = 1) 100 100 (n = 1) 100 100 100 (n = 1) (n = 1) 91 100 100 (n = 9) D. fusiformans (n = 3) D. nebulosa (n = 18) (n = 26) (n = 9) (n = 1) D. ignota D. nebulosa D. variabilis (n = 3) (n = 2) D. sp.‡ (n = 1) (n = 8) (n = 1) D. gracilis D. nebulosa (n = 1) D. nodulosa (n = 5) D. triforma (n = 43) D. spinosa 99 100 100 99 99 100 95 100 99 99 100 100 (n = 8) D. californica (n = 5) (n = 1) D. radicum Figure 2.2. NJ dendrogram of reference vouchers of Diplolepis (Cynipidae). Clusters of DNA barcodes were generated using Kimura-2-parameter distance while clusters of ITS1 sequences were generated using number of differences. Bootstrap values ≥ 90% are given below branch and were calculated in MEGA v5.0. Red branches indicate species of Diplolepis with more than one ITS1 cluster within a species or shared DNA barcodes and ITS1 sequences between species. † Identified by JD Shorthouse (see Table 2.5). ‡ With the exception of one unidentified individual (D. sp.), all ITS1 sequences were amplified from morphologically identified individuals who were also DNA barcoded. 76 DNA barcode mtDNA Identification† ITS1 rDNA‡ 2 2% 100 100 (n = 2) P. arefactus (n = 3) (n = 6) P. pirata P. sp.‡ (n = 2) 91 (n = 4) 97 91 (n = 6) P. sp.‡ (n = 5) P. piceus (n = 4) (n = 5) “P. weldi (nom. nud.)” P. sp.‡ (n = 5) (n = 2) (n = 1) (n = 7) “P. ashmeadi (nom. nud.)” “P. cataractans (nom. nud.)” P. sp.‡ (n = 7) (n = 6) 100 100 100 100 100 100 (n = 1) (n = 9) (n = 3) 100 “P. fusicolus (nom. nud.)” P. sp.‡ (n = 2) 100 (n = 1) P. sp.‡ (n = 1) Figure 2.3. NJ dendrogram of reference vouchers of Periclistus (Cynipidae). Clusters of DNA barcodes were generated using Kimura-2-parameter distance while clusters of ITS1 sequences were generated using number of differences. Bootstrap values ≥ 90% are given below branch and were calculated in MEGA v5.0. Red branches indicate species of Periclistus with more than one ITS1 cluster within a species or shared DNA barcodes and ITS1 sequences between species. † Identified by Ritchie (1984) (see Table 2.6). ). ‡ All ITS1 sequences were amplified from unidentified individuals who were DNA barcoded and matched to reference specimens. Species descriptions of Periclistus by Ritchie (1984) were not published and so those specific names are considered nomina nuda. 77 DNA barcode mtDNA Identification† ITS1 rDNA‡ 2 2% 100 100 100 (n = 2) T. flavicoxa (n = 2) T. sp.‡ (n = 2) T. magnificus (n = 2) 99 (n = 1) (n = 18) (n = 2) T. chrysochlorus T. sp.‡ (n = 1) 100 100 100 100 (n = 25) (n = 1) T. bedeguaris T. sp.‡ (n = 1) (n = 5) (n = 6) (n = 3) T. bedeguaris T. solitarius T. sp.‡ (n = 3) (n = 5) T. bicoloratus Figure 2.4. NJ dendrogram of reference vouchers of Torymus (Torymidae). Clusters of DNA barcodes were generated using Kimura-2-parameter distance while clusters of ITS1 sequences were generated using number of differences.. Bootstrap values ≥ 90% are given below branch and were calculated in MEGA v5.0. Red branches indicate species of Torymus with more than one ITS1 cluster within a species or shared DNA barcodes and ITS1 sequences between species. † Identified by Rempel (2002) (see Table 2.7). ‡ All ITS1 sequences were amplified from unidentified individuals who were DNA barcoded and matched to reference specimens. 78 DNA barcode mtDNA 2% (n = 9) DbOT02 DbOT03 DbOT04 (n = 2) (n = 14) (n = 6) D. bassetti DbOT05 DbOT06 (n = 13) (n = 12) D. polita DbOT07 DbOT08 (n = 12) (n = 7) D. fructuum DbOT09 (n = 20) 99 D. sp. DbOT10 (n = 2) 98 D. rosae DbOT11 (n = 21) D. rosaefolii DbOT12 DbOT13 (n = 13) (n = 17) D. fusiformans D. nebulosa DbOT14 (n = 16) D. ignota D. nebulosa D. variabilis DbOT15 (n = 104) D. gracilis D. nebulosa DbOT16 (n = 10) 99 D. nodulosa DbOT17 (n = 11) 97 D. triforma DbOT18 DbOT19 (n = 27) (n = 4) DbOT20 (n = 39) DbOT21 (n = 16) D. californica DbOT22 (n = 8) D. radicum DbOT23 DbOT24 (n = 12) (n = 7) 99 99 D. bicolor 99 99 99 99 D. eglanteriae D. sp. Interspecific threshold ≥ 2.2% ‡ DbOT01 99 99 99 97 99 99 99 Identification† 99 98 99 99 99 99 98 99 94 95 D. spinosa 99 99 99 99 99 99 Figure 2.5. NJ dendrogram of both reference and unidentified adult and larva specimens of Diplolepis (Cynipidae) based on species threshold of 2.2%.Clusters of DNA barcodes were generated using Kimura-2-parameter distance. Bootstrap values ≥ 90% are given below branch and were calculated in MEGA v5.0. † Morphologically identified by JD Shorthouse (see Table 2.5 and Table 2.8). ‡ Species threshold calculated from minimum intercluster divergence supported by DNA barcodes and ITS1 sequences (Figure 2.2, 2.3, 2.4). 79 DNA barcode mtDNA 2% Identification† P. arefactus 100 Interspecific threshold ≥ 2.2% ‡ DbOT25 (n = 2) DbOT26 (n = 29) DbOT27 (n = 48) P. sp. DbOT28 (n = 3) P. piceus DbOT29 (n = 5) P. weldi (nom. nud.) DbOT30 (n = 80) P. sp. DbOT31 (n = 3) “P. ashmeadi (nom. nud.)” “P. cataractans (nom. nud.)” DbOT32 (n = 64) P. sp. DbOT33 (n = 14) DbOT34 (n = 14) DbOT35 (n = 14) DbOT36 (n = 25) 95 100 P. pirata 99 98 96 99 100 99 99 100 “P. fusicolus (nom. nud.)” 99 100 P. sp. Figure 2.6. NJ dendrogram of both reference and unidentified adult and larva specimens of Periclistus (Cynipidae) based on species threshold of 2.2%. Clusters of DNA barcodes were generated using Kimura-2-parameter distance. Bootstrap values ≥ 90% are given below branch and were calculated in MEGA v5.0. † Morphologically identified by Ritchie (1984) (see Table 2.6 and Table 2.8). Species descriptions of Periclistus by Ritchie (1984) were not published and so those specific names are considered nomina nuda. ‡ Species threshold calculated from minimum intercluster divergence supported by DNA barcodes and ITS1 sequences (Figure 2.2, 2.3, 2.4). 80 Identification† DNA barcode mtDNA 2% 100 100 100 Interspecific threshold ≥ 2.2% ‡ T. flavicoxa DbOT37 (n = 2) T. sp. DbOT38 (n = 6) T. magnificus DbOT39 (n = 2) DbOT40 (n = 24) DbOT41 (n = 12) DbOT42 (n = 4) DbOT43 (n = 15) T. bedeguaris DbOT44 (n = 161) T. bedeguaris T. solitarius DbOT45 (n = 41) T. sp. DbOT46 (n = 5) T. bicoloratus DbOT47 DbOT48 (n = 3) (n = 2) 99 T. chrysochlorus 100 100 100 100 100 100 100 100 100 Figure 2.7. NJ dendrogram of both reference and unidentified adult and larva specimens of Torymus (Torymidae) based on species threshold of 2.2%. Clusters of DNA barcodes were generated using Kimura-2-parameter distance. Bootstrap values ≥ 90% are given below branch and were calculated in MEGA v5.0. † Morphologically identified by Rempel (2002) (see Table 2.7 and Table 2.8). Species threshold calculated from minimum intercluster divergence supported by DNA barcodes and ITS1 sequences (Figure 2.2, 2.3, 2.4). 81 Identification† DNA barcode mtDNA 2% Interspecific threshold ≥ 2.2% ‡ DbOT49 (n = 3) DbOT50 (n = 41) DbOT51 (n = 16) DbOT52 (n = 9) DbOT53 (n = 1) DbOT54 (n = 4) DbOT55 DbOT56 DbOT57 DbOT58 DbOT59 DbOT60 (n = 1) (n = 1) (n = 2) (n = 2) (n = 1) (n = 3) DbOT61 (n = 13) DbOT62 (n = 1) DbOT63 (n = 1) DbOT64 (n = 1) DbOT65 (n = 5) DbOT66 (n = 9) DbOT67 (n = 3) DbOT68 (n = 18) 100 DbOT69 (n = 10) 100 DbOT70 (n = 2) DbOT71 (n = 3) DbOT72 (n = 38) Eupelmidae 100 100 91 Eurytomidae 99 100 100 100 100 98 Eulophidae 100 100 100 96 100 91 100 Pteromalidae 100 100 100 Ormyridae 100 100 100 100 100 Ichneumonidae 100 100 Figure 2.8. NJ dendrogram of unidentified adult and larva specimens of parasitoids (except Torymidae) associated with rose galls induced by Diplolepis. Clusters of DNA barcodes were generated using Kimura-2-parameter distance. Bootstrap values ≥ 90% are given below branch and were calculated in MEGA v5.0. † Individuals morphologically identified to family level. ‡ Species threshold calculated from minimum intercluster divergence supported by DNA barcodes and ITS1 sequences (Figure 2.2, 2.3, 2.4). 82 a) Cryptic species Two species Define types, original & cryptic. Redescribe both species. Indistinguishable by currently defined morphological characters. preliminary evidence: two DbOTs b) Synonymous species Distinguishable by currently defined morphological characters. One species Define type, remove synonymy. Redescribe species. preliminary evidence: one DbOT c) New species Unnamed. Not described. or Unsampled species One species Determine status: Named. Described. Neither have been DNA barcoded. preliminary evidence: If unnamed, then define new species. If named, then unsampled species. new DbOT Distinguishable by currently defined morphological characters. Add to DNA barcode database Figure 2.9. Schematic representation of post-DNA barcoding work protocol for species identification of DbOTs. Species identification of a) cryptic species, b) synonymous species, c) new species or unsampled species requires a preliminary comparison of morphology and DNA barcodes to congenerics. After DNA barcodes are generated, new data of behaviour, ecology, new morphological characters, or sequences from other gene regions need to be analyzed between congenerics and DbOTs in order to support species status. 83 CHAPTER THREE Patterns of genome size diversity in Hymenoptera and a test of possible development constraints: a large-scale study enabled by DNA barcoding 84 ABSTRACT New genome size estimates are reported for 309 species of Hymenoptera from 20 families in 7 superfamilies (identified operationally using the DNA barcoding threshold established in Chapter Two), bringing the total number of available genome size estimates for this order to 471 species divided among 36 families and 13 superfamilies. Across this combined dataset, genome size estimates ranged 20-fold, from 0.10 pg to 1.97 pg. Contrary to some earlier hypotheses, the order Hymenoptera possess similar genome sizes to other holometabolous orders, and a parasitic or parasitoid lifestyle does not appear to constrain genome size to a smaller genome size than non-parasitic and non-parasitoid taxa. Examination of idiobiont and koinobiont species within both Braconidae and Ichneumonidae did not reveal significant difference in mean genome size. However, mean genome size of cleptoparasites and inquilines was significantly smaller than their hosts and gall inducers, respectively. Though development time was not measured, the present results support the hypothesis that rapid development time relative to competitors is important in species of Hymenoptera that obtain resources within a narrow window of opportunity. 85 INTRODUCTION 3.1 Hymenoptera feeding The rich taxonomic diversity of Hymenoptera encompasses a wide variety of larval feeding modes including herbivory, predation, and parasitism (Gauld and Bolton 1988). It is hypothesized that ancestral Hymenoptera fed externally on plant tissues, and from these lineages emerged the ability to feed within plant tissues (borers, miners, gall inducers) in some derived lineages (Gauld and Bolton 1988). Another important transition in Hymenoptera evolution may have occurred when an egg was placed in close proximity to another immature Hymenoptera feeding within woody tissue, and consequently, a newly hatched larva would feed on another hymenopteran instead of on plant tissue (Gauld and Bolton 1988). This transition from phytophagy to carnivory occurred once in an early lineage of Hymenoptera, and approximately half of the extant families of Hymenoptera are carnivorous (Godfray 1994, Quicke 1997, Sharkey 2007, Heraty et al. 2011, Sharkey et al. 2011). From the carnivorous state, there have been some reversals to phytophagy, such as the leaf, nectar, and pollen collecting members of the superfamilies Apoidea (bees) and Vespoidea (wasps and ants), the mutualistic fig pollinators (fig wasps) and seed predators of the superfamily Chalcidoidea, and the gall inducers of the superfamilies Chalcidoidea, Cynipoidea, and Ichneumonoidea (Sharkey 2007). However, the predominant feeding mode of Hymenoptera remains that of specialised carnivores known as parasitoids (Godfray 1994, Quicke 1997, Sharkey 2007, Heraty et al. 2011, Sharkey et al. 2011). 3.2 Definitions of larval feeding modes The partitioning of insect biology into discrete categories is, in many cases, illustrative of pragmatic grouping together of functionally similar individuals. Many definitions are restricted 86 by taxonomic boundaries and researcher preference rather than strictly by biology; for example, the term “parasitoid” is usually restricted to Hymenoptera and Diptera although a few members of other insect orders, crustaceans, nematodes, fungi, and other invertebrate taxa adequately fit the parasitoid lifestyle based on their biology (Eggleton and Gaston 1990). Recognizing the limitation of defining the continuum of biological traits into discrete units is not necessarily problematic because definitions serve the practical purpose of organizing distinguishable groups for study. However, it does necessitate a clear exposition of how specific terms are being used in a given context. The following definitions used in this study are based primarily on the biology of larval stages within the order Hymenoptera. For clarification, the action of the ovipositing female has been included in some definitions. Parasitoid: Larvae obtain nourishment directly from one host in order to complete their development, resulting in death of the host (Gauld and Bolton 1988, Eggleton and Belshaw 1992, Godfray 1994, Quicke 1997). Species of parasitoids either oviposit on or near the external surface of the host (ectoparasitoid), or they oviposit within the host (endoparasitoid) (Eggleton and Belshaw 1992, Godfray 1994, Quicke 1997). Parasitoids usually attack a specific host life stage, such as the egg, larva, pupa, or adult, and their resulting progeny then leave the host at a specific host life stage (Eggleton and Belshaw 1992, Godfray 1994, Quicke 1997). Approximately half of all hymenopteran are parasitoids, and it has been estimated that 10-20 % of all insects are parasitoids (LaSalle and Gauld 1991, Godfray 1994, Quicke 1997, Sharkey 2007, Heraty et al. 2011, Sharkey et al. 2011). If the host cannot moult after an attack, the parasitoid is defined as an idiobiont, but if the host continues to develop and moults beyond the stage attacked, the parasitoid is defined as a koinobiont (Askew and Shaw 1986). This dichotomous grouping of parasitoids into idiobionts 87 or koinobionts was initially proposed to allow comparative tests of host specificity (Askew and Shaw 1986). Idiobionts tend to have a larger host range than koinobionts because there is minimal interaction with the immune response of a paralyzed or dead host (Askew and Shaw 1986, Pennacchio and Strand 2006). Prolonged association with a responsive host’s immune system (haemocytes), physiology (hormones), and development (moulting) has been suggested to favour greater specialization and therefore a smaller host range in koinobionts (Askew and Shaw 1986, Pennacchio and Strand 2006). Additional differences in parasitoid life history traits have been broadly categorized between idiobionts and koinobionts (Godfray 1994, Quicke 1997), and the first test of the dichotomous hypothesis found support for idiobionts having shorter development time than koinobionts (Blackburn 1991, Mayhew and Blackburn 1999). Forestry rearing records of the families Braconidae and Ichneumonidae have provided the most comprehensive host use data for any family of Hymenoptera (Askew and Shaw 1986, Sheehan and Hawkins 1991, Bennett 2008). Classification at the subfamily level characterizes the general biology of species within that taxon. For example, species in the subfamilies Brachistinae and Helconinae (Bracondiae) are characterized by such features as koinobiont endoparasitism of Coleoptera (Gauld and Bolton 1988). Thus, the two largest families of Hymenoptera allow comparisons of biological traits of interest without species level identifications. Cleptoparasite: The adult female cleptoparasite enters the host nest, oviposits into a nest cell, exits the host nest, and does not return (Eggleton and Gaston 1990, Michener 2000). Cleptoparasite larvae feed from a single host and food provisions (nectar, pollen) that were deposited into the nest cell by the adult female host species. The cleptoparasitic lifestyle occurs in members of four superfamilies of Hymenoptera (Apoidea, Chrysidoidea, 88 Evanoidea,Vespoidea), and the usual hosts are solitary and social nest-building Hymenoptera (Apoidea, Vespoidea) (Gauld and Bolton 1988). Cleptoparasitism is common since approximately 28% of species of Apidae are cleptoparasites (Cardinal et al. 2010). The host is commonly killed by the first instar of a cleptoparasite which is actively mobile, possesses long and heavily sclerotized mandibles and enlarged sensory structures (Rozen Jr 2001). These structures are gradually lost as the cleptoparasite moults because the probablity of mortality is greatly reduced when the host larva or other cleptoparasites are killed and after the nest cell is sealed by the host female (Rozen Jr and Kamel 2009). Cleptoparasites must eliminate competitors (host and other cleptoparasites) relatively quickly to survive and usurp the limited food provisions. Minimizing the duration from oviposition to egg hatch therefore provides a survival advantage to cleptoparasites. Inducer: The adult female wasp oviposits into a specific plant organ (bud, leaf, stem, root) and the feeding larva induces an atypical growth known as galls which provides shelter, nourishment, and protection to the inducer (Stone and Schönrogge 2003). Gall induction is a highly specialized form of herbivory such that gall wasp larvae continually stimulate the production of new plant cells to supply nutrients directly to them until they pupate (Shorthouse 1993). Approximately 1400 gall wasps (Hymenoptera: Cynipidae) worldwide induce galls on oak trees, shrubs, and grasses (Askew 1975, Godfray 1994, Liljeblad and Ronquist 1998). Inquiline: The adult female inquiline locates a gall induced by another cynipid and oviposits into the gall chamber. Though larvae of inquilines are specialised herbivores that do not feed on insect tissues, mortality of the inducer occurs from probing by the inquiline ovipositor (Shorthouse 1998) or from crushing by developing inquiline gall chambers (Csóka et al. 2005). Inquilines have lost the ability to initiate their own galls de novo (Ronquist 1994), and 89 are dependent on completing their development within the galls of inducers (Shorthouse 1998). Inquilinism is restricted to members of the tribe Synergini (family Cynipidae), and the usual host galls are induced by species within the tribes Cynipini (oak gall wasps), Diplolepidini (rose gall wasps), and Aylacini (herb gall wasps) (Csóka et al. 2005, Ács et al. 2010). Only approximately 10% of gall wasps (family Cynipinae) are inquilines, but they are important agents of inducer mortality (Csóka et al. 2005). Inducers require meristematic tissue within a narrow range of development for successful gall initiation (Pires and Price 2000, Stone et al. 2002), and it is probable that inquilines also have a narrow, if not more limited, window of gall vulnerability that allows them to usurp control of gall development. Rapid development from oviposition to egg hatch would be advantageous for the survival of inquilines. 3.3 Genome size and Hymenoptera Genome size is positively correlated with cell size and negatively correlated with cell division rate in a variety of cell types in a wide range of organisms (Gregory 2005). The direct influence of genome size on cellular properties may influence organism level traits such as development, metabolism, and ecological interactions (Gregory 2005). Genome size has been estimated by flow cytometry in 124 species of Hymenoptera, and these estimates include representatives from six superfamilies and 14 families (Table 3.1, Appendix 4). Currently, species coverage is composed of 44.4 % ants (family Formicidae), 26.6 % bees (Apidae), 16.1 % miscellaneous families of parasitoids (Aphelinidae, Braconidae, Encyrtidae, Eulophidae, Figitidae, Mutillidae, Pteromalidae, and Trichogrammatidae), 0.8 % sawflies (Cephidae), and 12.1 % wasps (Crabronidae, Sphecidae, and Vespidae) (Appendix 4). 90 On average, about five genera per family have been studied using flow cytometry, but the average drops to only about two genera per family when social Hymenoptera, such as ants and bees, are not included (Appendix 4). Current genome size estimates within Hymenoptera therefore remain very limited in light of the diversity of this order, especially with regard to the predominant category of parasitoids (Godfray 1994, Quicke 1997, Sharkey 2007, Heraty et al. 2011, Sharkey et al. 2011). The maximum reported genome size of Hymenoptera is approximately 2 pg (Gadau et al. 2001, Johnston et al. 2004, Barcenas et al. 2008, Tsutsui et al. 2008, Lopes et al. 2009, ArdilaGarcia et al. 2010, Tavares et al. 2010a, Tavares et al. 2010b, Gokhman et al. 2011, Hanrahan and Johnston 2011), as has also been found in other holometabolous insect orders (Gregory 2002). Most previous studies have focused on reporting the genome sizes of species of Hymenoptera from focal taxa regardless of biology. Though it is absolutely necessary to continue to accumulate genome size estimates for all invertebrates (Gregory 2005), observations from fine scale studies at the species level could also be used to generate new hypotheses about the role of genome size on organismal biology at a broader scale. A recent example involved comparisons of mean genome sizes of taxa with different levels of eusociality and parasitoid lifestyles (Ardila-Garcia et al. 2010). It was hypothesized that eusocial taxa would have small genome size because small cells would allow for increased numbers of neurons and higher cognitive functions, and parasitoid taxa would have small genome size to allow for rapid development compared to their hosts (Ardila-Garcia et al. 2010). Mean genome size of eusocial and parasitoid taxa were significantly smaller than solitary non-parasitoid taxa, but it was evident that there was a wide range of genome sizes within eusocial, parasitoid, and solitary nonparasitoid categories and substantial overlap between categories (Ardila-Garcia et al. 2010). 91 However, no significant differences were found between eusocial and solitary species in the same superfamily (Ardila-Garcia et al. 2010). In addition, if the Ardila-Garcia et al. (2010) dataset is reanalyzed with species of Mutillidae and Scoliidae re-categorized as parasitoids instead of solitary non-parasitoid taxa, then mean genome size would not be significantly different in parasitoid and solitary non-parasitoid taxa (p = 0.16). As Ardila-Garcia et al. (2010) suggested, there are no consistent patterns between eusociality and parasitoid lifestyles, and the re-analysis of data from that study suggests that broad categorical comparisons should be interpreted with caution because statistically significant differences may not exist if species are categorized differently. 3.4 Objectives An overall goal of this study is to expand the genome size database of Hymenoptera by sampling a greater number of parasitoid taxa from a much wider range of families and superfamilies than has been undertaken to date. The inclusion of many non-parasitoid Hymenoptera from a broad phylogenetic sample also allows the generation of new hypotheses and predictions of possible relationships between genome size and the biology of Hymenoptera. These data were used to address the following specific research objectives. Objective 3.A.: To test the hypothetical 2 pg threshold of holometabolous insects, using the order Hymenoptera as a test case. It has been suggested that holometabolous insects are constrained to have a maximum genome size of approximately 2 pg (Gregory 2002). Current genome size estimates by flow cytometry of 124 species of Hymenoptera do not surpass the 2 pg threshold, but the coverage of 14 families from six superfamilies underrepresents the predominant parasitoid lifestyle (Table 92 3.1, Appendix 4). If Hymenoptera are constrained to have a maximum genome size of 2pg, then all new genome size estimates of species from previously unsampled families and superfamilies are predicted to be less than 2 pg. Objective 3.B.: To test whether or not genome size is significantly larger in koinobionts than in idiobionts, using the families Braconidae and Ichneumonidae as test cases. Mean genome sizes of parasitoid taxa are not significantly different than mean genome sizes of non-parasitoid taxa (re-analysis of Ardila-Garcia et al. 2010). However, parasitoids can be further subdivided according to the dichotomous hypothesis (Askew and Shaw 1986). Idiobionts have shorter mean development time than koinobionts (Blackburn 1991, Mayhew and Blackburn 1999). If development time is positively correlated with genome size, then idiobionts are predicted to have significantly smaller mean genome sizes than koinobionts. Classification at the subfamily level within the families Braconidae and Ichneumonidae provides the most reliable characterization of taxa as either idiobionts or koinobionts, even without species-level identifications (Gauld and Bolton 1988).Therefore, subfamily classification of the two largest families of Hymenoptera should provide the most reliable test of differences between mean genome size idiobionts and koinobionts. Objective 3.C.: To test whether or not mean genome sizes of cleptoparasites are smaller than those of their hosts. Cleptoparasites kill the host larva and any competitors that may be present within the host nest cell. If cleptoparasites have traits that support rapid development of their eggs, then mean genome size of cleptoparasites should not be significantly larger than their hosts. It is predicted 93 that on average, cleptoparasites will have mean genome sizes significantly smaller than their hosts because reduced development time would enhance survival against competitors. Objective 3.D.: To test whether or not mean genome sizes of inquilines are smaller than those of inducers. Inquilines of the family Cynipidae must develop within galls induced by another cynipid, and the window of gall vulnerability is probably narrower than that of inducers. If inquilines have traits that support rapid development of their eggs, then mean genome sizes of inquilines should be significantly smaller than those of their inducer hosts. MATERIALS AND METHODS 3.5 Specimen collection and deposition The majority of live Hymenoptera used in this study were collected around Guelph, ON (43.56 N, -80.26 W.), Sudbury, ON (46.5 N, -80.97), and Churchill, MB (58.77 N, -94.17 W) from May to September of 2008, 2009, and 2010. Within these locations, collection sites included city parks, mixed-wood stands, ponds, rivers, and post-disturbance fire stands. I, with the help of volunteers collected most of the Hymenoptera by sweep-netting vagile adults and aspirating microhymenoptera from foliage (Appendix 2, Appendix 3). Hymenoptera were also indirectly collected by me, JD Shorthouse, and volunteers by hand-sampling relatively immobile hosts such as eggs, larvae of exposed and leaf-rolling Lepidoptera, scale insects, and plant galls (Appendix 2, Appendix 3). These hosts were brought to the laboratory (Churchill Northern Studies Centre, Laurentian University, or University of Guelph,) closest to the field site(s) and placed into separate plastic containers according to host type (egg, larva, pupa, or gall) and plant 94 type (sugar maple, Acer saccharum; flowering dogwood, Cornus florida; crab apple, Malus sp.; goldenrod, Solidago sp.; oak, Quercus sp.; rose, Rosa sp.; trembling aspen, Populus tremuloides; and willow, Salix sp.). Host larvae were provided fresh foliage every three days from the plant type on which they had been collected until they either completed development to their adult stage or a parasitoid exited from them. Pupae and galls that did not produce adults by September were subjected to cold temperature (4°C) for four months and then subjected to room temperature (~ 20°C) to break diapause. All live adult Hymenoptera were individually placed into microcentrifuge tubes and stored at -80°C in the J Lima collection (University of Guelph) until processed for genome size estimation and DNA barcoding. All specimens (n = 853) were identified to family by me using the morphological keys of Gauld and Bolton (1988) and Gibson et al. (1997). Identification to superfamily, subfamily, tribe, genus and species-level was completed post-DNA barcoding by me and followed classification according to Michener (2000), Melo and Gonçalves (2005), and Pulawski (2011) for Apoidea, the Universal Chalcidoidea Database (www.nhm.ac.uk/jdsml/research-curation/research/projects/chalcidoids/) for Chalcidoidea, Quicke et al. (2009) and Sharanowski et al. (2011) for Ichneumonoidea, the Ant database (www.antbase.org/index.htm) for Vespoidea, and the Fauna Europaea project database (www.faunaeur.org/about_fauna_intro.php) and Sharkey et al. (2011) for the remaining Hymenoptera. These sources of information were also used to obtain data on life history traits of collected specimens. 95 3.6 DNA extraction, PCR amplification, and sequence analyses Depending on the size of the specimen (< 10 mm), the hind tibia along with one or two other legs were transferred to an ethanol-filled well of a 96-well microtitre plate and shipped to the Biodiversity Institute of Ontario in Guelph, Ontario, Canada. Total genomic DNA extraction, PCR reactions, and sequencing procedures were the same as described in Chapter 1 for the DNA barcode region of COI gene (nucleotide positions 1490-2198 of the Drosophila yakuba mitochondrial genome). A cluster of DNA barcodes was defined as a unique DNA barcode operational taxon (DbOT) when the mean intercluster divergence from its nearest neighbour was 2.2% (Chapter Two). Each DbOT was considered to be a species, and their associated DNA barcodes were used in the Barcode of Life Database search engine (www.barcodinglife.org) to confirm previous identifications to the lowest taxonomic level possible. 3.7 Genome size estimation All dissecting equipment, solutions, and tubes were kept on ice during sample preparation. The frozen head of an adult Hymenoptera and one female of a selected standard (see below) were dissected to obtain neural tissue and placed within a 2 mL Kontes dounce tissue grinder (Gerresheimer Group, Dusseldorf, Germany) with 500 L Galbraith buffer solution (per 1 L dH2O: 8.8 g of Na2C6H5O7, 4.2 g of 3-[N-morpholino]-propane sulphonate, 1.99 g MgCl2, 1.0 mL Triton X-100, 100 mL 10 mg/mL RNase A, adjusted to pH 7.2). The solution containing the heads was then ground gently for 20 strokes with an “A” pestle (Gerresheimer Group, Dusseldorf, Germany). Afterwards, this sample was filtered through a 30 m mesh (Spectramesh) into either a microcentrifuge or 12 × 75 mm tube, depending on the flow 96 cytometer used. The sample was stained with 12 L of 5% propidium idodide (50 g/mL) and kept on ice in the dark for a minimum of 30 minutes prior to flow cytometry. Depending on availability of flow cytometers, samples were analyzed using a 488 nm laser on the Beckman Coulter Cell Lab Quanta SC MPL, Beckman Coulter CyAn ADP, Beckman Coulter Cytomics FC500, or BD FACSCalibur. A minimum of 1500 nuclei per Hymenoptera sample was analyzed, and genome size (GS) was estimated by comparing the ratio of fluorescence intensity peaks of unknowns and standards (see formulas [i.] and [ii.]). Most samples were co-prepared with female Drosophila melanogaster (Oregon R strain), but whenever overlapping peaks were produced with this standard, another specimen of the same DbOT was co-prepared with female Apis mellifera to obtain two distinguishable fluorescence peaks. The formulae for estimating GS are: or, [i.] for female (diploid) Hymenoptera, GSHymenoptera = PHymenoptera GSstandard Pstandard [ii.] for male (haploid) Hymenoptera, GSHymenoptera = PHymenoptera GSstandard 2 Pstandard where PHymenoptera Pstandard = mean fluorescence intensity peak of Hymenoptera specimen = mean fluorescence intensity peak of standard, either D. melanogaster (Oregon R strain) or A. mellifera. GSstandard = D. melanogaster, 1C = 0.18 pg, Rasch et al. (1971), or A. mellifera, 1C = 0.25 pg, Honeybee Genome Sequencing Consortium (2006) 97 3.8 Other published data: Genome size estimations Additional genome size estimates of species of Hymenoptera using flow cytometry were gathered from the Animal Genome Size Database (Gregory 2011) and published studies (Appendix 4). 3.9 Data Analysis Genome size estimate distribution for categorical groups (cleptoparasites, idiobionts, inducers, inquilines, koinobionts) were examined using the Shapiro-Wilk test of normality prior to statistical comparisons. Mean genome size estimates for categorical groups were compared by one-way ANOVA. Some data were not normally distributed, so a Kruskal-Wallis test was also performed to compare group means. However, the results did not differ qualitatively whether or not group means were compared by parametric or non-parametric methods, so only results of ANOVA are reported below. All statistical analyses were performed using the R statistical package version 2.10.1 (The R Foundation for Statistical Computing 2009) and Statgraphics Plus version 5.1 (Statistical Graphics Corp. 2001). RESULTS 3.10 Range of Hymenoptera genome sizes New genome size estimates for 309 species of Hymenoptera were generated by flow cytometry in this study, and these genome size estimates include the addition of seven superfamilies and 20 families and that had not been previously studied (Figure 3.1, Table 3.2, Appendix 2, Appendix 3). In combination with other studies, regardless of method of genome size estimation, there are now a total 471 genome size estimates of species of Hymenoptera 98 covering 13 superfamilies and 36 families. Total species coverage is now composed of 15.5 % ants (family Formicidae), 10.2 % bees (family Apidae), 6.3 % inducers and inquilines (family Cynipidae), 52.9 % parasitoids (families Aphelinidae, Bethylidae, Braconidae, Ceraphronidae, Chalcididae, Chrysididae, Diapriidae, Dryinidae, Encyrtidae, Eucharitidae, Eulophidae, Eupelmidae, Eurytomidae, Figitidae, Gasteruptiidae, Ichneumonidae, Megaspilidae, Mutillidae, Mymaridae, Ormyridae, Perilampidae, Platygastridae, Proctotrupidae, Pteromalidae, Scoliidae, Torymidae, and Trichogrammatidae), 6.6 % sawflies (families Argidae, Cephidae, Tenthredinidae), and 8.5 % non-parasitoid wasps (families Crabronidae, Sphecidae, and Vespidae) (Table 3.2, Gregory 2011). Mean genome size for all Hymenoptera is 0.40 ± 0.238 (n = 471) (Figure 3.1, Appendix 2, Appendix 3, Gregory 2011). Genome size estimates range 20fold, from 0.10 pg in the parasitoids Aphidius colemani and Peristenus stygicus (family Braconidae) to 1.97 pg in the inducer Andricus sp. (family Cynipidae) (Appendix 2, Appendix 3, Gregory 2011). Lower quartile and median of genome size of Hymenoptera is 0.26 pg and 0.35 pg, respectively. As predicted by the hypothetical threshold for holometabolous insects, no current genome size estimates of Hymenoptera exceed 2 pg (Figure 3.1, Appendix 2, Appendix 3, Gregory 2011). A nested analysis of variance using all genome size estimates of Hymenoptera performed by flow cytometry (n = 433 species, n = 977 individuals) revealed that 15% of the variation among species occurs at the level of superfamilies within the order Hymenoptera, 13% among families within superfamilies, 71% among species within families, and 1% among individuals within a species. This analysis could not be performed at the level of genus due to lack of confirmed identification to that level, but DNA barcoding allowed for species identification to a reference specimen or a tentative species identification by grouping DbOTs. In 99 any case, most analyses were performed at the level of superfamilies, families, or species because major differences in biology of Hymenoptera are more relevant at these levels than among genera (Gauld and Bolton 1988, Godfray 1994, Quicke 1997). Hymenoptera are broadly divided into two major groups, the Symphyta, a paraphyletic grouping of extant phytophagous families that arose from an ancestrally phytophagous lineage, and the Vespina, an informal name given to the clade consisting of all extant parasitoid, predatory, and secondarily derived phytophagous families that arose from a parasitoid ancestor (Figure 3.1, Heraty et al. 2011). Because the Symphyta are not monophyletic, and based on the current sampling in this study, the superfamily Tenthredinoidea was used as an outgroup to the Vespina while the single species from the superfamily Cephoidea was not included in further analyses. Mean genome size of the Tenthredinoidea (0.30 ± 0.086, n = 30) was significantly smaller than the Vespina (0.42 ± 0.247, n = 402) (F1, 430 = 7.07, p < 0.01). In addition, the superfamily Tenthredinoidea was compared individually to each superfamily within the Vespina with sample sizes as large as that for the Tenthredinoidea (i.e. n 30, superfamilies Apoidea, Chalcidoidea, Cynipoidea, Ichneumonoidea, Vespoidea). In all cases, mean genome size of the non-parasitoid superfamily Tenthredinoidea was either significantly smaller than or not significantly different from those of other superfamiles (F5, 406 = 26.49, p < 0.01, followed by Tukey's HSD post hoc test). A similar analysis was conducted at the family level, but this time the analysis used smaller sample sizes to allow for more comparisons (n 20, families Apidae, Braconidae, Cynipidae, Formicidae, Ichneumonidae, Tenthredinidae, Vespidae). Similar to the outcome of the superfamily comparisons, mean genome size of the non-parasitoid family Tenthredinidae was either significantly smaller than or not significantly different from mean 100 genome size of each family within the Vespina clade (F6, 309 = 22.16, p < 0.01, followed by Tukey's HSD post hoc test). 3.11 Genome size: dichotomous hypothesis This study produced new genome size estimates for 35 species of the family Braconidae and 91 species of the family Ichneumonidae (Table 3.2). Coverage includes 14 and 13 subfamilies of Braconidae and Ichneumonidae, respectively (Figures 3.2, 3.3). Two-way ANOVA tested for effect of parasitoid family (Braconidae and Ichneumonidae) and development type (idiobiont and koinobiont) on mean genome size. Homogeneity of family means of Braconidae and Ichneumonidae was rejected (F1, 110 = 39.81, p < 0.01), and mean genome size of Braconidae (0.21 ± 0.110, n = 39) was significantly smaller than Ichneumonidae (0.34 ± 0.106, n = 75). Two-way ANOVA did not detect an effect of development syndrome on mean genome size (F1, 110 = 3.51, p = 0.06), and the interaction between family and development type was not significant (F1, 110 = 0.38, p = 0.38). Thus, the hypothesis that idiobionts on average have smaller genome size than koinobionts was not supported. 3.12 Genome size: cleptoparasites and hosts This study produced the first genome size estimates for cleptoparasite species, and these four estimates included three superfamilies (Apoidea, Chrysidoidea, Evanoidea), two of which did not have genome size estimates for any species prior to this study (Figure 3.4). Unfortunately, cleptoparasites and hosts were not sampled from within the same hive, but rather were collected by sweep-netting adults from vegetation. Therefore, comparison of mean genome sizes between specific cleptoparasites with their actual hosts was not performed in this study. 101 Instead, mean genome size of all collected cleptoparasites was compared to the mean genome size of all reported hosts cited from other studies (Gauld and Bolton 1988, Smith 1996, Michener 2000). Mean genome size of all cleptoparasites (0.27 ± 0.020, n = 4) was significantly smaller than that of all their reported hosts (0.58 ± 0.234, n = 15) (F1, 17 = 6.74, p < 0.05). This result is robust since the comparative analysis includes representatives from 14 subfamilies in four superfamilies (Figure 3.4, Appendix 2, Appendix 3). Thus, the hypothesis that cleptoparasites have smaller genome size than their hosts, on average, is supported. 3.13 Genome size: inquilines and inducers This study produced the first genome size estimates for inducer and inquiline species (family Cynipidae, n = 30, Figure 3.5, Appendix 2, Appendix 3). Inducers and inquilines were collected while exiting from the same host gall (rose or oak) so that specific comparisons of mean genome between inducers and their inquilines could be performed (Figure 3.5). Mean genome size of rose gall inducers (Cynipidae: Diplolepis, 0.59 ± 0.083, n = 14) was significantly larger than their inquilines (Cynipidae: Periclistus, 0.24 ± 0.009, n = 7) (F1, 19 = 118.73, p < 0.01). This pattern was also repeated in the oak gall system where mean genome size of oak gall inducers (1.75 ± 0.286, n = 4) was significantly larger than that of their inquilines (0.34 ± 0.042, n = 5) (F1, 7 = 123.14, p < 0.01). In addition, when all inducers from both rose and oak gall systems were grouped together and compared against all inquilines, mean genome size of all inducers (0.84 ± 0.518, n = 18) was significantly larger than all inquilines (0.28 ± 0.058, n = 12) (F1, 28 = 14.04, p < 0.01). Thus, the hypothesis that inquilines on average have smaller genome size than inducers, on average, is supported. 102 DISCUSSION 3.14 Range of Hymenoptera genome size This study added 309 new genome size estimates within Hymenoptera (Table 3.2, Appendix 2, Appendix 3), and this order now has the largest coverage of genome size estimates of all insects in terms of family richness (n = 36) and species richness (n = 471) (Figure 3.6). The extensive sampling of Hymenoptera in this study did not discover any species with genome size larger than the hypothetical 2 pg threshold for holometabolous orders (Gregory 2002). Values of the 1st, 2nd, and 3rd quartiles of genome size of Hymenoptera were 0.25, 0.35, and 0.50 pg, respectively. It has been reported that Hymenoptera possess small genomes as relative to other holometabolous insect orders (Johnston et al. 2004, Tsutsui et al. 2008, Ardila-Garcia et al. 2010). Corresponding quartiles of Coleoptera and Lepidoptera genome size estimations are larger compared to Hymenoptera, but the 1st and 2nd quartiles of Diptera are smaller (Figure 3.6). Based on this observation, I predict that the genome size of an unsampled holometabolous species of insect would follow the suggested ranking of genome size: Diptera < Hymenoptera < Lepidoptera < Coleoptera, but there is considerable overlap among these orders of insects (Figure 3.6). At the family level, with n > 20 estimates per family (Apidae, Braconidae, Cynipidae, Formicidae, Ichneumonidae, Tenthredinidae, Vespidae), only the Braconidae have a mean genome size significantly smaller than the median genome size of Diptera (t = -2.75, df = 38, p < 0.01). However, if the disproportionately sampled family Drosophilidae is removed from the analysis (n = 94, 53 % genome size estimates of Diptera), then the mean genome size of all families of Hymenoptera are significantly smaller than the median genome size of Diptera (one 103 sample t-tests, p < 0.05). Therefore, broad categorical comparisons need to be interpreted with caution because statistically significant differences depend on the taxa selected. Several reported differences in mean genome size between taxonomic ranks have been qualitative and are not quantitatively supported by statistics (Johnston et al. 2004, Johnston et al. 2007, Gokhman et al. 2011). The standard of choice for insect genome size estimations by flow cytometry is Drosophila melanogaster (0.18 pg), but it should not be used as a standard reference for qualitative statements as to whether or not an insect species has a small or large genome size. For example, the genome size of figitids (Cynipoidea: Figitidae) has been reported as “large” because their genome size is greater than the genome size of their Drosophila hosts (Gokhman et al. 2011). However, within the superfamily Cynipoidea, mean genome size of this parasitoid family (Cynipoidea: Figitidae) is not significantly different from the mean genome size of their closest sister family, gall wasps (Cynipoidea: Cynipidae) (F1, 39 = 0.30, p = 0.59). Furthermore, qualitative comparisons of a species genome size should depend on the biology of closely related groups and be calibrated by a descriptive statistical pattern. For example, mean genome size of figitids was reported to be close to many Chalcidoidea, but this was based on comparison of three species of Figitidae with 10 species in five families of the superfamily Chalcidoidea (Gokhman et al. 2011). This qualitative statement would be more informative if Chalcidoidea were the sister superfamily to Cynipoidea (Figure 3.1), or if statistical comparisons were made strictly between superfamilies or between families and not between different taxonomic levels. Considering this, mean genome size of the superfamily Cynipoidea is significantly larger than their closest sister superfamily Platygastroidea, and mean genome size of Cynipoidea is not significantly different from the more distantly related superfamily Chalcidoidea (F2, 122 = 5.67, p < 0.05, followed by Tukey's HSD post hoc test). 104 However, the mean genome size of the parasitoid family Figitidae (Cynipoidea) is significantly different than the median genome size of 54 % (n = 7/13) of the parasitoid families within the superfamily Chalcidoidea (one sample t-tests, p < 0.05). Mean genome size of families within Chalcidoidea ranges from 0.21 in Trichogrammatidae to 0.78 in Mymaridae (Appendix 2, Appendix 3). Therefore, the observation that figitid genome sizes are close to those of many Chalcidoidea is not supported. Both qualitative and quantitative comparative statements of genome size between taxa need to be directed by knowledge of the range within the same taxonomic level. This study found substantial overlap between genome size ranges of non-parasitoid and parasitoid groups (Figure 3.1), and this informal observation does not support the hypothesis that parasitic insects have constrained genome sizes (Johnston et al. 2004, Johnston et al. 2007). Futhermore, both the re-analysis of the Ardila-Garcia et al. (2010) data (n = 91) and the new comparative analyses of this study (n = 433) demonstrate that mean genome sizes of parasitoid families do not differ significantly from mean genome sizes of non-parasitoid families. These comparisons once again demonstrate that selection of comparative groups should be justified a priori because mean genome size of a family of parasitoid may be either significantly smaller (Platygastridae < Cynipidae), larger (Torymidae > Cynipidae), or not significantly different (Figitidae = Cynipidae) from genome size in a non-parasitoid family. At least within Hymenoptera, differences in genome size cannot be attributed to parasitoid biology. Though both ectoparasitic lice (Phthiraptera) and endoparasitic twisted-winged flies (Strepsiptera) are among the smallest insect genome sizes reported (Johnston et al. 2004, Johnston et al. 2007, Gregory 2011), the genome size of ectoparasitic fleas (Siphonaptera) is significantly larger than the median genome size of all holometabolous insects (Figure 3.6, t = 105 3.84, df = 1059, p < 0.0001). Considering the 1st quartile of genome size of insects (Figure 3.6, 0.29 pg), only 31.6 % have parasitic or parasitoid lifestyles (n = 115/364). Thus, a preponderance of insects with small genome size are not parasites or parasitoids, and 55 % of parasitoids (n = 138/250) have a genome size larger than the 1st quartile of all insects. Qualitative and quantitative statements that parasitic or parasitoid insects have small genome sizes (Johnston et al. 2004, Johnston et al. 2007, Gregory 2011) are not supported by available data (Appendix 2, Appendix 3). The search for additional quantitative evidence of associations between parasitic or parasitoid lifestyles and genome size should continue, but future predictions should not be formulated based on previous unsupported hypotheses about broad guild categorizations (e.g., herbivore, parasitoid, predator). 3.15 Genome size: dichotomous hypothesis Parasitoids have been broadly categorized according to whether or not their attack causes the host to stop developing (idiobionts) or whether or not an infected host continues to develop (koinobionts) (Askew and Shaw 1986). Idiobionts have shorter development time than koinobionts (Blackburn 1991, Mayhew and Blackburn 1999) and this suggested that idiobionts may have smaller genome size due to the inverse correlation between cell division rate and genome size (Gregory 2005). However, no significant differences were found between genome sizes of idiobionts and koinobionts in either the Braconidae or the Ichneumonidae. However, it should be noted that without species-level development data to compare, there is no evidence that the species categorized as idiobionts and koinobionts in this study had any differences in development time. 106 Immature parasitoid development is affected by ambient environmental conditions such as humidity, temperature, and photoperiod (Vinson and Iwantsch 1980), but development is primarily affected by the internal state of the host because of the intimate and prolonged association between parasitoid and host. Each species of parasitoid attacks one specific life stage (egg, larva, pupa, adult), and the range of host characteristics such as age, size, and species that a parasitoid encounters has developmental consequences (Lawrence 1990). Early instars of hosts have lower concentrations of lipid and haemolyph protein than later instars, and these qualitative and quantitative differences in lipid and protein availability affect the development time of parasitoids. In general, idiobionts develop more rapidly than koinobionts (Mayhew and Blackburn 1999), and this may be due to the fact that there is little benefit to delay development in a host that will not improve in quality and quantity. However, idiobionts develop slowly in mature eggs and pupae because the progressive sclerotization of the host decreases the amount of digestible material available to the parasitoid, which inhibits consumption (Harvey 2005). Idiobiont development is slower in large hosts because more time is required to consume a large food item (Harvey 2005). Different host species also potentially affect the rate of development of idiobionts (Boivin 2010), but separating the effects of host species and mass is not always possible. Idiobiont development can be delayed or slowed down by diapause throughout the winter (Harvey 2005). Koinobiont development rate is also affected by host age and size, and two common patterns that have emerged are that as host age and size increases: 1) development time decreases or 2) development time is unaffected (Harvey 2005). Koinobionts of exposed hosts have shorter development times than koinobionts of concealed hosts (Harvey and Strand 2002), suggesting that rapid development time reduces mortality risks associated with higher predator encounters 107 and parasitoid load that exposed herbivores, such as leaf chewers, experience compared to herbivores in concealed sites, such as galls (Hawkins 1994). Thus, development time of idiobionts and koinobionts is affected by host factors such as stage, size, species, and ecology, and unless such host factors are kept constant in comparisons, it is not clear if development mode (idiobiont or koinobiont) alone is responsible for observed differences in development time. It is therefore rather unrealistic to expect differences in genome size to be positively correlated with differences in development time from egg to adult across any taxonomic level in insects. For example, a positive correlation between genome size and development time was found in a study of 67 species of Drosophila (Diptera: Drosophilidae) (Gregory and Johnston 2008), but another study determined that Psychodidae (Diptera) and Scatopsidae (Diptera) had longer development times than Drosophila melanogaster despite having smaller genome size (Schmidt-Ott et al. 2009). Once again, Drosophila melanogaster should not be used as a qualitative standard to ascertain whether or not development time, genome size, or another trait is small, average or large in any taxon. Such comparisons should be performed between closely related groups with similar biology, and with phylogeny taken into account whenever possible. The number of factors that influence development time likely increases as the number of taxonomic levels between comparative groups increases, and so any relationship between genome size and development time will not be easily revealed when distantly related groups are analyzed. Furthermore, though duration of the cell cycle is positively correlated with genome size (Gregory 2001), development rate of an entire organism may not correlate with bulk DNA content because it is composed of populations of cells that grow by the influence of many independent factors and limitations (Cavalier-Smith 1978). 108 3.16 Genome size: cleptoparasites and hosts Cleptoparasitism is defined as one animal stealing food or nest area from another animal (Cardinal et al. 2010), but such a broad categorization would not intuitively lead to a prediction of differences in mean genome size between a cleptoparasite and its host. However, when considering cleptoparasites with hospicidal larvae, physiological or genetic traits that support their rapid development to egg hatch would be advantageous in order to eliminate the host and competitors. This study determined that the cleptoparasites Nomada (Apoidea, Apidae), Chrysis and Chrysura (Chrysidoidea, Chrysididae), and Gasteruption (Evanoidea, Gasteruptiidae) have significantly smaller genome sizes than their reported hosts. Unfortunately, this study was not able to compare the development time of cleptoparasites to that of their actual hosts because they were collected as flying adults, and thus conclusions about significant differences in development times between the two groups cannot be supported at this time. In addition, since both cleptoparasites and hosts were not collected from a shared nest, any hosts linked to a cleptoparasite were based on reports to genus level. Nevertheless, the result is considered robust because it encompasses several subfamilies from four superfamilies that are distantly related (Figure 3.1). Few studies have tested and reported development time of cleptoparasites and their hosts (Rozen 2003), but it has been determined that while some species of cleptoparasite develop more rapidly than their host (Alves-dos-Santos et al. 2002, Rozen and Kamel 2007, Rozen and Kamel 2009) others do not (Torchio and Burdick 1988).Though cleptoparasites do not always develop faster than their hosts, rapid development rate may be important to cleptoparasites with hospicidal larvae. When eggs from several cleptoparasites are deposited in the same host cell, the first cleptoparasite to hatch has the advantage of killing other eggs of cleptoparasites (Rozen and 109 Kamel 2009). Embryonic development rate of eggs of cleptoparasites, possible competitors, and actual hosts is required to determine if development time and genome size are correlated within and between these groups. 3.17 Genome size: inducers and inquilines Egg development time of cynipids has been reported for few individuals per species and there are large time intervals between observations, but this limited data (n = 4) appears to support that inquilines develop faster than inducers (Table 3.3). This study determined that cynipid inquilines of oak and rose gall systems had significantly smaller genome size than cynipid inducers (Figure 3.5), but it cannot be concluded at this time that development time also differed between groups. Finer interval measurement of cynipid egg hatch is required from inducers and inquilines from the same gall system in order to test for differences in development rates. Inquiline larvae do not directly kill inducer larvae (Shorthouse 1998), and there are no reports that they attempt to kill other inquilines. Thus, if rapid development is advantageous to inquilines, it is most likely due to the necessity of usurping the gall development events rather than to eliminate competitors. The range and maximum value of genome size of inquilines is smaller than the range and maximum value of inducers, and the difference between range and maximum values is greater in oak gall systems (Figure 3.5). It is possible that cynipid inquiline genome size is more constrained than that of cynipid inducers because of a rapid development rate. Moreover, other life-history traits such as small body size may also contribute to inquilines relatively smaller genome size (Gregory and Johnston 2008). 110 3.18 Genome size and biologically relevant comparisons The negative correlation between genome size and cell division rate is well established for plants and animals (Gregory 2001, Gregory 2005, Bennett and Leitch 2005). Development rate of an entire organism depends on cell division rate and many other factors such as metabolic rate, environmental conditions (i.e. temperature, photoperiod, humidity), and developmental complexity (hemimetaboly, holometaboly), which affect whether or not a correlation with genome size exists. Complex interactions between many factors and genome size require that tests of differences in mean genome size be based on species that are closely related, share similar habitats, or interact with each other ecologically. Considering this, it is not surprising that there was no significant difference between mean genome size of idiobionts and koinobionts within the superfamily Ichneumonoidea because the broad sampling could not obtain large sample sizes of closely related species, with no variation in host stages attacked (eggs, larvae, pupae, adults), and interacting in the same habitat (exposed or concealed). On the other hand, differences in genome size between interacting species of Hymenoptera within the same nests or galls did support predictions based on probable rapid development of cleptoparasites and inquilines, respectively. However, development time data and a statistical test are still required before any support for differences between groups can be obtained. Finally, this study shows that genome sizes in Hymenoptera are similar to other holometabolous insect orders, and broad categorizations of species into guilds such as herbivore, parasitoid, or predator, should not be used as the basis of making predictions about genome size. Predictions of genome size correlations, patterns, and trends should be based on established cellular and organismal knowledge (Gregory 2005). Otherwise, genome size of several species of Hymenoptera could be compared to test for patterns and correlations without justification based 111 on biology, ecology, and phylogeny, and such comparisons could, in theory, also include any insect (Drosophila melanogaster), a mammal (Homo sapiens), and a lungfish (Protopterus aethiopicus). CONCLUSION This study is unique in that it brings together new data for genome size estimates by employing the molecular identification tool of DNA barcoding to test new predictions involving Hymenoptera. The established positive relationship of genome size and development time in many eukaryote taxa was used to test for differences in genome sizes between insect orders and selected groups of Hymenoptera. The range of genome size estimates of Hymenoptera covering 13 superfamilies and 36 families indicated that this order is not constrained to smaller C-values than other holometabolous orders. Categorization of species by guilds is not pragmatic when testing differences in mean genome size because the amount of bulk DNA in a cell is best correlated with cellular and organismal properties that interact with the environment. Species of Hymenoptera that require resources that are available during a short time period possess small genome sizes, which may favour rapid development to gain a competitive advantage. 112 Table 3.1 Studies of genome size (GS) estimates of Hymenoptera by flow cytometry Superfamily: Family Number of species† with GS estimates Apoidea: Apidae 1 • Report GS Chalcidoidea: Vespoidea: Trichogrammatidae Formicidae • Report GS Vespoidea: Vespidae 1 1 1 Johnston et al. 2004 Objective of GS estimate References Gadau et al. 2001 Apoidea: Apidae 1 • Report GS Honeybee Genome Sequencing Consortium (2006) Chalcidoidea: Pteromalidae 1 • Detect diploid males • Report GS Barcenas et al. 2008 Vespoidea: Formicidae • Correlate GS and head width • Report GS Tsutsui et al. 2008 Apoidea: Apidae • Report GS Lopes et al. 2009 Apoidea: Apoidea: Apoidea: Apidae Crabronidae Sphecidae Chalcidoidea: Chalcidoidea: Chalcidoidea: Chalcidoidea: Ichneumonoidea: Vespoidea: Vespoidea: Aphelinidae Encyrtidae Eulophidae Trichogrammatidae Braconidae Formicidae Vespidae • Report GS • Test mean GS of parasitoid and non-parasitoid taxa • Test mean GS of eusocial and solitary taxa Ardila-Garcia et al. 2009 41 3 12 3 2 4 1 1 3 3 18 8 Apoidea: Apidae 17 Apoidea: Apidae 1 • Correlate GS and intertegular span • Correlate GS and head width • Report GS • Test mean GS of low and high heterochromatin species • Detect diploid males • Report GS Cynipoidea: Figitidae 4 • Report GS Gokhman et al. 2011 Apoidea: Cephoidea: Ichneumonoidea: Vespoidea: Vespoidea: Apidae Cephidae Braconidae Mutillidae Vespidae 2 1 2 2 5 • Report GS Hanrahan and Johnston 2011 113 Tavares et al. 2010a Tavares et al. 2010b Table 3.2 Total number of genome size (GS) estimates of Hymenoptera†. Number of species‡ with GS estimates Superfamily: Apoidea: Apoidea: Apoidea: Cephoidea: Ceraphronoidea: Ceraphronoidea: Chalcidoidea: Chalcidoidea: Chalcidoidea: Chalcidoidea: Chalcidoidea: Chalcidoidea: Chalcidoidea: Chalcidoidea: Chalcidoidea: Chalcidoidea: Chalcidoidea: Chalcidoidea: Chalcidoidea: Chrysidoidea: Chrysidoidea: Chrysidoidea: Cynipoidea: Cynipoidea: Diaprioidea: Evanoidea: Ichneumonoidea: Ichneumonoidea: Platygastroidea: Proctotrupoidea: Tenthredinoidea: Tenthredinoidea: Vespoidea: Vespoidea: Vespoidea: Vespoidea: † ‡ § Family Apidae Crabronidae Sphecidae Cephidae Ceraphronidae Megaspilidae Aphelinidae Chalcididae Encyrtidae Eucharitidae Eulophidae Eupelmidae Eurytomidae Mymaridae Ormyridae Perilampidae Pteromalidae Torymidae Trichogrammatidae Bethylidae Chrysididae Dryinidae Cynipidae Figitidae Diapriidae Gasteruptiidae Braconidae Ichneumonidae Platygastridae Proctotrupidae Argidae Tenthredinidae Formicidae Mutillidae Scoliidae Vespidae previous studies 39 5 5 1 0 0 4 0 2 0 1 0 0 0 0 0 2 0 3 0 0 0 0 4 0 0 10 1 0 0 0 0 64 4 1 16 162 this study§ 13 (4) 2 3 (2) 0 1 1 2 (2) 1 7 (1) 1 11 (1) 3 13 2 5 3 11 9 2 (2) 1 2 1 30 7 3 1 38 (3) 91 9 1 1 29 9 0 0 11 324 (15) Total 48 7 6 1 1 1 4 1 8 1 11 3 13 2 5 3 13 9 3 1 2 1 30 11 3 1 45 92 9 1 1 29 73 4 1 27 471 All genome size estimation methods included: Biochemical Analysis (n = 1), Feulgen Densitometry (n = 3), Feulgen Image Analysis Densitometry (n = 34), and Flow Cytometry (n = 433). Species listed in Appendix 2, Appendix 3. Numbers in parentheses represent genome size estimations of species already reported in literature and repeated in this study as a quality check of flow cytometry protocols. Therefore, the number of new genome size estimations is 309. 114 Table 3.3 Guild Egg development time of oak and rose gall wasps. Species Egg hatch (d) Study measurement reported Inducer Aulacidea hieracii 10 Sliva and Shorthouse (2006) Inducer† Besbicus mirabilis 10 Evans (1967) Inquiline† Synergus pacificus 4 Evans (1965) Inducer Diplolepis fructuum 12-15 Güçlü et al. (2008) Inducer Diplolepis japonica 7-10, 30-35 Yasumatsu and Taketani (1967) Inducer† Diplolepis nodulosa 8-10 Inquiline† Periclistus pirata 7 Inducer Diplolepis polita 5 Shorthouse (1986) Inducer Diplolepis rosae 7 Schröder (1967) 4 Shorthouse (1987) 7-10 Shorthouse (1993) Inducer Inducer Brooks and Shorthouse (1998) Diplolepis spinosa 10 Sliva and Shorthouse (2006) 12 Leggo and Shorthouse (2006b) 14 Shorthouse and Leggo (2002) Diplolepis triforma Inquiline Synergus sp. 1 3 Ikai and Hijii (2007) Inquiline Synergus sp. 2 3 Ikai and Hijii (2007) † Inducer and inquiline interact in same gall community. 115 Idiobiont Koinobiont Equivocal (Idio/Koino) Hymenoptera Superfamily 2.00 1.50 0.00 Genome size (pg) 1.00 Ectoparasitoid Endoparasitoid Equivocal (Ecto/Endo) 0.50 Herbivore Xyleoidea Pamphiliodea Tenthredinoidea† n = 30 n= 1 Cephoidea Siricoidea Xiphydrioidea Orussoidea Stephanoidea Ceraphronoidea n = 2 Megalyroidea paraphyletic Trigonalyoidea Evanoidea‡ n= 1 Chrysidoidea‡ n= 4 Vespoidea‡ n = 87 Apoidea‡ n = 50 Ichneumonoidea† n = 130 Platygastroidea n= Cynipoidea† n = 41 9 Proctotrupoidea n = 1 Diaprioidea n= Chalcidoidea† n = 74 3 Mymarommatoidea Figure 3.1. Genome size diversity of superfamilies within Hymenoptera. Genome size was analyzed by flow cytometry, and estimates displayed were obtained from this study (n = 309 species, Appendix 2, Appendix 3) and from literature (n = 124 species, Appendix 4). Development syndrome of parasitoids is mapped onto the tree from Sharkey et al. (2011). Some superfamilies include several larval feeding modes: † Inducers or inquilines, ‡ cleptoparasite, § predator. Height of the genome size bar represents number of species. 116 Idiobiont Koinobiont Equivocal (Idio/Koino) Diptera Hemiptera Lepidoptera 0.80 0.60 Genome size (pg) 0.40 Host order Coleoptera 0.20 Braconidae subfamily 0.00 Ectoparasitoid Endoparasitoid Equivocal (Ecto/Endo) Acampsohelconinae Brachistinae Helconinae Macrocentrinae n= 1 n= n= 1 2 n= 5 n= 1 n= 7 n= n= 1 1 Xiphozelinae Amicrocentrinae Charmontinae Microtypinae Homolobinae Orgilinae Meteorinae Euphorinae Cenocoeliinae Microgastrinae Cardiochilinae Miracinae Khoikhoiinae Mendesellinae Cheloninae Ichneutinae Agathidinae Sigalphinae Meteorideinae Exothecinae Opiinae Alysiinae n = 10 Exothecinae Gnamptodontinae Braconinae n= 1 n= n= 3 1 n= 2 n= 3 Doryctinae Rogadinae Hormiinae Rhysipolinae Pambolinae Rhyssalinae Maxfischeriinae Aphidiinae Mesostoinae† Figure 3.2. Genome size diversity of subfamilies within Braconidae. Genome size was analyzed by flow cytometry, and estimates displayed were obtained from this study (n = 35 species, Appendix 2, Appendix 3) and from literature (n = 4, Appendix 4). Development syndrome of parasitoids is mapped onto the tree from Sharanowski et al. (2011). Height of the genome size bar represents number of species. 117 Diptera Idiobiont Koinobiont Equivocal (Idio/Koino) Campopleginae n = 14 Ophioninae Anomaloninae n= n= 1 3 Mesochorinae n= 1 Nesomesochorinae Cremastinae Ctenopelmatinae Metopiinae 0.80 0.60 Genome size (pg) 0.40 Host order 0.20 Ichneumonidae subfamily Hymenoptera Lepidoptera 0.00 Ectoparasitoid Endoparasitoid Equivocal (Ecto/Endo) Tatogastrinae Ctenopelmatinae n = 2 Orthopelmatinae n = 4 Oxytorinae Ctenopelmatinae Banchinae n= 7 n= 3 n= 4 Tersilochinae Lycorininae Tryphoninae Brachyscleromatinae Stilbopinae Tryphoninae Cryptinae n = 17 Adelognathinae Agriotypinae Ichneumoninae n= 5 n= 5 n= n= 4 4 Alomyinae Brachycyrtinae Pedunculinae Claseinae Pimplinae Poemeniinae Rhyssinae Orthocentrinae Diplazontinae Collyriinae Cylloceriinae Acaenitinae Diacritinae Labeninae Xoridinae Figure 3.3. Genome size diversity of subfamilies within Ichneumonidae. Genome size was analyzed by flow cytometry, and estimates displayed were obtained from this study (n = 75 species, Appendix 2, Appendix 3). Development syndrome of parasitoids is mapped onto the tree from Quicke et al. (2009). Height of the genome size bar represents number of species. 118 Cleptoparasite Host 1.20 1.00 0.80 0.60 0.40 0.20 Genome size (pg) Cleptoparasite DbOT Apoidea, Apidae: Nomada Chrysidoidea, Chrysididae: Chrysis Chrysidoidea, Chrysididae: Chrysura Evanoidea, Gasteruptiidae: Gasteruption Figure 3.4. Genome size diversity of cleptoparasites (n = 4 species) and reported hosts (n = 15 species) (Appendix 2, Appendix 3). Genome size was analyzed by flow cytometry, and estimates displayed were obtained from this study. Several species of host are used by more than one species of cleptoparasite. Height of host genome size bar represents the number of species utilized by the cleptoparasite. 119 Inquiline Inducer 2.00 1.80 1.60 1.40 1.20 1.00 0.80 0.60 0.40 0.20 Genome size (pg) unsampled inquiline† unsampled inquiline† Oak galls DbOT 157 DbOT 156 DbOT 155 DbOT 147‡ Inquiline DbOT DbOT 146‡ unsampled inquiline† unsampled inquiline† unsampled inquiline† DbOT 37, Periclistus Rose galls DbOT 34, Periclistus DbOT 33, Periclistus DbOT 31, Periclistus DbOT 29, Periclistus DbOT 28, Periclistus DbOT 27, Periclistus Figure 3.5. Genome size diversity of inquilines (n = 12 species) and inducers (n = 18 species) (Appendix 2, Appendix 3). Genome size was analyzed by flow cytometry, and estimates displayed were obtained from this study. The gall community of one species of inducer may have several species of inquilines. † Only an inducer exited from the gall so genome size of inquilines from the same gall could not be estimated. Height of inducer genome size bar represents number of species. 120 Insecta Order Thysanura Ephemeroptera n= n= Odonata n = 130 Blattodea Isoptera Mantodea Phasmatodea Embioptera Orthoptera Dermaptera Zoraptera Phthiraptera Hemiptera n= n= n= n= n= n= n= n= n= n= Hymenoptera n = 471 Strepsiptera n= Coleoptera n = 237 Lepidoptera n = 169 Diptera n = 177 Mecoptera Siphonaptera n= n= 0 4 Genome size (pg) 8 12 16 20 1 1 13 16 6 7 1 49 1 1 1 51 2 2 1 Figure 3.6. Genome size diversity of orders within class Insecta. Genome size was analyzed by multiple methods, and estimates were obtained from this study (n = 309 species, Appendix 2, Appendix 3) and from literature (n = 1028 species, Appendix 4, Gregory 2011). Height of the genome size bar represents number of species. 121 CHAPTER FOUR General discussion and conclusion 122 4. 1 Identification challenges within this thesis Regardless of preference in using morphology, molecules, or a combination of both in specimen identification, there are significant issues in reliability. It is challenging to be proficient in the identification of many taxa, especially in the diverse order Hymenoptera (Godfray and Shimada 1999, Gariepy et al. 2007, Stone et al. 2008). Possible sources of species identification errors include, but not limited to, outdated reference sources (keys and species descriptions), misinterpretation of correct reference sources, level of experience of observer (novice or expert), mislabelling specimens by observer (data entry), unspecific primer design, and DNA contamination. Throughout this thesis, both morphology and molecules were used for family level and species level (DbOT) identification, respectively. Identification systems based on morphology and/or molecular data are challenged with identifying specimens that are not included in the key/reference library, and such unknown specimens may lead to erroneous identifications (Gaston and O’Neill 2004). Ideally, identification systems should clearly designate all undescribed species as new to science, but ultimate responsibility to identify species is the user and not solely the system. Morphology was given precedence over molecules when identifying reference specimens of Diplolepis (Cynipidae), Periclistus (Cynipidae), and Torymus (Torymidae) (Chapter Two), and also for superfamily and family level identification of other Hymenoptera (Chapter Two and Chapter Three). This is not to say that morphology trumps molecules in identification, but rather that identification by DNA barcoding had to be monitored by the user to maintain high levels of success and accuracy. For example, some microhymenoptera sequences were contaminated by Apoidea and Vespoidea DNA, but these sequences were detected and deleted from subsequent analyses. It is reasonable to assume that microhymenoptera sweep-netted and aspirated from 123 flowers would be contaminated with hairs from various bees and wasps, and due to the small size of microhymenoptera (< 3 mm long) the universal primers preferentially amplified the hairs from other Hymenoptera. In addition, a few parasitoid sequences were contaminated with host DNA due to preferential amplification by the universal primers, but these sequences were also easy to detect and deleted from subsequent analyses. The ability to re-examine specimens is critical to maintain identification accuracy by molecular methods such as DNA barcoding, and studies involving Hymenoptera need to be aware of possible contamination (Rougerie et al. 2010, Lee and Lee 2012). An original intention that may have been understated by Hebert et al. (2003) was the necessity of collaboration between molecular biologists and taxonomists to successfully develop a DNA barcode reference library. Unfortunately, the Barcode of Life Database (BoLD, www.barcodinglife.org) does not allow confident assignment to species or genera for most families of Hymenoptera (Santos et al. 2011), and so the DNA barcode reference library is not readily available for identification of most Hymenoptera collected in bioinventories.Therefore, family level morphology was predominantly used to sort community members of rose galls induced by Diplolepis (Chapter Two) and to obtain broad scale (superfamily and family) genome size comparisons (Chapter Three). Afterwards, a species threshold (2.2% from its nearest neighbour) based on both DNA barcode and ITS1 sequences was calculated and then used to guide separation of specimens into DbOTs. The species threshold made it possible to estimate species (DbOTs) richness of rose gall communities (Chapter Two) and to make genome size comparisons between parasitoid and non-parasitoid lineages (Chapter Three), subfamilies of Ichneumonoidea (Braconidae and Ichneumonidae) (Chapter Three), cleptoparasites and their hosts (Chapter Three), and inducers and inquilines of oak and rose galls (Chapter Three). 124 Application of a species threshold throughout this thesis is not the same as assuming equal mutation or speciation rates among Hymenoptera lineages, and it is recognized that a universal species threshold does not exist and should not be applied to any scientific investigation (Cognato 2006). However, the 2.2% species threshold applied throughout this thesis is based on congruence between COI and ITS1 sequences from Hymenoptera collected within a narrow geographic area (Chapter Two), is calculated from the more appropriate minimum average sequence divergence between nearest neighbour species (Meier et al. 2008), and is within the range of species thresholds applied in other bioinventory studies of Hymenoptera (Smith et al. 2005a, Smith et al. 2009). There is a probability that a new DNA barcode from an unidentified individual may not be correctly assigned to its species because its DNA barcode may fall outside the normally encountered range of genetic divergence recognized for a species (DeWalt 2011). However, the likelihood that large intraspecific genetic divergences would be found between individuals of the same species collected within the same narrow geographic area (Appendix 1, Appendix 3) is low because gene flow is not limited (DeWalt 2011). The lack of a DNA barcode reference library (Santos et al. 2011) and the lack of morphological characters (males, larvae, head removal) for species identification of Hymenoptera (Chapter Two and Chapter Three) meant that the application of the 2.2% species threshold was necessary and practical to achieve the thesis objectives. Finally, a distinction needs to be recognized between applying a tested species threshold in a narrow geographic area without the availability of taxonomic expertise and applying an arbitrary universal species threshold to individuals collected from widely dispersed geographic areas without including available additional data (behavioural, molecular, morphological) necessary for species identification and discovery. As BoLD increases its DNA barcode reference library for 125 Hymenoptera, it will be possible to assign the DbOTs within this thesis to genus and species. Though future species designation will provide an extra level of detail to the findings of this thesis, it will not alter the general conclusions of Chapter Two and Chapter Three. Unfortunately, the universal primers (Lep-F1, Lep-R1, MLep-F1, MLep-R1) did not amplify a DNA barcode for several specimens in the superfamilies Ceraphronoidea, Chrysidoidea, and Chalcidoidea; thus, one specimen was randomly selected to represent genome size estimation for some families within those superfamilies (Appendix 2, Appendix 3). Therefore, multiple specimens (males and females) from the same family of Bethylidae, Ceraphronidae, Eucharitidae, and Megaspilidae could not be included in the analyses as they could not be separated into unique DbOTs and have a mean genome size estimated per species. Overall, the failure to amplify DNA barcodes with universal primers from a few families was inconsequential since most families collected for this thesis were readily sequenced (87.9 %, n = 29/33). Since the focus of this thesis was broad scale collecting of Hymenoptera, the impact of primer failure was negligible. However, if DNA barcodes must be generated for all specimens collected in another project, then alternative primers would need to be designed for specific taxa of Hymenoptera. Other studies had to design and optimize alternative primers for DNA barcoding of specific families within Chalcidoidea (Li et al. 2010) and several families across Hymenoptera (Santos et al. 2011). The necessity of multiple primers and specific primers for DNA barcoding of select taxa of Hymenoptera is no more cumbersome than using multiple morphological keys when sorting insects. Developing experience and awareness of limitations of both morphological identifications of live Hymenoptera and DNA barcoding have provided a reasonable safeguard to minimize identification errors in this thesis. Sampling was restricted to intact specimens that 126 could be morphologically identified to both family and gender so that DNA contamination and incorrect genome size estimation (male haploid, female diploid) could be eliminated. As discussed above, morphological and molecular data are valuable characters, and if properly used together, they assist initial taxon separation and guide future taxon delimitation. 4. 2 Conclusions and synthesis In Chapter Two, DNA barcodes and ITS1 sequences revealed that morphologically identified Diplolepis (Cynipidae), Periclistus (Cynipidae), and Torymus (Torymidae) associated with rose galls induced by Diplolepis contain either cryptic, synonymous, new, or unsampled species. Furthermore, a 2.2% species threshold estimated that the richness of parasitoids collected from rose galls induced by Diplolepis in Canada in a 10 year period was greater than previous estimated richness collected throughout North America, north of Mexico, over a 100 year period. These results provide evidence that additional character sets, whether they be morphological, molecular, and/or biological, are required to revise the delimitation of species of Hymenoptera associated with rose galls. The qualitative data of species of Periclistus and Torymus suggested that inquilines were not more inducer specific than the parasitoid, respectively. However, the dataset of the study was restricted to specimens less than 10 years old, and these preliminary results are suggestive but not strongly supported. A larger quantitative dataset would be required to adequately test for association of inducer species with community composition of either inquilines or parasitoids (Bailey et al. 2009). The JDS reference collection at Laurentian University in Sudbury, ON, contains thousands of unidentified inhabitants from rose galls induced by Diplolepis collected over the past 42 years, and with the aid of DNA barcoding to sort specimens to DbOTs, 127 inquilines and parasitoids could be identified and quantified for each inducer. Additionally, a high precision food web could be recreated with the qualitative and quantitative trophic links for any inducer species (Kaartinen et al. 2010, Hrcek et al. 2011). Specimens of Hymenoptera > 10 years old would require development of new internal primer pairs to amplify degraded DNA. Individuals would be selected by a taxonomic expert to serve as vouchers for male and females of a species (DbOT) and have their DNA barcodes amplified. To reduce costs, individuals of species that have one distinct DNA barcode cluster and that can be separated by morphology would not require further DNA barcoding. Otherwise, taxa that are difficult to identify by morphology and male specimens may all require DNA barcoding to construct an accurate food web. A future unique contribution to cecidology would be to DNA barcode eggs, larvae, and pupae of inducers and inquilines with histological examinations of gall tissues. Cryptic, synonymous, new, or unsampled species in a gall community are more likely to be undetectable in their immature stages, and these lifestages are encountered during the process of histological sectioning of galls (LeBlanc and Lacroix 2001, Shorthouse et al. 2005, Leggo and Shorthouse 2006a, Leggo and Shorthouse 2006b, Sliva and Shorthouse 2006). The possible inclusion of DNA barcoding in future histological studies offers the opportunity to search for distinct gall characters on a finer scale that may have been previously overlooked as intrataxon variability. In Chapter Three, the goal of expanding the genome size database of Hymenoptera resulted in an increase of 66 %, 56 %, and 54 % in species (DbOTs), family, and superfamily new estimates (Figure 4. 1). Diversity of larval lifestyle was also increased with the first genome size estimates of cleptoparasites, inducers, and inquilines into the database. The addition of 309 new genome size estimates within the order Hymenoptera has now lifted the ranking of this 128 order from lowest genome size coverage of diverse holometabolous orders (Coleoptera, Diptera, Lepidoptera) to the highest coverage of all insects, both hemimetabolous and holometabolous (Table 4.1). Broad guild categorizations (herbivore, parasitoid, predator) are insufficient to provide hypotheses and predictions about genome size patterns. This study determined that the order Hymenoptera is not constrained to small C-values more so than other holometabolous orders. It has been suggested that parasitic or parasitoid insects have small genome sizes (Johnston et al. 2004, Johnston et al. 2007), but the extensive sampling of Hymenoptera within this study established that this is not the case. It is now known that parasitic or parasitoid biology is not a trait that unequivocally constrains genome size. For example, the entirely parasitic order Siphonaptera (fleas) has genome size significantly larger than the median for all holometabolous insects. Coleoptera, Diptera, Lepidoptera, Neuroptera, and Trichoptera have several families with parasitoid species (Eggleton and Belshaw 1992, Godfray 1994, Quicke 1997), but none have had their genome size estimated (Gregory 2011). To further support or refute that parasitic or parasitoid biology does not constrain genome size, genome size of parasitoid species should be compared to sister taxa (genera, family, order) that do not contain parasitoid species. Also, specific traits related to genome size should be clearly stated for a particular guild or taxon which can then be tested. For example, this study predicted that idiobionts would have smaller genome size than koinobionts based on the observation that idiobionts have shorter development time (Blackburn 1991, Mayhew and Blackburn 1999). Though, no significant difference was found between genome size of idiobionts and koinobionts, the prediction was specific and based on data from published studies (Blackburn 1991, Mayhew and Blackburn 1999). It would not have been reasonable to predict differences between genome size of idiobionts and koinobionts based 129 on generalized statements about differences in their host range (Askew and Shaw 1986, Pennacchio and Strand 2006) because there are currently no data suggesting such a relationship. It is possible that high fecundity, small body size, or high metabolic rate may constrain genome size (Johnston et al. 2004, Johnston et al. 2007), but comparative tests of these traits between parasitic or parasitoid groups and non-parasitic or non-parasitoid groups are still required. The importance of reduced development time and the link with small genome size was a central theme throughout Chapter Three. This pattern was evident when interacting species of Hymenoptera were competing within a narrow window of opportunity for a resource that was critical for survival. This was true for cleptoparasites and inquilines having significantly smaller genome size than their hosts and inducers, respectively. Future sampling of other systems with cleptoparasites and inquilines can test the general prediction that they have significantly smaller genome size than their hosts. It would also be interesting to determine in which situations this pattern does not occur. Both cleptoparasites and inquilines are restricted to specific habitats, such as nests and galls, respectively, in which they encounter hosts. Cleptoparasite and inquiline eggs are placed at some distance from any host or competitor and so it is plausible that ovipositing females do not assess host condition. However, ovipositing parasitoids often interact with their host to assess size, species, stage, and whether or not the host has been previously parasitized (Godfray 1994, Quicke 1997). In essence, ovipositing parasitoids decide whether or not a host is acceptable before they oviposit. In general, idiobionts are competitively superior to koinobionts because their attack stops development of the host which in turn would kill any developing koinobiont (Godfray 1994, Quicke 1997). Perhaps a relaxed mortality schedule of idiobionts in comparison to koinobionts has also relaxed some constraint on genome size. Thus, though idiobiont 130 development time has been reported to be faster than koinobionts (Blackburn 1991, Mayhew and Blackburn 1999), it may be mortality risks that have a stronger influence on genome size. Chapter Three did not reveal any significant difference in mean genome size between idiobiont and koinobiont species within both Braconidae and Ichneumonidae. Variation in genome size may be revealed if development time and mortality risks within closely related idiobionts or koinobionts that attack similar hosts are sampled. Afterwards, comparisons between idiobiont and koinobiont species attacking the same host may reveal differences that the broad scale sampling of this study could not investigate specifically. This thesis illustrated the utility of DNA barcoding to enhance explorative surveys of richness of Hymenoptera in gall systems and sampling of species of Hymenoptera for broad scale genome size estimations and fine scale comparative tests. Data of genome size variation in any category of interest (species, habitat type, lifestyle) can be collected on a large scale due to the sampling efficiency of flow cytometry. With the addition of a molecular identification tool, such as DNA barcoding, the study of biology of Hymenoptera is no longer restricted to described species available in cultures. Now individuals can be sampled in the field and reliably linked every field season to continue observations and data collection. Based on larger scale observations, new hypotheses and predictions can be formulated about the effect of the amount of bulk DNA on organism physiology (development), morphology (size), and ecological interactions (Gregory 2005). 131 Table 4.1 Total number of genome size (GS) estimates of Insecta†. Order Blattaria Dermaptera Embioptera Ephemeroptera Hemiptera Isoptera Mantodea Odonata Orthoptera Phasmatodea Phthiraptera Thysanura Zoraptera Developmental complexity Hemimetabolous Hemimetabolous Hemimetabolous Hemimetabolous Hemimetabolous Hemimetabolous Hemimetabolous Hemimetabolous Hemimetabolous Hemimetabolous Hemimetabolous Hemimetabolous Hemimetabolous Coleoptera Diptera Hymenoptera Lepidoptera Mecoptera Siphonaptera Strepsiptera Holometabolous Holometabolous Holometabolous Holometabolous Holometabolous Holometabolous Holometabolous Number of families‡§ with GS estimates 4 1 1 1 9 6 2 9 7 3 1 1 1 25 18 36 (16) 21 1 1 2 Number of species‡§ with GS estimates 13 1 1 1 51 16 6 130 49 7 1 1 1 237 177 471 (162) 169 2 1 2 † Genome size estimates listed include established methods such as feulgen densitometry, flow cytometry, and whole genome sequencing. ‡ Taxa listed in Appendix 2, Appendix 3, Appendix 4, and www.genomesize.com. § Number in parentheses state number of taxa that had their genome size estimated prior to this thesis. 132 Idiobiont Koinobiont Equivocal (Idio/Koino) Hymenoptera Superfamily 2.00 1.50 0.00 Genome size (pg) 1.00 Ectoparasitoid Endoparasitoid Equivocal (Ecto/Endo) 0.50 Herbivore Xyleoidea Pamphiliodea Tenthredinoidea† n = 0 + 30 n= 1 Cephoidea Siricoidea Xiphydrioidea Orussoidea Stephanoidea Ceraphronoidea n= 0+ 2 Evanoidea‡ n= 0+ 1 Chrysidoidea‡ n= 0+ 4 Vespoidea‡ n = 85 + 20 Apoidea‡ n = 49 + 12 Megalyroidea paraphyletic Trigonalyoidea Ichneumonoidea† n = 11 + 126 Platygastroidea n= 0+ 9 Cynipoidea† n= 4 + 37 Proctotrupoidea n= 0+ 1 Diaprioidea n= 0+ 3 Chalcidoidea† n = 12 + 65 Mymarommatoidea Figure 4.1. New genome size estimates within Hymenoptera. Genome size was analyzed by multiple methods, and estimates displayed were obtained from this study (red bars and red text, n = 310, Appendix 2, Appendix 3) and from literature (black bars and black text, n = 162, Appendix 4). Superfamily in red text indicates new genome size estimates for entire superfamily. Development syndrome of parasitoids is mapped onto tree from Sharkey et al. (2011). Some superfamilies include several larval feeding modes: † Inducers or inquilines, ‡ cleptoparasite, § predator. Height of genome size bar represents number of species. 133 REFERENCES 134 Abrahamson WG, Melika G, Scrafford R, Csóka G (1998) Host-plant associations and specificity among cynipid gall-inducing wasps of eastern USA. In: G Csóka, WJ Mattson, GN Stone, PW Price (eds), The biology of gall-inducing arthropods. U.S. Forest Service General Technical Report NC-199. pp 226-240. Ács Z, Melika G, Pénzes Z, Pujade-Villar J, Stone GN (2007) The phylogenetic relationships between Dryocosmus - Chilaspis and allied genera of oak gallwasps (Hymenoptera, Cynipidae: Cynipini). Systematic Entomology 32:70-80. Ács Z, Challis RJ, Bihari P, Blaxter M, Hayward A, Melika G, Csóka G, Pénzes Z, Pujade-Villar J, Nieves-Aldrey J-L, Schönrogge K, Stone GN (2010) Phylogeny and DNA barcoding of inquiline oak gallwasps (Hymenoptera: Cynipidae) of the Western Palaearctic. Molecular Phylogenetics and Evolution 55: 210-225. Aebi A, Schönrogge K, Melika G, Quacchia A, Alma A, Stone GN (2007) Native and introduced parasitoids attacking the invasive chestnut gall wasp Dryocosmus kuriphilus. EPPO Bulletin 37: 166-171. Aguiar AP, Santos BF (2010) Discovery of potent, unsuspected sampling disparities for Malaise and Möricke traps, as shown for Neotropical Cryptini (Hymenoptera, Ichneumonidae). Journal Insect Conservation 14: 199-206. Alonso-Zarazaga MA, Pujade-Villar J (2006) What is Diplolepis analis Boyer de Fonscolombe, 1832 (Hymenoptera, Cynipidae)? Bulletin de la Societe Entomologique de France 111: 119-121. Alves-dos-Santos I, Melo GAR, Rozen Jr JG (2002) Biology and immature stages of the bee tribe Tetrapediini (Hymenoptera: Apidae). American Museum Novitates 3377: 1-45. 135 Ardila-Garcia AM, Umphrey GJ, Gregory TR (2010) An expansion of the genome size dataset for the insect order Hymenoptera, with a first test of parasitism and eusociality as possible constraints. Insect Molecular Biology 19: 337-346. Askew RR (1975) The organization of chalcid-dominated parasitoid communities centred upon endophytic hosts. In: PW Price (ed), Evolutionary strategies of parasitic insects and mites. Plenum Press, New York. pp 130-153. Askew RR, Plantard O, Gómez JF, Nieves MH, Nieves-Aldrey JL (2006) A catalogue of parasitoids and inquilines in galls of Aylacini, Diplolepidini and Pediaspidini (Hym., Cynipidae) in the West Palaearctic. Zootaxa 1301: 1-60. Askew RR, Shaw MR (1986) Parasitoid communities: their size, structure and development. In: J Waage, D Greathead (eds), Insect parasitoids. Academic Press, London. pp 237-264. Austin AD, Dowton M (2000) The Hymenoptera - an introduction. In: AD Austin, M Dowton (eds), Hymenoptera: Evolution, Biodiversity and Biological Control. CSIRO Publishing, Collingwood. pp 3-8. Bailey R, Schönrogge K, Cook JM, Melika G, Csóka G, Thuróczy C, Stone GN (2009) Host niches and defensive extended phenotypes structure parasitoid wasp communities. Plos Biology 7: e1000179. Barcenas NM, Thompson NJ, Gomez-Tovar V, Morales-Ramos JA, Johnston JS (2008) Sex determination and genome size in Catolaccus grandis (Burks, 1954) (Hymenoptera: Pteromalidae). Journal of Hymenoptera Research 17: 201-209. Barron JR (1977) The nearctic species of Orthopelma (Hymenoptera: Ichneumonidae). Systematic Entomology 32: 171-176. 136 Bassett HF (1890) New species of North American Cynipidae. Transactions of the American Entomological Society 17:59-63. Beattie AJ, Oliver I (1994) Taxonomic minimalism. Trends in Ecology and Evolution 9: 488490. Beattie AJ, Oliver I (1999) Biodiversity buzzwords: Another reply to Goldstein. Conservation Biology 13: 1514. Bennett AMR (2008) Review and identification keys to the ichneumonid parasitoids (Hymenoptera: Ichneumonidae) of Nearctic Choristoneura species (Lepidoptera: Tortricidae) Canadian Entomologist 140: 1-47. Bennett MD, Leitch IJ (2005) Genome size evolution in plants. In: TR Gregory (ed), The Evolution of the Genome. San Diego, Elsevier. pp 89-162. Beutenmüller W (1908) Notes on Harris’s types of Cynipidae. Psyche 15: 9-10. Bickford D, Lohman DJ, Sodhi NS, Ng PKL, Meier R, Winker K, Ingram KK, Das I (2007) Cryptic species as a window on diversity and conservation. Trends in Ecology and Evolution 22: 148 -155. Blackburn TM (1990) Comparative and experimental studies of animal life histories. PhD thesis. University of Oxford, Oxford, England. 214 pp. Blackburn TM (1991) Evidence for a fast-slow continuum of life-history traits among parasitoid Hymenoptera. Functional Ecology 5: 65-74. Boivin G (2010) Phenotypic plasticity and fitness in egg parasitoids. Neotropical Entomology 39: 457-463. 137 Boring CA, Sharanowski BJ, Sharkey MJ (2011) Maxfischeriinae: a new braconid subfamily (Hymenoptera) with highly specialized egg morphology. Systematic Entomology 36: 529-548. Brooks SE, Shorthouse JD (1997) Biology of the rose stem galler Diplolepis nodulosa (Hymenoptera: Cynipidae) and its associated component community in central Ontario. The Canadian Entomologist 129: 1121-1140. Brooks SE, Shorthouse JD (1998) Developmental morphology of stem galls of Diplolepis nodulosa (Hymenoptera: Cynipidae) and those modified by the inquiline Periclistus pirata (Hymenoptera: Cynipidae) on Rosa blanda (Rosaceae). Canadian Journal Botany 76: 365-381. Brown Jr W, George Jr M, Wilson AC (1979) Rapid evolution of animal mitochondrial DNA. Proceedings of the National Academy of Science USA 76: 1967-1971. Burks BD (1979) Cynipoidea. In: KV Krombien, PD Hurd, DR Smith Jr, BD Burks (eds), Catalog of Hymenoptera of North America North of Mexico. Volume 1. Smithsonian Institution Press, Washington DC. pp 1045-1107. Cardinal S, Straka J, Danforth BN (2010) Comprehensive phylogeny of apid bees reveals the evolutionary origins and antiquity of cleptoparasitism. Proceedings of the National Academy of Sciences 107: 16207-16211. Casiraghi M, Labra M, Ferri E, Galimberti A, De Mattia F (2010) DNA barcoding: a sixquestion tour to improve users' awareness about the method. Briefings in Bioinformatics 11: 440-453. 138 Caterino MS, Tishechkin AK (2006) DNA identification and morphological description of the first confirmed larvae of Hateriinae (Coleoptera: Histeridae). Systematic Entomology 31: 405-418. Cavalier-Smith T (1978) Nuclear volume control by nucleoskeletal DNA, selection for cell volume and cell growth rate, and the solution of the DNA c-value paradox. Journal of Cell Science 34: 247-278. CFIA (2011) List of approved arthropod biological control agents from commercial sources that do not fall under the mandate of the Plant Protection Act. www.inspection.gc.ca/english/ plaveg/ protect/dir/biocontrole.shtml. December 2011. Clary DO, Wolstenholme DR (1985) The mitochondrial DNA molecule of Drosophila yakuba: nucleotide sequence, gene organization and genetic code. Journal of Molecular Evolution 22: 252-271. Cognato AI (2006) Standard percent DNA sequence difference for insects does not predict species boundaries. Journal Economic Entomology 99: 1037-1045. Cognato AI, Sun JH (2007) DNA based cladograms augment the discovery of a new Ips species from China (Coleoptera: Curculionidae: Scolytinae). Cladistics, 23, 539-551. Craddock EM, Kacmarczyk T, Dawley RM (2000). The roles of genome size and cell size in body size variation among Hawaiian Drosophila. Abstract, 41st Annual Drosophila Research Conference, Pittsburg, PA, 20-26 March. Csóka G, Stone GN, Melika G (2005) Biology, ecology, and evolution of gall-inducing Cynipidae. In: Raman A, Schaefer CW, and Withers TM (eds), Biology, ecology and evolution of gall-inducing arthropods. Vol. 2. Science Publishers Inc., Enfield. pp 573642. 139 Dailey DC, Campbell L (1973) A new species of Diplolepis from California. The Pan-Pacific Entomologist 49: 174-176. von Dalla Torre KW, Kieffer JJ (1910) Cynipidae. In: FE Schulze (ed) Das Tierreich. Ein Zusammenstellung und Kennzeichnung der rezenten Tierformen. Vol. 24. Lieferung Hymenoptera. Friedländer und Sohn, Berlin. 891 pp. Derraik JGB, Early JW, Closs GP, Dickinson KJM (2010) Morphospecies and taxonomic species comparison for Hymenoptera. Journal of Insect Science 10: 1-7. DeSalle R, Egan MG, Siddall M (2005) The Unholy Trinity: taxonomy, species delimitation and DNA Barcoding. Philosophical Transactions: Biological Sciences 360: 1905-1916. DeWalt RE (2011) DNA barcoding: a taxonomic point of view. Journal of the North American Benthological Society 30:174-181. Doležel J, Bartoš J, Voglmayr H, Greilhuber J (2003) Nuclear DNA content and genome size of trout and human. Cytometry 51A: 127-128. Drown DM, Brown JM (1998) Molecular phylogeny of North American oak-galling cynipini (Hymenoptera: Cynipidae) supports need for generic revision. In: G Csóka, WJ Mattson, GN Stone, PW Price (eds), The biology of gall-inducing arthropods. U.S. Forest Service General Technical Report NC-199. pp 241-246. Ebach MC, de Carvalho MR (2010) Anti-intellectualism in the DNA Barcoding Enterprise. Zoologia 27: 165-178. Eggleton P, Belshaw R (1992) Insect parasitoids: an evolutionary overview. Philosophical Transactions of the Royal Society of London Series B 337: 1-20. Eggleton P, Gaston KJ (1990) "Parasitoid" species and assemblages: convenient definitions or misleading compromises? Oikos 59: 417-421. 140 ESC (2011) Joint Annual Meetings of The Entomological Society of Canada. http://www.escsec.ca/ annmeet.html. December 2011. Evans D (1965) The life history and immature stages of Synergus pacificus McCracken and Egbert (Hymenoptera: Cynipidae). Canadian Entomologist 97: 185-188. Evans D (1967) The bisexual and agamic generations of Besbicus mirabilis (Hymenoptera: Cynipidae), and their associate insects. Canadian Entomologist 99: 187-196. Ferrari JA, Rai KS (1989) Phenotypic correlates of genome size variation in Aedes albopictus. Evolution 43: 895-899. Finston TL, Hebert PD, Foottit RB (1995) Genome size variation in aphids. Insect Biochemistry Molecular Biology 25: 189-196. Floyd R, Abebe E, Papert A, Blaxter M (2002) Molecular barcodes for soil nematode identification. Molecular Ecology 11: 839-850. Floyd R, Lima J, deWaard J, Humble L, Hanner R (2010) Common goals: policy implications of DNA barcoding as a protocol for identification of arthropod pests. Biological Invasions 12: 2947-2954. Gadau J, Gerloffs CU, Krugers N, Chan H, Schmid-Hempel P, Wille A, Page Jr RE (2001) A linkage analysis of sex determination in Bombus terrestris (L.) (Hymenoptera: Apidae). Heredity 87: 234-242. Gariepy TD, Kuhlmann U, Gillott C, Erlandson M (2007) Parasitoids, predators and PCR: the use of diagnostic molecular markers in biological control of Arthropods. Journal of Applied Entomology 131: 225-240. 141 Gariepy T, Kuhlmann U, Gillott C, Erlandson M (2008) A large-scale comparison of conventional and molecular methods for the evaluation of host-parasitoid associations in nontarget risk-assessment studies. Journal Applied of Ecology 45: 708-715. Gaston KJ, O'Neill MA (2004) Automated species identification: why not? Philosophical Translations of the Royal Society London B 359: 655-667. Gauld ID, Bolton B (1988) The Hymenoptera. British Museum (Natural History)/Oxford University Press, London. 332 pp. Gibson GAP, Huber JT, Woolley JB (1997) Annotated keys to the genera of Nearctic Chalcidoidea (Hymenoptera). NRC Research Press, Ottawa. 794 pp. Godfray HCJ (1994) Parasitoids, behavioural and evolutionary ecology. Princeton University Press, Princeton. 488 pp. Godfray HCJ, Shimada M. (1999) Parasitoids: a model system to answer questions in behavioural, evolutionary and population ecology. Research Population Ecology 41: 310. Goldstein PZ (1997) How many things are there? A reply to Oliver and Beattie, Beattie and Oliver, Oliver and Beattie, and Oliver and Beattie. Conservation Biology 11: 571-574. Gokhman VE, Johnston JS, Small C,Rajwani R, Hanrahan SJ, Govind S (2011) Genomic and karyotypic variation in Drosophila parasitoids (Hymenoptera, Cynipoidea, Figitidae). Comparative Cytogenenetics 5: 211-221. Gómez JL, Nieves-Aldrey JL, Nieves MH (2008) Comparative morphology, biology and phylogeny of terminal-instar larvae of the European species of Toryminae (Hym., Chalcidoidea, Torymidae) parasitoids of gall wasps (Hym. Cynipidae). Zoological Journal of the Linnean Society 154: 676-721. 142 Goulet H, Hubert JF (1993) Hymenoptera of the world. An identification guide to families. Research Branch, Agricultural Canada Publication, Ottawa. 668 pp. Graham MWR de V, Gijswijt MJ (1998) Revision of the European species of Torymus Dalman (s. lat.) (Hymenoptera: Torymidae). Zoologische Verhandelingen 317: 1-202. Gregory TR (2001) Coincidence, coevolution, or causation? DNA content, cell size, and the Cvalue enigma. Biological Reviews 76: 65-101. Gregory TR (2002) Genome size and developmental complexity. Genetica 115: 131-146. Gregory TR (2005) Genome size evolution in animals. In: TR Gregory (ed), The Evolution of the Genome. San Diego, Elsevier. pp 3-87. Gregory TR (2011) Animal Genome Size Database. www.genomesize.com. Gregory TR, Johnston JS (2008) Genome size diversity in the family Drosophilidae. Heredity 101: 228-238. Gregory TR, Nedvěd O, Adamowicz SJ (2003) C-value estimates for 31 species of ladybird beetles (Coleoptera: Coccinellidae). Hereditas 139: 121-127. Greilhuber J, Doležel J, Lysá MA, Bennett MD (2005) The origin, evolution and proposed stabilization of the terms ‘genome size’ and ‘C-value’ to describe nuclear DNA. Contents Annals of Botany 95: 255-260. Grissell EE (1995) Toryminae (Hymenoptera: Chalcidoidea: Torymidae): a redefinition, generic classification, and annotated world catalog of species. Memoirs on Entomology, International 2:1-470. Grissell EE (1999) Hymenopteran biodiversity: some alien notions. American Entomologist 45: 235-244. 143 Grissell EE (2004) A new species of Torymus (Hymenoptera: Torymidae) associated with Dactylopius (Hemiptera: Dactylopiidae). Journal of the Kansas Entomological Society 77: 639-643. Güçlü S, Hayat R, Shorthouse JD, Tozlu G (2008) Gall-inducing wasps of the genus Diplolepis (Hymenoptera: Cynipidae) on shrub roses of Turkey. Proceedings of the Entomological Society of Washington 110: 204-217. Hafen E, Stocker H (2003) How are the sizes of cells, organs, and bodies controlled? PLoS Biol 1: e86. Hanner RH, Lima J, Floyd R (2009) DNA barcoding and its relevance to pests, plants and biological control. Acta Horticulturae 823: 41-47. Hanrahan SJ, Johnston JS (2011) New genome size estimates of 134 species of arthropods. Chromosome Research 19: 809-823. Harper LJ, Schönrogge K, Lim KY, Francis P, and Lichtenstein CP (2004) Cynipid galls: insectinduced modifications of plant development create novel plant organs. Plant, Cell and Environment 27: 327-335. Harvey JA (2005) Factors affecting the evolution of development strategies in parasitoid wasps: the importance of functional constraints and incorporating complexity. Entomologia Experimentalis et Applicata 117: 1-13. Harvey JA, Strand MR (2002) The developmental strategies of endoparasitoid wasps vary with host feeding ecology. Ecology 83: 2439-2451. Hawkins BA (1994) Pattern and Process in Host-Parasitoid Interactions. University of Cambridge Press, Cambridge. 200 pp. 144 Hayward A, Stone GN (2005) Oak gall wasp communities: evolution and ecology. Basic and Applied Ecology: 6 435-443. Hebert PD N, Cywinska A, Ball SL, deWaard J R (2003) Biological identifications through DNA barcodes. Proceedings of the Royal Society London. Series B 270: 313-321. Heraty J, Ronquist F, Carpenter JM, Hawks D, Schulmeister S, Dowling AP, Murray D, Munro J, Wheeler WC, Schiff N, Sharkey M (2011) Evolution of the Hymenopteran megaradiation. Molecular Phylogenetics and Evolution 60:73-88. Honey Bee Genome Sequencing Consortium (2006) Insights into social insects from the genome of the honey bee Apis mellifera. Nature 443: 931-949. Hrcek J, Miller SE, Quicke DLJ, Smith MA (2011) Molecular detection of trophic links in a complex insect host–parasitoid food web. Molecular Ecology Resources 11: 786-794. Huber JT (2009) Biodiversity of Hymenoptera. In: RG Foottit, PH Adler (eds), Insect Biodiversity: Science and Society. Blackwell Publishing, London. pp 303-323. Ikai N, Hijii N (2007) Sex ratio of inquiline wasps on cynipid oak galls in relation to gall characteristics. Annals of the Entomological Society of America 100: 869-875. Ishiwata K, Sasaki Go, Ogawac J, Miyata T, Su Z-H (2011) Phylogenetic relationships among insect orders based on three nuclear protein-coding gene sequences. Molecular Phylogenetics and Evolution 58: 169-180. Ivanova NV, deWaard JR, Hebert PDN (2006) An inexpensive, automation-friendly protocol for recovering high-quality DNA. Molecular Ecology Notes 6: 998-1002. Ji Y-J, Zhang D-X, He L-J (2003) Evolutionary conservation and versatility of a new set of primers for amplifying the ribosomal internal transcribed spacer regions in insects and other invertebrates. Molecular Ecology Notes 3: 581-585. 145 Johnston JS, Ross LD, Beani L, Hughes DP, Kathirithamby J (2004) Tiny genomes and endoreduplication in Strepsiptera. Insect Molecular Biology 13: 581-585. Johnston JS, Yoon KS, Strycharz JP, Pittendrigh BR, Clark JM (2007) Body lice and head lice (Anoplura: Pediculidae) have the smallest genomes of any hemimetabolous insect reported to date. Journal Medical Entomology 44: 1009-1012. Kaartinen R, Stone GN, Hearn J, Lohse K, Roslin T (2010) Revealing secret liaisons: DNA barcoding changes our understanding of food webs. Ecological Entomology 35: 623-638. KinseyAC (1920) Phylogeny of cynipid genera and biological characteristics. Bulletin American Museum Natural History 42: 357-402. Kinsey AC (1922) Studies of some new and described Cynipidae (Hymenoptera). Indiana University Studies 53: 3-141. Krell F-T (2004) Parataxonomy vs. taxonomy in biodiversity studies - pitfalls and applicability of ‘morphospecies’ sorting. Biodiversity and Conservation 13: 795-812. Lalonde RG, Shorthouse JD (2000) Using rose galls for field exercises in community ecology and island biogeography. The American Biology Teacher 62: 436-441. Lawrence P (1990) The biochemical and physiological effects of insect hosts on the development and ecology of their insect parasites: an overview. Archives of Insect Biochemistry and Physiology 13: 217-228. LaSalle J, Gauld ID (1991) Parasitic Hymenoptera and the biodiversity crisis. Redia 74: 315-334. LeBlanc DA, Lacroix CR (2001) Developmental potential of galls induced by Diplolepis rosaefolii (Hymenoptera : Cynipidae) on the leaves of Rosa virginiana and the influence of Periclistus species on the Diplolepis rosaefolii galls. International Journal of Plant Science 162: 29-46. 146 Lee W, Lee S (2012) Unexpected problem in aphid DNA barcoding by universal primers. Entomological Science 15: 121-126. Leggo JJ, Shorthouse JD (2006a) Development of stem galls of Diplolepis triforma (Hymenoptera: Cynipidae) on Rosa acicularis (Rosaceae). The Canadian Entomologist 138: 661-680. Leggo JJ, Shorthouse JD (2006b) Modification of galls of Diplolepis triforma (Hymenoptera: Cynipidae) by the parasitoids Eurytoma spongiosa (Hymenoptera: Eurytomidae) and Glyphomerus stigma (Hymenoptera: Torymidae). The Canadian Entomologist 138: 681696. Li Y, Zhou X, Feng G, Hu H, Niu L, Hebert PDN, Huang D (2010), COI and ITS2 sequences delimit species, reveal cryptic taxa and host specificity of fig-associated Sycophila (Hymenoptera, Eurytomidae). Molecular Ecology Resources 10: 31-40. Liljeblad J, Ronquist F (1998) A phylogenetic analysis of higher-level gall wasp relationships (Hymenoptera: Cynipidae). Systematic Entomology 23: 229-252. Liljeblad J, Ronquist F, Nieves-Aldrey J-L, Fontal-Cazalla F, Ros-Farre P, Gaitros D, PujadeVillar J (2008) A fully web-illustrated morphological phylogenetic study of relationships among oak gall wasps and their closest relatives (Hymenoptera: Cynipidae). Zootaxa 1796: 1-73. Liu Z, Engel MS, Grimaldi DA (2007) Phylogeny and geological history of the cynipoid wasps (Hymenoptera: Cynipoidea). American Museum Novitates 3583: 1-48. Lopes DM, de Carvalho CR, Clarindo WR, Praça MW, Tavares MG (2009) Genome size estimation of three stingless bee species (Hymenoptera, Meliponinae) by flow cytometry. Apidologie 40: 517-523. 147 Lotfalizadeh H, Delvare G, Rasplus J (2007) Eurytoma caninae sp. n. (Hymenoptera, Eurytomidae), a common species previously overlooked with E. rosae. Zootaxa 1640: 55-68. Mackauer M, Sequeira R (1993) Patterns of development in insect parasites. In: NE Beckage, SN Thompson, BA Federici (eds), Parasites and Pathogens of Insects. Academic Press, New York. pp 1-20. Masner L, Barron JR, Danks HV, Finnamore AT, Francoeur A, Gibson GAP, Mason WR, Yoshimoto CM (1979) Hymenoptera. In: HV Danks (ed), Canada and its insect fauna. Memoirs of the Entomological Society of Canada 108. Entomological Society of Canada, Ottawa. pp 485-508. Mayhew PJ, Blackburn TM (1999) Does parasitoid development mode organise life-history traits in the parasitoid Hymenoptera? Journal of Animal Ecology 68: 906-916. Meier R, Zhang G, Ali F (2008) The use of mean instead of smallest interspecific distances exaggerates the size of the barcoding gap and leads to misidentification. Systematic Biology 57: 809-813. Melika G, Abrahamson WG (2000) Historical review and current state of the world generic classification of oak galls (Hymenoptera: Cynipidae: Cynipini). In: AD Austin, M Dowton (eds), Hymenoptera: Evolution, Biodiversity and Biological Control. CSIRO Publishing, Collingwood. pp 218-230. Melika G, Abrahamson WG (2007) Review of the Nearctic gallwasp species of the genus Bassettia Ashmead, 1887, with description of new species (Hymenoptera: Cynipidae: Cynipini). Acta Zoologica Academiae Scientiarum Hungaricae 53: 131-148. 148 Melika G, Bechtold M (2001) Taxonomic notes and type designations of gall inducing cynipid wasps described by G. Mayr ( Insecta: Hymenoptera: Cynipidae ). Annalen des Naturhistorischen Museums in Wien 103 B: 327-329. Melo GAR, Gonçalves RB (2005) Higher-level bee classification (Hymenoptera, Apoidea, Apidae sensu lato). Revista Brasileira de Zoologia 22: 153-159. Meyer CP, Paulay G (2005) DNA barcoding: Error rates based on comprehensive sampling. PLoS Biology 3: 2229-2238. Michener CD (2000) The bees of the world. Johns Hopkins University Press, Baltimore. 913 pp. Miller KB, Alarie Y, Wolfe GW, Whiting MF (2005) Association of insect lifestages using DNA sequences: the larvae of Philodytes umbrinus (Motschulsky) (Coleoptera: Dytiscidae). Systematic Entomology 30: 499-509. Monti MM, Nappo AG, Giorgini M (2005) Molecular characterization of closely related species in the parasitic genus Encarsia (Hymenoptera: Aphelinidae) based on the mitochondrial cytochrome subunit I gene. Bulletin of Entomological Research 95: 401-408. Mills NJ (1992) Parasitoid guilds, life-styles, and host ranges in the parasitoid complexes of tortricoid hosts (Lepidoptera: Tortricidae). Environmental Entomology 21: 320-329. Nieves-Aldrey J-L, Medianero E (2011) Taxonomy of inquilines of oak gall wasps of Panama, with description of eight new species of Synergus Hartig (Hymenoptera, Cynipidae, Synergini). Zootaxa 2774: 1–47. Oliver I, Beattie AJ (1993) A possible method for the rapid assessment of biodiversity Conservation Biology 7: 562-568. Oliver I, Beattie AJ (1996) Invertebrate morphospecies as surrogates for species: A case study. Conservation Biology 10: 99-109. 149 Olson E (1964) A preliminary study of Minnesota rose gall insects. Journal of the Minnesota Academy of Science 32: 26-29. Packer L, Gibbs J, Sheffield C, Hanner R (2009) DNA barcoding and the mediocrity of morphology. Molecular Ecology Resources 9 (Suppl. 1): 42-50. Pennacchio F, Strand MR (2006) Evolution of developmental strategies in parasitic Hymenoptera. Annual Review of Entomology 51: 233-258. Pénzes Z, Melika G, Bozsóki Z, Bihari P, Mikó I, Tavakoli M, Pujade-Villar J, Fehér B, Fӧlüp D, Szabó K, Bozsó M, Sipos B, Somogy K, Stone GN (2009) Systematic reappraisal of the gall-usurping wasp genus Synophrus Hartig, 1843 (Hymenoptera: Cynipidae: Synergini). Systematic Entomology 34: 688-711. Petitpierre E, Segarra C, Juan C (1993) Genome size and chromosomal evolution in leaf beetles (Coleoptera, Chrysomelidae). Hereditas 119: 1-6. Pires CSS, Price PW (2000) Patterns of host plant growth and attack and establishment of gallinducing wasp (Hymenoptera: Cynipidae). Environmental Entomology 29: 49-54. Plantard O, Shorthouse JD, and Rasplus J-Y (1998) Molecular phylogeny of the genus Diplolepis (Hymenoptera: Cynipidae). In: G Csóka, WJ Mattson, GN Stone, PW Price (eds), The biology of gall-inducing arthropods. U.S. Forest Service General Technical Report NC-199. pp 247–260. Plantard O, Solignac M (1998) Wolbachia induced thelytoky in cynipids. In: G Csóka, WJ Mattson, GN Stone, PW Price (eds), The biology of gall-inducing arthropods. U.S. Forest Service General Technical Report NC-199. pp 111–121. Pulawski WJ (2011) http://researcharchive.calacademy.org/research/entomology/Entomology_ Resources/Hymenoptera/sphecidae/Family_group_names_and_classification.pdf 150 Pujade-Villar J, Plantard O (2002) About the validity of Diplolepis fructuum (Rübsaamen) and some new synonyms in Diplolepis nervosa (Curtis) (Hym.: Cynipidae: Diplolepidini). In: G Melika, C Thuróczy (eds), Parasitic Wasps: Evolution, Systematic, Biodiversity and Biological Control. Agroinform. pp 135-142. Quicke DLJ (1997) Parasitic wasps. Chapman & Hall, London. 470 pp. Quicke DLJ, Laurenne NM, Fitton MG, Broad GR (2009) A thousand and one wasps: a 28S rDNA and morphological phylogeny of the Ichneumonidae (Insecta: Hymenoptera) with an investigation into alignment parameter space and elision. Journal of Natural History 43: 1305-1421. Rasch EM, Barr HJ, Rasch RW (1971) The DNA content of sperm of Drosophila melanogaster. Chromosoma 33: 1-18. Rempel SJ (2002) The Torymus Complex (Hymenoptera: Torymidae) associated with galls of Diplolepis (Hymenoptera: Cynipidae) in Canada. MSc thesis. Laurentian University, Sudbury. 153 pp. Ritchie AJ (1984) A review of the higher classification of the inquiline gall wasps (Hymenoptera: Cynipidae) and a revision of the Nearctic species of Periclistus Forster. PhD thesis. Carleton University, Ottawa. 368 pp. Ritchie AJ, Peters TM (1981) The external morphology of Diplolepis rosae (Hymenoptera: Cynipidae, Cynipinae). Annals of the Entomological Society of America 74: 191-199. Rohwer SA, Fagan M (1917) The type-species of the genera of Cynipoidea or the gall wasps and parasitic Cynipoids. Proceedings of the United States Nntional Museum 3: 357-380. 151 Rokas A, Melika G, Abe Y, Nieves-Aldrey JL, Cook JM, Stone GN (2003) Lifecycle closure, lineage sorting, and hybridization revealed in a phylogenetic analysis of European oak gallwasps (Hymenoptera: Cynipidae: Cynipini) using mitochondrial sequence data. Molecular Phylogenetics and Evolution 26: 36-45. Rokas A, Nylander JAA, Ronquist F, Stone GN (2002) A maximum likelihood analysis of eight phylogenetic markers in gallwasps (Hymenoptera: Cynipidae): implications for insect phylogenetic studies. Molecular Phylogenetics and Evolution 22: 206-219. Ronquist F (1994) Evolution of parasitism among closely related species: Phylogenetic relationships and the origin of inquilinism in gall wasps (Hymenoptera, Cynipidae). Evolution 48: 241-266. Ronquist F, Liljeblad J (2001) Evolution of the gall wasp-host plant association. Evolution 55: 2503-2522. Rougerie R, Smith MA, Fernandez-Triana J, Lopez-Vaamonde C, Ratnasingham S, Hebert PDN (2010) Molecular analysis of parasitoid linkages (MAPL): gut contents of adult parasitoid wasps reveal larval host. Molecular Ecology 20: 179-186. Rozen Jr JG (2001) A Taxonomic Key to Mature Larvae of Cleptoparasitic Bees (Hymenoptera: Apoidea). American Museum Novitates 3309: 1-28. Rozen Jr JG (2003) Eggs, ovariole numbers, and modes of parasitism of cleptoparasitic bees, with emphasis on Neotropical species (Hymenoptera: Apoidea). American Museum Novitates 3413: 1-36. Rozen Jr JG, Kamel SM (2007) Investigations on the biologies and immature stages of the cleptoparasitic bee genera Radoszkowskiana and Coelioxys and their Megachile Hosts 152 (Hymenoptera: Apoidea: Megachilidae: Megachilini). American Museum Novitates 3573: 1-43. Rozen Jr JG, Kamel SM (2009) Hospicidal behavior of the cleptoparasitic wasp Sapyga luteomaculata and investigations into ontogenetic changes in its larval anatomy (Hymenoptera: Vespoidea: Sapygidae). American Museum Novitates 3644: 1-24. Rubinoff D (2006) Utility of mitochondrial DNA barcodes in species conservation. Conservation Biology 20: 1026-1033. Santos AMC, Besnard G, Quicke DLJ (2011) Applying DNA barcoding for the study of geographical variation in host–parasitoid interactions. Molecular Ecology Resources 11: 46-59. Schick KN, Potter D, Shorthouse JD (2010) A preliminary study of molecular relationships within Diplolepis polita (Hymenoptera: Cynipidae). 7th International Congress of Hymenopterists. Köszeg, Hungary. Oral presentation. Schmidt-Ott U, Ab MR, Sander K, Johnston JS (2009) Extremely small genomes in two unrelated dipteran insects with shared early developmental traits. Development Genes and Evolution 219: 207-210. Schönrogge K, Atkinson RJ, Bellido D, and Pujade-Villar J (2002) The population biology of oak gall wasps (Hymenoptera: Cynipidae). Annual Review of Entomology 47: 633-668. Scudder GGE (2009) The importance of insects. In: RG Foottit, PH Adler (eds), Insect Biodiversity: Science and Society. Wiley-Blackwell, Oxford. pp 7-32. Sha ZL, Zhu CD, Murphy RW, La Salle J, Huang DW (2006) Mitochondrial phylogeography of a leafmeiner parasitoid, Diglyphus isaea (Hymenoptera: Eulophidae) in China. Biological 38: 380-389. 153 Sharanowski BJ, Dowling APG, Sharkey MJ (2011) Molecular phylogenetics of Braconidae (Hymenoptera: Ichneumonoidea), based on multiple nuclear genes, and implications for classification. Systematic Entomology 36: 549-572. Sharkey MJ (2007) Phylogeny and classification of Hymenoptera. Zootaxa 1668: 521-548. Sharkey MJ, Carpenter JM, Vilhelmsen L, Heraty J, Liljeblad J, Dowling APG, Schulmeister S, Murray D, Deans AR, Ronquist F, Krogmann L, Wheeler WC (2011) Phylogenetic relationships among superfamilies of Hymenoptera. Cladistics 27: 1-33. Sheehan W, Hawkins BA (1991) Attack strategy as an indicator of host range in metopiinae and pimplinae Ichneumonidae (Hymenoptera). Ecological Entomology 16: 129-131. Sheffield CS, Hebert PD, Kevan PG, Packer L (2009) DNA barcoding a regional bee (Hymenoptera: Apoidea) fauna and its potential for ecological studies. Molecular Ecology Resources 9 (Suppl. 1): 196-207. Shorthouse JD (1973) The insect community associated with rose galls of Diplolepis polita (Cynipidae, Hymenoptera). Quaestiones Entomologicae 9: 55-98. Shorthouse JD (1975) The roles of insect inhabitants in six Diplolepis (Cynipidae, Hymenoptera) rose leaf galls of Western Canada. PhD thesis. University of Saskatchewan, Saskatoon, Canada. 276 pp. Shorthouse JD (1980) Modifications of galls of Diplolepis polita by the inquiline Periclistus pirata. Bulletin de la Société Botanique de France 127: 79-84. Shorthouse JD (1987) Gall inducing cynipid wasps attacking Rosa rugosa. Canadian Journal of Plant Science 67: 1227-123l. 154 Shorthouse JD (1988) Occurrence of two gall wasps of the genus Diplolepis (Hymenoptera: Cynipidae) on the domestic shrub rose, Rosa Rugosa Thunb. (Rosaceae). The Canadian Entomologist, 120, 727-737. Shorthouse JD (1993) Adaptations of the gall wasps of the genus Diplolepis (Hymenoptera: Cynipidae) and the role of gall anatomy in cynipid systematics. Memoires of the Entomological Society of Canada 165: 139-163. Shorthouse JD (1998) Role of Periclistus (Hymenoptera: Cynipidae) inquilines in leaf galls of Diplolepis (Hymenoptera: Cynipidae) on wild roses in Canada. In: G Csóka, WJ Mattson, GN Stone, PW Price (eds), The biology of gall-inducing arthropods. U.S. Forest Service General Technical Report NC-199. pp 61–81. Shorthouse JD (2010) Galls induced by cynipid wasps of the genus Diplolepis (Hymenoptera: Cynipidae) on the roses of Canada's grasslands. In: JD Shorthouse, KD Floate (eds), Arthropods of Canadian Grasslands (Volume 1): Ecology and Interactions in Grassland Habitats. Biological Survey of Canada, Ottawa. pp 251-279. Shorthouse JD, Brooks SE (1998) Biology of the galler Diplolepis rosaefolii (Hymenoptera: Cynipidae), its associated component community, and host shift to the shrub rose Thérèse Bugnet. The Canadian Entomologist 130: 357-366. Shorthouse JD, Leggo JJ (2002) Immature stages of the galler Diplolepis triforma (Hymenoptera: Cynipidae) with comments on the role of its prepupa. The Canadian Entomologist 134: 433-446. Shorthouse JD, Leggo JJ, Sliva MD, Lalonde RG (2005) Has egg location influenced the radiation of Diplolepis (Hymenoptera: Cynipidae) gall wasps on wild roses? Basic and Applied Ecology 6: 423-434. 155 Shorthouse JD, Ritchie RJ (1984) Description and biology of a new species of Diplolepis Fourcroy (Hymenoptera: Cynipidae) inducing galls on the stems of Rosa acicularis. The Canadian Entomologist 116: 1623-1636. Sliva MD, Shorthouse JD (2006) Comparison of the development of stem galls induced by Aulacidae hieracii (Hymenoptera: Cynipidae) on hawkweed and by Diplolepis spinosa (Hymenoptera: Cynipidae) on rose. Canadian Journal of Botany 84: 1052-1074. Smith DR (1996) Review of the Gasteruptiidae (Hymenoptera) of eastern North America. Proceedings of the Entomological Society of Washington 98: 491-499. Smith MA, Eveleigh ES, McCann KS, McCarthy PC, Van Rooyen KI (2011) Barcoding a quantified food web: crypsis, concepts, ecology and hypotheses. PLoS ONE 6(7): e14424. Smith MA, Fernandez-Triana J, Roughley R, Hebert PDN (2009) DNA barcode accumulation curves for understudied taxa and areas. Molecular Ecology Resources 9: 208-216. Smith MA, Fisher BL, Hebert PDN (2005a) DNA barcoding for effective biodiversity assessment of a hyperdiverse arthropod group: the ants of Madagascar. Philosophical Transactions of the Royal Society B: Biological Science 360: 1825-1834. Smith MA, Umphrey GJ, Fisher BL, Hebert PDN (2005b) Rapid assessment of ant diversity in a northern world heritage site using DNA barcodes. London, UK: The Natural History Museum. Poster. Smith MA, Rodriguez JJ, Whitfield JB, Deans AR, Janzen DH, Hallwachs W, Hebert PDN (2008) Extreme diversity of tropical parasitoid wasps exposed by iterative integration of natural history, DNA barcoding, morphology, and collections. Proceedings National Academy Science USA 105: 12359-12364. 156 Stone GN, Atkinson RJ, Rokas A, Nieves-Aldrey JL, Melika G, Acs Z, Csoka G, Hayward A, Bailey R, Buckee C, McVean GAT (2008) Evidence for widespread cryptic sexual generations in apparently purely asexual Andricus gallwasps. Molecular Ecology 17: 652–665. Stone GN, Cook JM (1998) The structure of cynipid oak galls: patterns in the evolution of an extended phenotype. Proceedings of the Royal Society of London B 265: 979-988. Stone GN, Schönrogge K (2003) The adaptive significance of insect gall morphology. Trends in Ecology & Evolution 18: 512-522. Stone GN, Schönrogge K, Atkinson AJ, Bellido D, Pujade-Villar J (2002) The population biology of oak gall wasps (Hymenoptera:Cynipidae) Annual Review of Entomology 47:633-668. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution 28: 2731-2739. Tavares MG, Carvalho CR, Soares FAF (2010a) Genome size variation in Melipona species (Hymenoptera: Apidae) and sub-grouping by their DNA content. Apidologie 41: 636642. Tavares MG, Carvalho CR, Soares FAF, Fernandes A (2010b) Detection of diploid males in a natural colony of the cleptobiotic bee Lestrimelitta sp (Hymenoptera, Apidae) Genetics and Molecular Biology 33: 491-493. Teletchea F (2010) After 7 years and 1000 citations: Comparative assessment of the DNA barcoding and the DNA taxonomy proposals for taxonomists and non-taxonomists. Mitochondrial DNA 21: 206-226. 157 Triplehorn CA, Johnson NF (2005) Borer and Delong's Introduction to the Study of Insects. Thomson, Brooks/ Cole, Belmont. 864 pp. Torchio PF, Burdick DJ (1988) Comparative notes on the biology and development of Epeolus compactus Cresson, a cleptoparasite of Colletes kincaidii Cockerell. Annals Entomological Society America 81: 626-636. Truman JW, Riddiford LM (1999) The origins of insect metamorphosis. Nature 401: 447-452. Truman JW, Riddiford LM (2002) Endocrine insights into the evolution of metamorphosis in insects. Annual Review Entomology 47: 467-500. Tsutsui ND, Suarez AV, Spagna JC, Johnston JS (2008) The evolution of genome size in ants. BMC Evolutionary Biology 8: 64. Vinson SB, Iwantsch GF (1980) Host suitability for insect parasitoids. Annual Review Entomology 25: 397-419. deWaard JR, Mitchell A, Keena MA, Gopurenko D, Boykin LM, Armstrong KF, Pogue MG, Lima J, Floyd R, Hanner RH, Humble LM (2010) Towards a global barcode library for Lymantria (Lepidoptera: Lymantriinae) tussock moths of biosecurity concern. PloS One 5: e14280. Waugh J (2007) DNA barcoding in animal species: Progress, potential and pitfalls. BioEssays 29:188-197. Weis AE, Walton R, Crego CL (1988) Reactive plant-tissue sites and the population biology of gall makers. Annual Review of Entomology 33: 467-486. Weld LH (1952) New American cynipid wasps from galls. Proceedings of the United States National Museum 102: 315-343. 158 Wiebes-Rijks AA, Shorthouse, JD (1992) Ecological relationships of insects inhabiting cynipid galls. In: JD Shorthouse and O Rohfritsch (eds), Biology of Insect-Induced Galls. Oxford University Press, New York. pp 238–257. Will KW, Mishler BD, Wheeler QD (2005) The perils of DNA barcoding and the need for integrative taxonomy. Systematic Biology 54:844–851. Yassin A, Markow TA, Narechania A, O'Grady PM, DeSalle R (2010) The genus Drosophila as a model for testing tree- and character-based methods of species identification using DNA barcoding. Molecular Phylogenetics and Evolution 57: 509–517. Yasumatsu K, Taketani A (1967) Some remarks on the commonly known species of the genus Diplolepis Geoffroy in Japan. Esakia 6: 77-87. 159 160 JDS JDS JL JDS JDS JDS JDS JDS JDS JDS JDS JDS 23 D. bicolor 24 D. bicolor 25 D . sp. 26 D. bicolor 27 D. bicolor 28 D. bicolor 29 D. bicolor 30 D. bicolor 31 D. bicolor 32 D. bassetti 33 D. bassetti 34 D. bassetti JDS 15 D. bicolor JDS JDS 14 D. bicolor 22 D. bicolor JDS 13 D. bicolor JDS JDS 12 D. bicolor 21 D. bicolor JDS 11 D . sp. JDS JDS 10 D . sp. 20 D. bicolor JL 9 D . sp. JDS JL 8 D . sp. 19 D. bicolor JL 7 D . sp. JDS JL 6 D . sp. 18 D. bicolor JDS 5 D. eglanteriae JDS JDS 4 D. eglanteriae 17 D. bicolor JDS 3 D. eglanteriae JDS JDS 2 D. eglanteriae 16 D. bicolor Verified JDS n Specimen designation 1 D. eglanteriae Identification† DbOT05 DbOT05 DbOT05 DbOT04 DbOT04 DbOT04 DbOT04 DbOT04 DbOT04 DbOT03 DbOT03 DbOT03 DbOT03 DbOT03 DbOT03 DbOT03 DbOT03 DbOT03 DbOT03 DbOT03 DbOT03 DbOT03 DbOT03 DbOT02 DbOT02 DbOT01 DbOT01 DbOT01 DbOT01 DbOT01 DbOT01 DbOT01 DbOT01 DbOT01 DbOT ID 601 601 601 601 601 601 601 601 601 601 601 601 601 601 601 601 601 601 601 601 601 601 601 601 601 601 601 601 601 601 601 601 601 COI 601 Process ID 385 385 385 Rose314-08 Rose313-08 Rose086-08 Rose014-08 Rose013-08 Rose010-08 Rose003-08 Rose002-08 Rose001-08 Perna172-09 Rose020-08 Rose019-08 Rose018-08 Rose017-08 Rose016-08 Rose015-08 Rose011-08 Rose009-08 Rose008-08 Rose007-08 Rose006-08 Rose005-08 Rose004-08 Rose554-08 Rose553-08 Hygen983-10 Hygen982-10 Hygen981-10 Hygen980-10 Rose506-08 Rose505-08 Rose504-08 Rose502-08 ITS1 385 Rose093-08 no. basepairs 2002-10 2002-10 2002-10 2002-10 2002-10 2007-09 1999-09 1999-09 1999-09 2005-05 2007-09 2003-05 2003-05 2003-05 2003-05 2003-05 1999-10 2007-09 2007-09 2007-09 2007-09 2007-09 2007-09 1996-11 1996-11 2010-08 2010-08 2010-08 2010-08 1996-05 1996-05 1996-05 1996-05 Date 1996-05 Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Japan Japan Canada Canada Canada Canada Canada Canada Canada Canada Country Canada Coaldale (AB) Coaldale (AB) Coaldale (AB) Coaldale (AB) Coaldale (AB) Waterton L N P (AB) Lethbridge (AB) Lethbridge (AB) Lethbridge (AB) Thunder Bay (ON) Waterton L N P (AB) Pincher Creek (AB) Pincher Creek (AB) Pincher Creek (AB) Coaldale (AB) Coaldale (AB) Kelowna (BC) Waterton L N P (AB) Waterton L N P (AB) Waterton L N P (AB) Waterton L N P (AB) Waterton L N P (AB) Waterton L N P (AB) Kuroishi (Aomori) Kuroishi (Aomori) Guelph (ON) Guelph (ON) Guelph (ON) Guelph (ON) Niagara F (ON) Niagara F (ON) Niagara F (ON) Niagara F (ON) Site (Province or Region) Niagara F (ON) Collection‡ Appendix 1. Taxa included in DNA barcoding of rose gall inhabitants, together with identification and collection information. JDS JDS BE, JDS JDS JDS JDS, MRS JDS, MRS JDS, MRS JDS, MRS MJTB, JDS JDS, MRS JDS, MRS JDS, MRS JDS, MRS JDS, MRS JDS, MRS RGL, JDS JDS, MRS JDS, MRS JDS, MRS JDS, MRS JDS, MRS JDS, MRS NS NS GL, JL, TE GL, JL, TE GL, JL, TE GL, JL, TE SEB SEB SEB SEB Team SEB, JDS 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 1 1 1 1 Voucher 1 161 DbOT07 JDS JDS JDS JDS JDS JDS JDS JDS JL JL JDS 59 D. polita 60 D. polita 61 D. polita 62 D. polita 63 D. polita 64 D. polita 65 D. polita 66 D. polita 67 D . sp. 68 D . sp. 69 D. polita DbOT08 DbOT07 DbOT07 DbOT07 DbOT07 DbOT07 DbOT07 DbOT07 DbOT07 DbOT07 DbOT07 DbOT07 DbOT06 DbOT06 DbOT06 DbOT06 JDS DbOT06 DbOT06 JDS JDS 50 D. bassetti DbOT06 58 D. polita JDS 49 D. bassetti DbOT06 57 D. polita JDS 48 D. bassetti DbOT06 DbOT06 JDS 47 D. bassetti DbOT06 JDS JDS 46 D. bassetti DbOT06 56 D. bassetti JDS 45 D. bassetti DbOT05 JDS JL 44 D . sp. DbOT05 55 D. bassetti JDS 43 D. bassetti DbOT05 DbOT05 JDS JDS 42 D. bassetti 53 D. bassetti JDS 41 D. bassetti DbOT05 JDS JDS 40 D. bassetti DbOT05 53 D. bassetti JDS 39 D. bassetti DbOT05 JDS JDS 38 D. bassetti DbOT05 DbOT05 52 D. bassetti JDS 37 D. bassetti JDS JDS 36 D. bassetti DbOT05 DbOT ID 51 D. bassetti Verified JDS n Specimen designation 35 D. bassetti Identification† 601 601 601 601 601 601 601 601 601 601 601 601 601 601 601 601 601 601 601 601 601 601 601 601 601 601 601 601 601 601 601 601 601 601 COI 601 ITS1 no. basepairs Rose394-08 Vnmb789-09 Vnmb769-09 Rose390-08 Rose386-08 Rose382-08 Rose381-08 Rose380-08 Rose379-08 Rose378-08 Rose366-08 Rose365-08 Rose363-08 Rose337-08 Rose336-08 Rose335-08 Rose332-08 Rose330-08 Rose329-08 Rose328-08 Rose327-08 Rose326-08 Rose325-08 Rose324-08 Rose322-08 Pipi395-09 Rose334-08 Rose333-08 Rose321-08 Rose320-08 Rose319-08 Rose318-08 Rose317-08 Rose316-08 Rose315-08 Process ID 2003-03 2008-09 2008-09 1995-10 1998-08 1998-08 1998-08 1998-08 1998-08 1998-08 1986-10 1986-10 1986-10 2007-09 2007-09 2007-09 2007-09 1999-10 1999-10 1999-10 1999-10 1999-10 1999-10 1999-10 1999-10 2002-05 2007-09 2007-09 2002-10 2002-10 2002-10 2002-10 2002-10 2002-10 Date 2002-10 USA Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Country Canada San Joaquin C (CA) Smooth Rock F (ON) Clute (ON) Pacific Rim N P (BC) Queen Charlotte I (BC) Queen Charlotte I (BC) Queen Charlotte I (BC) Queen Charlotte I (BC) Queen Charlotte I (BC) Queen Charlotte I (BC) Cypress Hills P P (AB) Cypress Hills P P (AB) Cypress Hills P P (AB) Waterton L N P (AB) Waterton L N P (AB) Waterton L N P (AB) Waterton L N P (AB) Osoyoos (BC) Osoyoos (BC) Osoyoos (BC) Osoyoos (BC) Osoyoos (BC) Osoyoos (BC) Osoyoos (BC) Osoyoos (BC) Coaldale (AB) Waterton L N P (AB) Waterton L N P (AB) Coaldale (AB) Coaldale (AB) Coaldale (AB) Coaldale (AB) Coaldale (AB) Coaldale (AB) Site (Province or Region) Coaldale (AB) Collection‡ KNS GL, JL GL, JL JDS JDS JDS JDS JDS JDS JDS JDS JDS JDS JDS, MRS JDS, MRS JDS, MRS JDS, MRS RGL, JDS RGL, JDS RGL, JDS RGL, JDS RGL, JDS RGL, JDS RGL, JDS RGL, JDS JDS JDS, MRS JDS, MRS JDS JDS JDS JDS JDS JDS Team JDS 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 Voucher 1 162 JDS JDS JDS JL JL JL JL JL JL JL JL JDS 94 D. fructuum 95 D. fructuum 96 D . sp. 97 D . sp. 98 D . sp. 99 D . sp. 100 D . sp. 101 D . sp. 102 D . sp. 103 D . sp. 104 D. rosae JDS 85 D. fructuum JDS JDS 84 D. fructuum 93 D. fructuum JDS 83 D. fructuum 92 D. fructuum JDS 82 D. fructuum JDS JDS 81 D. fructuum 91 D. fructuum JDS 80 D. fructuum JDS JDS 79 D. fructuum 90 D. fructuum JDS 78 D. fructuum JDS JDS 89 D. fructuum JDS 76 D. fructuum 77 D. fructuum JDS JDS 75 D. polita 88 D. fructuum JDS 74 D. polita JDS JDS 73 D. polita 87 D. fructuum JDS 72 D. polita JDS JDS 71 D. polita 86 D. fructuum Verified JDS n Specimen designation 70 D. polita Identification† DbOT11 DbOT11 DbOT11 DbOT11 DbOT11 DbOT11 DbOT11 DbOT10 DbOT10 601 601 601 601 601 601 601 601 601 601 601 DbOT09 DbOT09 601 601 601 601 601 601 601 601 601 601 601 601 601 601 601 601 601 601 601 601 601 601 601 COI 601 390 ITS1 no. basepairs DbOT09 DbOT09 DbOT09 DbOT09 DbOT09 DbOT09 DbOT09 DbOT09 DbOT09 DbOT09 DbOT09 DbOT09 DbOT09 DbOT09 DbOT09 DbOT09 DbOT09 DbOT09 DbOT08 DbOT08 DbOT08 DbOT08 DbOT08 DbOT08 DbOT ID Rose091-08 Hygen348-10 Hygen347-10 Hygen344-10 Hygen343-10 Hygen342-10 Hygen341-10 Hygen340-10 Hygen339-10 Rose470-08 Rose469-08 Rose468-08 Rose467-08 Rose466-08 Rose465-08 Rose464-08 Rose463-08 Rose462-08 Rose461-08 Rose460-08 Rose459-08 Rose458-08 Rose457-08 Rose456-08 Rose455-08 Rose453-08 Rose453-08 Rose452-08 Rose094-08 Rose400-08 Rose399-08 Rose398-08 Rose397-08 Rose396-08 Rose395-08 Process ID 2003-04 2009-05 2009-05 2009-05 2009-05 2009-05 2009-05 2009-04 2009-04 2008-01 2008-01 2008-01 2008-01 2008-01 2008-01 2008-01 2008-01 2008-01 2008-01 2008-01 2008-01 2008-01 2008-01 2008-01 2008-01 2008-01 2008-01 2008-01 2008-01 2003-03 2003-03 2003-03 2003-03 2003-03 Date 2003-03 Canada Canada Canada Canada Canada Canada Canada Canada Canada Turkey Turkey Turkey Turkey Turkey Turkey Turkey Turkey Turkey Turkey Turkey Turkey Turkey Turkey Turkey Turkey Turkey Turkey Turkey Turkey USA USA USA USA USA Country USA SG, RH SG, RH SG, RH SG, RH SG, RH SG, RH SG, RH SG, RH SG, RH (Gümüşhane ) (Gümüşhane ) (Gümüşhane ) (Gümüşhane ) (Gümüşhane ) (Gümüşhane ) (Gümüşhane ) (Gümüşhane ) Picton (ON) Manitoulin I (ON) Manitoulin I (ON) Manitoulin I (ON) Manitoulin I (ON) Manitoulin I (ON) Manitoulin I (ON) Picton (ON) Picton (ON) Erzurum (Erzurum) Erzurum (Erzurum) Erzurum (Erzurum) Erzurum (Erzurum) Erzurum (Erzurum) Erzurum (Erzurum) Erzurum (Erzurum) Erzurum (Erzurum) Erzurum (Erzurum) JDS JDR, JDS JDR, JDS JDR, JDS JDR, JDS JDR, JDS JDR, JDS JDS JDS SG, RH SG, RH SG, RH SG, RH SG, RH SG, RH SG, RH SG, RH SG, RH SG, RH SG, RH Kelkit (Gümüşhane ) (Gümüşhane ) Erzurum (Erzurum) KNS KNS KNS KNS KNS Team KNS San Joaquin C (CA) San Joaquin C (CA) San Joaquin C (CA) San Joaquin C (CA) San Joaquin C (CA) Site (Province or Region) San Joaquin C (CA) Collection‡ 1 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Voucher 1 163 JDS JDS JDS JDS JDS 113 D. rosae 114 D. rosae 115 D. rosae 116 D. rosae 117 D. rosae JDS JDS JDS JDS JDS JDS JDS JDS JDS JL JL JDS JDS JDS JDS JDS JL 123 D. rosaefolii 125 D. rosaefolii 126 D. rosaefolii 127 D. rosaefolii 128 D. rosaefolii 129 D. rosaefolii 130 D. rosaefolii 131 D. rosaefolii 132 D . sp. 133 D . sp. 134 D. rosaefolii 135 D. rosaefolii 136 D. rosaefolii 137 D. rosaefolii 138 D. rosaefolii 139 D . sp. JDS 122 D. rosaefolii 124 D. rosaefolii JDS 121 D. rosaefolii JDS JDS 112 D. rosae 120 D. rosaefolii DbOT11 JDS 111 D. rosae JDS JDS 110 D. rosae JDS JDS 109 D. rosae 118 D. rosae DbOT11 JDS 108 D. rosae 119 D. rosaefolii DbOT11 JDS 107 D. rosae DbOT13 DbOT13 DbOT13 DbOT13 DbOT13 DbOT13 DbOT13 DbOT13 DbOT12 400 601 601 601 601 601 601 601 601 601 601 DbOT12 DbOT12 601 601 601 601 601 601 601 601 601 601 601 601 601 601 601 601 601 601 601 601 601 601 601 COI 601 386 388 ITS1 no. basepairs DbOT12 DbOT12 DbOT12 DbOT12 DbOT12 DbOT12 DbOT12 DbOT12 DbOT12 DbOT12 DbOT11 DbOT11 DbOT11 DbOT11 DbOT11 DbOT11 DbOT11 DbOT11 DbOT11 DbOT11 JDS 106 D. rosae DbOT11 Verified JDS DbOT ID n Specimen designation 105 D. rosae Identification† Hygen349-10 Rose288-08 Rose287-08 Rose286-08 Rose285-08 Rose284-08 Hygen355-10 Hygen351-10 Rose312-08 Rose311-08 Rose310-08 Rose309-08 Rose308-08 Rose307-08 Rose306-08 Rose305-08 Rose304-08 Rose303-08 Rose296-08 Rose295-08 Rose294-08 Rose501-08 Rose500-08 Rose499-08 Rose498-08 Rose497-08 Rose496-08 Rose495-08 Rose494-08 Rose493-08 Rose492-08 Rose491-08 Rose490-08 Rose489-08 Rose488-08 Process ID 2008-09 1991-09 1991-09 1991-09 1991-09 1991-09 2009-05 2009-05 2007-09 2007-09 2007-09 2007-09 2007-09 2007-09 2007-09 2007-09 2007-09 2007-09 1999-09 1999-09 1999-09 1994-05 1994-05 1994-05 1994-05 1994-05 2003-04 2003-04 2003-04 2003-04 1987-10 1987-10 1987-10 1987-10 Date 1987-10 Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Country Canada Timmins (ON) Timmins (ON) Timmins (ON) Timmins (ON) Timmins (ON) Timmins (ON) Timmins (ON) Timmins (ON) Waterton L N P (AB) Waterton L N P (AB) Waterton L N P (AB) Waterton L N P (AB) Waterton L N P (AB) Waterton L N P (AB) Waterton L N P (AB) Waterton L N P (AB) Waterton L N P (AB) Waterton L N P (AB) Douglas P P (SK) Douglas P P (SK) Douglas P P (SK) Malden Center (ON) Malden Center (ON) Malden Center (ON) Malden Center (ON) Malden Center (ON) Prince Edward C (ON) Prince Edward C (ON) Prince Edward C (ON) Prince Edward C (ON) St. Johns (NF) St. Johns (NF) St. Johns (NF) St. Johns (NF) Site (Province or Region) St. Johns (NF) Collection‡ GL, JL JDS JDS JDS JDS JDS ADR, JDS ADR, JDS JDS, MRS JDS, MRS JDS, MRS JDS, MRS JDS, MRS JDS, MRS JDS, MRS JDS, MRS JDS, MRS JDS, MRS JDS, MRS JDS, MRS JDS, MRS JDS JDS JDS JDS JDS JDS JDS JDS JDS AW, RWW AW, RWW AW, RWW AW, RWW Team AW, RWW 2 1 1 1 1 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Voucher 1 164 JDS JDS JL JL JL JL JDS JDS JDS JDS JDS JDS 164 D. nebulosa 165 D . sp. 166 D . sp. 167 D . sp. 168 D . sp. 169 D. ignota 170 D. ignota 171 D. ignota 172 D. ignota 173 D. ignota 174 D. ignota JDS 155 D. fusiformans JDS JDS 153 D. fusiformans 163 D. nebulosa JDS 153 D. fusiformans 162 D. nebulosa JDS 152 D. fusiformans JDS JDS 151 D. fusiformans 161 D . sp. JL 150 D . sp. JDS JL 149 D . sp. 160 D . sp. JL 148 D . sp. JDS JL 147 D . sp. 159 D. fusiformans JL 146 D . sp. JDS JL 145 D . sp. 158 D. fusiformans JL 144 D . sp. JDS JL 143 D . sp. 157 D. fusiformans JL 142 D . sp. JDS JL 141 D . sp. 156 D. fusiformans Verified JL n Specimen designation 140 D . sp. Identification† DbOT15 DbOT15 DbOT15 DbOT15 DbOT15 DbOT15 DbOT15 DbOT15 DbOT15 DbOT15 DbOT14 DbOT14 DbOT14 DbOT14 DbOT14 DbOT14 DbOT14 DbOT14 DbOT14 DbOT14 DbOT14 DbOT14 DbOT14 DbOT14 DbOT14 DbOT14 DbOT13 DbOT13 DbOT13 DbOT13 DbOT13 DbOT13 DbOT13 DbOT13 DbOT13 DbOT ID 601 601 601 601 601 601 601 601 601 601 601 601 601 601 601 601 597 601 601 601 601 601 601 601 601 601 601 597 597 597 597 471 597 601 COI 601 394 394 394 ITS1 no. basepairs Rose026-08 Rose025-08 Rose024-08 Rose023-08 Rose022-08 Rose021-08 Hygen322-10 Hygen320-10 Hygen318-10 Hygen317-10 Rose449-08 Rose443-08 Rose442-08 Rose562-08 Rose558-08 Rose230-08 Rose229-08 Rose228-08 Rose227-08 Rose226-08 Rose225-08 Rose224-08 Rose223-08 Rose082-08 Hygen302-10 Hygen299-10 Vnmb794-09 Pipi169-09 Pipi167-09 Pipi161-09 Pipi159-09 Pipi158-09 Pipi157-09 Hygen354-10 Hygen350-10 Process ID 2007-05 2007-05 2007-05 2007-05 2007-05 2007-05 2009-05 2009-05 2009-05 2009-05 2002-10 2002-10 2002-10 1971-05 2000-06 2006-04 2006-04 2006-04 2006-04 2006-04 2006-04 2006-04 2006-04 2006-04 2009-04 2009-05 2008-09 2008-09 2008-09 2008-09 2008-09 2008-09 2008-09 2008-09 Date 2008-09 Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Country Canada (mid-west) (mid-west) (mid-west) (mid-west) (mid-west) (mid-west) Fort Macleod (AB) Fort Macleod (AB) Fort Macleod (AB) Fort Macleod (AB) Coaldale (AB) Coaldale (AB) Coaldale (AB) Peace River (AB) Renfrew (ON) Renfrew (ON) Renfrew (ON) Renfrew (ON) Renfrew (ON) Renfrew (ON) Renfrew (ON) Renfrew (ON) Renfrew (ON) Renfrew (ON) Renfrew (ON) Chelmsford (ON) Smooth Rock F (ON) Sudbury (ON) Sudbury (ON) Sudbury (ON) Sudbury (ON) Sudbury (ON) Sudbury (ON) Timmins (ON) Site (Province or Region) Timmins (ON) Collection‡ JDS, MRS JDS, MRS JDS, MRS JDS, MRS JDS, MRS JDS, MRS JDS JDS JDS JDS JDS JDS JDS JDS JDS JDS, MRS JDS, MRS JDS, MRS JDS, MRS JDS, MRS JDS, MRS JDS, MRS JDS, MRS JDS, MRS MRS, JDS JDS GL, JL GL, JL GL, JL GL, JL GL, JL GL, JL GL, JL GL, JL Team GL, JL 1 1 1 1 1 1 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 Voucher 2 165 JDS JDS JDS 204 D. nebulosa 205 D. nebulosa 206 D. nebulosa JDS JL 203 D . sp. 209 D. nebulosa JL 202 D . sp. JDS JL 201 D . sp. JDS JL 200 D . sp. 207 D. nebulosa JL 199 D . sp. 208 D. nebulosa JL JL 190 D . sp. JL JL 189 D . sp. 198 D . sp. JL 188 D . sp. 197 D . sp. JL 187 D . sp. JL JDS 186 D. ignota 196 D . sp. JDS 185 D. ignota JL JDS 184 D. ignota 195 D . sp. JDS 183 D. ignota JL JDS 182 D. ignota 194 D . sp. JDS 181 D. ignota JL JDS 180 D. ignota 193 D . sp. JDS 179 D. ignota JL JDS 178 D. ignota 192 D . sp. JDS 177 D. ignota JL JDS 176 D. ignota 191 D . sp. Verified JDS n Specimen designation 175 D. ignota Identification† DbOT15 DbOT15 DbOT15 DbOT15 DbOT15 DbOT15 DbOT15 DbOT15 DbOT15 DbOT15 DbOT15 DbOT15 DbOT15 DbOT15 DbOT15 DbOT15 DbOT15 DbOT15 DbOT15 DbOT15 DbOT15 DbOT15 DbOT15 DbOT15 DbOT15 DbOT15 DbOT15 DbOT15 DbOT15 DbOT15 DbOT15 DbOT15 DbOT15 DbOT15 DbOT15 DbOT ID 601 601 601 601 601 601 601 601 601 601 601 601 601 601 601 601 601 601 601 601 601 601 601 601 601 601 601 601 601 601 601 601 601 601 COI 601 394 ITS1 no. basepairs Rose427-08 Rose426-08 Rose425-08 Rose424-08 Rose423-08 Rose081-08 Hygen310-10 Rose738-09 Rose737-09 Rose736-09 Rose735-09 Rose734-09 Rose733-09 Rose732-09 Rose731-09 Rose730-09 Rose729-09 Rose728-09 Rose727-09 Rose726-09 Rose725-09 Rose724-09 Rose723-09 Rose038-08 Rose037-08 Rose036-08 Rose035-08 Rose034-08 Rose033-08 Rose032-08 Rose031-08 Rose030-08 Rose029-08 Rose028-08 Rose027-08 Process ID 2004-10 2004-10 2004-10 2004-10 2004-10 2004-10 2009-10 2007-09 2007-09 2007-09 2007-09 2007-09 2007-09 2007-09 2007-09 2007-05 2007-05 2007-05 2007-05 2007-05 2007-05 2007-05 2007-05 2007-05 2007-05 2007-05 2007-05 2007-05 2007-05 2007-05 2007-05 2007-05 2007-05 2007-05 Date 2007-05 Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Country Canada Manitoulin I (ON) Manitoulin I (ON) Manitoulin I (ON) Manitoulin I (ON) Manitoulin I (ON) Manitoulin I (ON) Sudbury (ON) Coaldale (AB) Coaldale (AB) Coaldale (AB) Coaldale (AB) Coaldale (AB) Coaldale (AB) Coaldale (AB) Coaldale (AB) Coaldale (AB) Coaldale (AB) Coaldale (AB) Coaldale (AB) Coaldale (AB) Coaldale (AB) Coaldale (AB) Coaldale (AB) (mid-west) (mid-west) (mid-west) (mid-west) (mid-west) (mid-west) (mid-west) (mid-west) (mid-west) (mid-west) (mid-west) Site (Province or Region) (mid-west) Collection‡ ADR, JDS ADR, JDS ADR, JDS ADR, JDS ADR, JDS ADR, JDS JDS JDS, MRS JDS, MRS JDS, MRS JDS, MRS JDS, MRS JDS, MRS JDS, MRS JDS, MRS JDS, MRS JDS, MRS JDS, MRS JDS, MRS JDS, MRS JDS, MRS JDS, MRS JDS, MRS JDS, MRS JDS, MRS JDS, MRS JDS, MRS JDS, MRS JDS, MRS JDS, MRS JDS, MRS JDS, MRS JDS, MRS JDS, MRS Team JDS, MRS 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 Voucher 1 166 JDS JDS JDS JL JL JL JL JL JL JL JL JL JL JL JL JL JL JL 227 D. nebulosa 228 D. nebulosa 229 D. nebulosa 230 D . sp. 231 D . sp. 232 D . sp. 233 D . sp. 234 D . sp. 235 D . sp. 236 D . sp. 237 D . sp. 238 D . sp. 239 D . sp. 240 D . sp. 241 D . sp. 242 D . sp. 243 D . sp. 244 D . sp. JDS 225 D. nebulosa JDS JDS 224 D. nebulosa 226 D. nebulosa JDS 223 D. nebulosa JDS 218 D. nebulosa JDS JDS 217 D. nebulosa 222 D. nebulosa JDS 216 D. nebulosa JDS JDS 215 D. nebulosa 221 D. nebulosa JDS 214 D. nebulosa JDS JDS 213 D. nebulosa JDS JDS 212 D. nebulosa 219 D. nebulosa JDS 211 D. nebulosa 220 D. nebulosa Verified JDS n Specimen designation 210 D. nebulosa Identification† DbOT15 DbOT15 DbOT15 DbOT15 DbOT15 DbOT15 DbOT15 DbOT15 DbOT15 DbOT15 DbOT15 DbOT15 DbOT15 DbOT15 DbOT15 DbOT15 DbOT15 DbOT15 DbOT15 DbOT15 DbOT15 DbOT15 DbOT15 DbOT15 DbOT15 DbOT15 DbOT15 DbOT15 DbOT15 DbOT15 DbOT15 DbOT15 DbOT15 DbOT15 DbOT15 DbOT ID 601 601 601 601 567 601 601 601 597 601 601 601 601 601 601 601 601 601 601 601 601 601 601 601 601 601 601 601 601 601 601 601 601 601 COI 601 394 394 ITS1 no. basepairs Rose684-09 Rose683-09 Rose682-09 Rose681-09 Rose680-09 Rose679-09 Rose678-09 Rose677-09 Rose676-09 Rose675-09 Rose674-09 Rose673-09 Rose672-09 Rose671-09 Rose670-09 Rose451-08 Rose450-08 Rose448-08 Rose447-08 Rose446-08 Rose445-08 Rose444-08 Rose441-08 Rose440-08 Rose439-08 Rose438-08 Rose437-08 Rose436-08 Rose435-08 Rose434-08 Rose433-08 Rose431-08 Rose430-08 Rose429-08 Rose428-08 Process ID 2002-10 2002-10 2004-10 2004-10 2004-10 2004-10 2004-10 2004-10 2004-10 2004-10 2007-09 2007-09 2007-09 2007-09 2007-09 2002-10 2002-10 2002-10 2002-10 2002-10 2002-10 2002-10 2007-09 2007-09 2007-09 2007-09 2007-09 2007-09 2007-09 2007-09 2007-09 2004-10 2004-10 2004-10 Date 2004-10 Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Country Canada Coaldale (AB) Coaldale (AB) Manitoulin I (ON) Manitoulin I (ON) Manitoulin I (ON) Manitoulin I (ON) Manitoulin I (ON) Manitoulin I (ON) Manitoulin I (ON) Manitoulin I (ON) Waterton L N P (AB) Waterton L N P (AB) Waterton L N P (AB) Waterton L N P (AB) Waterton L N P (AB) Coaldale (AB) Coaldale (AB) Coaldale (AB) Coaldale (AB) Coaldale (AB) Coaldale (AB) Coaldale (AB) Waterton L N P (AB) Waterton L N P (AB) Waterton L N P (AB) Waterton L N P (AB) Waterton L N P (AB) Waterton L N P (AB) Waterton L N P (AB) Waterton L N P (AB) Waterton L N P (AB) Manitoulin I (ON) Manitoulin I (ON) Manitoulin I (ON) Site (Province or Region) Manitoulin I (ON) Collection‡ JDS JDS ADR, JDR, JDS ADR, JDR, JDS ADR, JDR, JDS ADR, JDR, JDS ADR, JDR, JDS ADR, JDR, JDS ADR, JDR, JDS ADR, JDR, JDS JDS, MRS JDS, MRS JDS, MRS JDS, MRS JDS, MRS JDS JDS JDS JDS JDS JDS JDS JDS, MRS JDS, MRS JDS, MRS JDS, MRS JDS, MRS JDS, MRS JDS, MRS JDS, MRS JDS, MRS ADR, JDS ADR, JDS ADR, JDS Team ADR, JDS 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Voucher 1 167 JL JL JDS JDS JDS JDS JDS JDS JDS JDS JDS JDS 269 D . sp. 270 D. gracilis 271 D. gracilis 272 D. gracilis 273 D. gracilis 274 D. gracilis 275 D. gracilis 276 D. gracilis 277 D. gracilis 278 D . nebulosa 279 D. nodulosa JDS 260 D. variabilis JL JDS 259 D. variabilis 268 D . sp. JDS 258 D. variabilis 267 D . sp. JDS 257 D. variabilis JL JDS 256 D. variabilis JL JDS 255 D. variabilis 266 D . sp. JL 253 D . sp. 265 D . sp. JL 253 D . sp. JL JL 252 D . sp. 264 D . sp. JL 251 D . sp. JDS JL 250 D . sp. 263 D. variabilis JL 249 D . sp. JDS JL 248 D . sp. 262 D. variabilis JL 247 D . sp. JDS JL 246 D . sp. 261 D. variabilis Verified JL n Specimen designation 245 D . sp. Identification† DbOT17 DbOT16 DbOT16 DbOT16 DbOT16 DbOT16 DbOT16 DbOT16 DbOT16 DbOT16 DbOT16 DbOT15 DbOT15 DbOT15 DbOT15 DbOT15 DbOT15 DbOT15 DbOT15 DbOT15 DbOT15 DbOT15 DbOT15 DbOT15 DbOT15 DbOT15 DbOT15 DbOT15 DbOT15 DbOT15 DbOT15 DbOT15 DbOT15 DbOT15 DbOT15 DbOT ID 601 601 601 601 601 601 601 601 601 601 601 601 601 562 601 601 601 601 601 601 601 601 601 601 601 601 601 601 601 601 601 601 601 601 COI 601 ITS1 no. basepairs Rose418-08 Rose432-08 Rose356-08 Rose355-08 Rose353-08 Rose353-08 Rose352-08 Rose346-08 Rose341-08 Rose338-08 Hygen308-10 Rose714-09 Rose711-09 Rose710-09 Rose708-09 Rose707-09 Rose211-08 Rose210-08 Rose209-08 Rose208-08 Rose207-08 Rose206-08 Rose204-08 Rose203-08 Rose083-08 Hygen378-10 Hygen377-10 Hygen376-10 Hygen375-10 Rose690-09 Rose689-09 Rose688-09 Rose687-09 Rose686-09 Rose685-09 Process ID 1999-10 2007-09 2007-09 2007-09 2007-09 2007-09 2007-09 1999-09 1999-09 1972-09 2009-09 2007-05 2007-05 2007-05 2007-05 2007-05 2007-05 2007-05 2007-05 2007-05 2007-05 2007-05 2007-05 2007-05 2007-05 2009-05 2009-05 2009-05 2009-05 2002-10 2002-10 2002-10 2002-10 2002-10 Date 2002-10 Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Country Canada Kelowna (BC) Waterton L N P (AB) Waterton L N P (AB) Waterton L N P (AB) Waterton L N P (AB) Waterton L N P (AB) Waterton L N P (AB) Saskatoon (SK) Moose Jaw (SK) Leader (SK) Deux Rivieres (ON) Peachland (BC) Peachland (BC) Peachland (BC) Peachland (BC) Peachland (BC) Peachland (BC) Peachland (BC) Peachland (BC) Peachland (BC) Peachland (BC) Peachland (BC) Peachland (BC) Peachland (BC) Peachland (BC) Peachland (BC) Peachland (BC) Peachland (BC) Peachland (BC) Coaldale (AB) Coaldale (AB) Coaldale (AB) Coaldale (AB) Coaldale (AB) Site (Province or Region) Coaldale (AB) Collection‡ RGL, JDS JDS, MRS JDS, MRS JDS, MRS JDS, MRS JDS, MRS JDS, MRS JDS, MRS JDS, MRS JDS JDS JB, RGL, JDS JB, RGL, JDS JB, RGL, JDS JB, RGL, JDS JB, RGL, JDS RGL, JDS RGL, JDS RGL, JDS RGL, JDS RGL, JDS RGL, JDS RGL, JDS RGL, JDS RGL, JDS RGL RGL RGL RGL JDS JDS JDS JDS JDS Team JDS 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 Voucher 2 168 JL JL JL JL JL JL JL JL JL JL JL JL 304 D . sp. 305 D . sp. 306 D . sp. 307 D . sp. 308 D . sp. 309 D . sp. 310 D . sp. 311 D . sp. 312 D . sp. 313 D . sp. 314 D . sp. JDS 295 D. triforma JL JDS 294 D. triforma 303 D . sp. JDS 293 D . sp. 302 D . sp. JDS 292 D . sp. JL JDS 291 D . sp. JL JDS 290 D . sp. 301 D . sp. JL 289 D . sp. 300 D . sp. JL 288 D . sp. JL JL 287 D . sp. 299 D . sp. JL 286 D . sp. JDS JL 285 D . sp. 298 D. triforma JL 284 D . sp. JDS JL 283 D . sp. 297 D. triforma JL 282 D . sp. JDS JL 281 D . sp. 296 D. triforma Verified JL n Specimen designation 280 D . sp. Identification† DbOT18 DbOT18 DbOT18 DbOT18 DbOT18 DbOT18 DbOT18 DbOT18 DbOT18 DbOT18 DbOT18 DbOT18 DbOT18 DbOT18 DbOT18 DbOT18 DbOT18 DbOT18 DbOT18 DbOT18 DbOT18 DbOT18 DbOT18 DbOT18 DbOT18 DbOT17 DbOT17 DbOT17 DbOT17 DbOT17 DbOT17 DbOT17 DbOT17 DbOT17 DbOT17 DbOT ID 601 601 599 601 597 582 597 601 601 601 601 601 601 601 601 601 601 601 601 601 601 601 601 601 601 601 601 601 601 601 601 601 601 601 COI 601 ITS1 no. basepairs Pipi188-09 Pipi187-09 Pipi186-09 Pipi185-09 Pipi183-09 Pipi182-09 Pipi181-09 Hygen992-10 Hygen991-10 Hygen989-10 Hygen987-10 Hygen984-10 Hygen327-10 Hygen326-10 Hygen324-10 Hygen323-10 Rose047-08 Rose046-08 Rose045-08 Rose044-08 Rose043-08 Rose534-08 Rose533-08 Rose532-08 Rose530-08 Rose668-09 Rose667-09 Rose666-09 Rose665-09 Rose664-09 Rose663-09 Rose662-09 Rose661-09 Rose660-09 Rose659-09 Process ID 2008-09 2008-09 2008-09 2008-09 2008-09 2008-09 2008-09 2008-09 2008-09 2008-09 2008-09 2008-09 2009-05 2008-09 2009-05 2009-05 2008-01 2008-01 2008-01 2008-01 2008-01 2003-04 2003-04 2003-04 2003-04 1999-08 1999-08 2000-04 2000-04 2000-04 2000-04 2000-04 2007-09 2002-04 Date 2002-04 Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Country Canada Sudbury (ON) Sudbury (ON) Sudbury (ON) Sudbury (ON) Sudbury (ON) Sudbury (ON) Sudbury (ON) Timmins (ON) Timmins (ON) Timmins (ON) Timmins (ON) Timmins (ON) Manitoulin I (ON) Timmins (ON) Manitoulin I (ON) Chelmsford (ON) Sudbury (ON) Sudbury (ON) Sudbury (ON) Sudbury (ON) Sudbury (ON) Picton (ON) Picton (ON) Picton (ON) Picton (ON) Manitoulin I (ON) Manitoulin I (ON) Manitoulin I (ON) Manitoulin I (ON) Manitoulin I (ON) Manitoulin I (ON) Manitoulin I (ON) Waterton L N P (AB) Manitoulin I (ON) Site (Province or Region) Manitoulin I (ON) Collection‡ GL, JL GL, JL GL, JL GL, JL GL, JL GL, JL GL, JL GL, JL GL, JL GL, JL GL, JL GL, JL JDR, JDS GL, JL JDR, JDS JDS AJR, JDS AJR, JDS AJR, JDS AJR, JDS AJR, JDS JDS JDS JDS JDS JLe, JDS JLe, JDS JB, JLe, SR JB, JLe, SR JB, JLe, SR JB, JLe, SR JB, JLe, SR JDS, MRS STO, JDS Team STO, JDS 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 Voucher 2 169 JDS JDS JDS 348 D. spinosa 349 D. spinosa JDS 344 D. spinosa 347 D. spinosa JDS 343 D. spinosa JDS JDS 342 D. spinosa JDS JDS 341 D. spinosa 345 D. spinosa DbOT20 JDS 340 D. spinosa 346 D. spinosa DbOT20 JDS DbOT20 DbOT20 DbOT20 DbOT20 DbOT20 DbOT20 DbOT20 DbOT20 DbOT20 DbOT20 DbOT20 DbOT20 DbOT20 DbOT20 DbOT20 DbOT20 339 D. spinosa DbOT20 DbOT20 JDS JL 330 D . sp. DbOT20 JDS JL 329 D . sp. DbOT20 338 D. spinosa JL 328 D . sp. DbOT20 337 D. spinosa JL 327 D . sp. DbOT20 JDS JL 326 D . sp. DbOT20 336 D. spinosa JL 325 D . sp. DbOT20 JDS JL 324 D . sp. DbOT20 335 D. spinosa JL 323 D . sp. DbOT20 DbOT20 JDS JL 322 D . sp. 334 D. spinosa JL 321 D . sp. DbOT19 JDS JL 320 D . sp. DbOT19 333 D. spinosa JL 319 D . sp. DbOT19 JDS JL 318 D . sp. DbOT19 DbOT18 332 D. spinosa JDS 317 D . sp. JL JL 316 D . sp. DbOT18 DbOT ID 331 D . sp. Verified JL n Specimen designation 315 D . sp. Identification† 601 601 601 601 601 601 601 601 585 601 601 601 601 601 601 601 584 601 601 560 601 591 601 579 601 589 584 601 601 601 601 601 601 601 COI 601 ITS1 no. basepairs Rose116-08 Rose115-08 Rose114-08 Rose113-08 Rose112-08 Rose111-08 Rose110-08 Rose109-08 Rose108-08 Rose107-08 Rose106-08 Rose105-08 Rose104-08 Rose098-08 Rose097-08 Rose096-08 Rose095-08 Rose084-08 Hygen990-10 Hygen988-10 Hygen986-10 Hygen985-10 Hygen434-10 Hygen433-10 Hygen430-10 Hygen428-10 Hygen427-10 Hygen426-10 Hygen425-10 Vnmb777-09 Pipi190-09 Hygen325-10 Rose564-08 Vnmb781-09 Pipi189-09 Process ID 2005-05 2005-05 2005-05 2005-05 2005-05 2005-05 2005-05 2005-05 2005-05 2005-05 2005-05 2005-05 2005-05 2006-04 2006-04 2006-04 2006-04 2006-04 2009-05 2009-05 2009-05 2009-05 2009-05 2009-05 2009-05 2009-05 2009-05 2009-05 2009-05 2008-09 2008-09 2009-05 1976-05 2008-09 Date 2008-09 Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Country Canada Fort Albany (ON) Fort Albany (ON) Fort Albany (ON) Attawapiskat (ON) Attawapiskat (ON) Attawapiskat (ON) Attawapiskat (ON) Attawapiskat (ON) Thunder Bay (ON) Thunder Bay (ON) Thunder Bay (ON) Thunder Bay (ON) Thunder Bay (ON) Renfrew (ON) Renfrew (ON) Renfrew (ON) Renfrew (ON) Renfrew (ON) Chelmsford (ON) Chelmsford (ON) Chelmsford (ON) Chelmsford (ON) Manitoulin I (ON) Manitoulin I (ON) Manitoulin I (ON) Manitoulin I (ON) Manitoulin I (ON) Manitoulin I (ON) Sudbury (ON) Timmins (ON) Sudbury (ON) Sudbury (ON) Sudbury (ON) Timmins (ON) Site (Province or Region) Sudbury (ON) Collection‡ MJTB MJTB MJTB MJTB MJTB MJTB MJTB MJTB MJTB, JDS MJTB, JDS MJTB, JDS MJTB, JDS MJTB, JDS JDS, MRS JDS, MRS JDS, MRS JDS, MRS JDS, MRS JDS JDS JDS JDS JDR, JDS JDR, JDS JDR, JDS JDR, JDS JDR, JDS JDR, JDS JDS GL, JL GL, JL JDS JDS GL, JL Team GL, JL 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 Voucher 2 170 JL JL JL JDS JDS JDS JDS JDS JDS JDS JDS JDS 374 D . sp. 375 D . sp. 376 D. californica 377 D. californica 378 D. californica 379 D. californica 380 D. californica 381 D. californica 382 D. californica 383 D. californica 384 D. radicum JDS 365 D. spinosa JL JDS 364 D. spinosa 373 D . sp. JDS 363 D. spinosa 372 D . sp. JDS 362 D. spinosa JL JDS 361 D. spinosa 371 D . sp. JDS 360 D. spinosa JL JL 359 D . sp. 370 D . sp. JDS 358 D. spinosa JDS JDS 357 D. spinosa 369 D. spinosa JDS 356 D. spinosa JDS JDS 355 D. spinosa 368 D. spinosa JDS 353 D. spinosa JDS JDS 353 D. spinosa 367 D. spinosa JDS 352 D. spinosa JDS JDS 351 D. spinosa 366 D. spinosa Verified JDS n Specimen designation 350 D. spinosa Identification† DbOT23 DbOT22 DbOT22 DbOT22 DbOT22 DbOT22 DbOT22 DbOT22 DbOT22 DbOT21 DbOT21 DbOT21 DbOT21 DbOT21 DbOT21 DbOT21 DbOT21 DbOT21 DbOT21 DbOT21 DbOT21 DbOT21 DbOT21 DbOT21 DbOT21 DbOT20 DbOT20 DbOT20 DbOT20 DbOT20 DbOT20 DbOT20 DbOT20 DbOT20 DbOT20 DbOT ID 601 601 601 601 601 601 601 601 601 601 601 601 601 601 601 601 601 601 601 601 601 601 601 601 601 601 601 600 601 601 601 585 589 601 COI 601 ITS1 no. basepairs Rose179-08 Rose524-08 Rose523-08 Rose521-08 Rose520-08 Rose519-08 Rose518-08 Rose516-08 Rose515-08 Rose611-08 Rose610-08 Rose609-08 Rose567-08 Rose566-08 Rose565-08 Rose143-08 Rose142-08 Rose141-08 Rose140-08 Rose139-08 Rose138-08 Rose137-08 Rose136-08 Rose135-08 Rose134-08 Vnmb785-09 Rose149-08 Rose133-08 Rose132-08 Rose130-08 Rose126-08 Rose125-08 Rose124-08 Rose118-08 Rose117-08 Process ID 2005-05 1993-02 1993-02 1993-02 1993-02 1993-02 1969-08 1969-08 1969-08 2007-05 2007-05 2007-05 2007-05 2007-05 2007-05 2007-05 2007-05 2007-05 2007-05 2007-05 2007-05 2007-05 2007-05 2007-05 2007-05 2008-09 1999-09 2006-04 2006-04 2006-04 2006-04 2006-04 2006-04 2005-05 Date 2005-05 Canada USA USA USA USA USA USA USA USA Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Country Canada Fort Albany (ON) Davis (CA) Davis (CA) Davis (CA) Davis (CA) Davis (CA) San Diego C (CA) San Diego C (CA) San Diego C (CA) Waterton L N P (AB) Waterton L N P (AB) Waterton L N P (AB) Waterton L N P (AB) Waterton L N P (AB) Waterton L N P (AB) Waterton L N P (AB) Waterton L N P (AB) Waterton L N P (AB) Waterton L N P (AB) Waterton L N P (AB) Waterton L N P (AB) Waterton L N P (AB) Waterton L N P (AB) Waterton L N P (AB) Waterton L N P (AB) Barber`s Bay (ON) Cypress Hills P P (SK) Kanata (ON) Kanata (ON) Renfrew (ON) Renfrew (ON) Renfrew (ON) Renfrew (ON) Fort Albany (ON) Site (Province or Region) Fort Albany (ON) Collection‡ MJTB RGL, JDS RGL, JDS RGL, JDS RGL, JDS RGL, JDS FGA FGA FGA JDS, MRS JDS, MRS JDS, MRS JDS, MRS JDS, MRS JDS, MRS JDS, MRS JDS, MRS JDS, MRS JDS, MRS JDS, MRS JDS, MRS JDS, MRS JDS, MRS JDS, MRS JDS, MRS GL, JL JDS, MRS JDS, MRS JDS, MRS JDS, MRS JDS, MRS JDS, MRS JDS, MRS MJTB Team MJTB 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 Voucher 1 171 JL JL JL JL JL JL JL JL JL JL JL JL 409 P . sp. 410 P . sp. 411 P . sp. 412 P . sp. 413 P . sp. 414 P . sp. 415 P . sp. 416 P . sp. 417 P . sp. 418 P . sp. 419 P . sp. JL 400 D . sp. JL JL 399 D . sp. 408 P . sp. JL 398 D . sp. 407 P . sp. JL 397 D . sp. ADR JDS 396 D. radicum 406 P. pirata JL 395 D . sp. ADR JL 394 D . sp. 405 P. pirata JL 393 D . sp. ADR JL 392 D . sp. 404 P. arefactus JL 391 D . sp. ADR JL 390 D . sp. 403 P. arefactus JL 389 D . sp. JDS JDS 388 D. radicum 402 D . sp. JDS 387 D. radicum JL JDS 386 D. radicum 401 D . sp. Verified JDS n Specimen designation 385 D. radicum Identification† DbOT26 DbOT26 DbOT26 DbOT26 DbOT26 DbOT26 DbOT26 DbOT26 DbOT26 DbOT26 DbOT26 DbOT26 DbOT26 DbOT26 DbOT26 DbOT25 DbOT25 DbOT24 DbOT24 DbOT24 DbOT24 DbOT24 DbOT24 DbOT24 DbOT23 DbOT23 DbOT23 DbOT23 DbOT23 DbOT23 DbOT23 DbOT23 DbOT23 DbOT23 DbOT23 DbOT ID 601 601 601 601 601 601 590 601 601 601 601 601 601 367 365 599 599 601 601 601 601 601 601 601 601 601 601 601 601 601 601 601 601 601 COI 601 705 705 ITS1 no. basepairs Perna229-09 Perna227-09 Perna182-09 Perna133-09 Perna131-09 Perna129-09 Perna082-09 Hygen438-10 Hygen437-10 Hygen435-10 Hygen334-10 Hygen332-10 Hygen331-10 Pipi246-09 Perna028-09 Perna008-09 Perna007-09 Rose557-08 Rose706-09 Rose705-09 Rose704-09 Rose702-09 Rose701-09 Rose087-08 Hygen364-10 Hygen363-10 Rose698-09 Rose696-09 Rose694-09 Rose693-09 Rose691-09 Rose183-08 Rose182-08 Rose181-08 Rose180-08 Process ID 2002-05 2002-05 1999-09 2002-05 2002-05 2002-05 2002-05 2009-05 2009-05 2009-05 2009-05 2009-05 2009-04 1978-05 1976-05 1967-04 1967-04 2000-06 2003-05 2003-05 2003-05 2003-05 2003-05 2003-05 2009-05 2009-05 2005-05 2005-05 2005-05 2005-05 2005-05 2005-05 2005-05 2005-05 Date 2005-05 Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada USA USA Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Country Canada Timmins (ON) Timmins (ON) Liebenthal (SK) Lethbridge (AB) Timmins (ON) Timmins (ON) Timmins (ON) Sudbury (ON) Sudbury (ON) Sudbury (ON) Sudbury (ON) Sudbury (ON) Renfrew (ON) Manitoulin I (ON) Manitoulin I (ON) Yolo C (CA) Yolo C (CA) Renfrew (ON) Sceptre (SK) Sceptre (SK) Sceptre (SK) Sceptre (SK) Sceptre (SK) Great Sand H (SK) Chelmsford (ON) Chelmsford (ON) Fort Albany (ON) Fort Albany (ON) Fort Albany (ON) Fort Albany (ON) Fort Albany (ON) Fort Albany (ON) Fort Albany (ON) Fort Albany (ON) Site (Province or Region) Fort Albany (ON) Collection‡ JDS JDS JDS, MRS JDS JDS JDS JDS JDS JDS JDS JDS JDS MRS, JDS JDS RGL, JDS CD CD JDS JDS, MRS JDS, MRS JDS, MRS JDS, MRS JDS, MRS JDS, MRS JL JL MJTB MJTB MJTB MJTB MJTB MJTB MJTB MJTB Team MJTB 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 2 2 2 2 2 1 2 2 2 2 2 2 2 1 1 1 Voucher 1 172 JL JL JL JL JL JL JL JL JL JL JL JL 444 P . sp. 445 P . sp. 446 P . sp. 447 P . sp. 448 P . sp. 449 P . sp. 450 P . sp. 451 P . sp. 452 P . sp. 453 P . sp. 453 P . sp. JL 435 P . sp. JL ADR 434 P. pirata 443 P . sp. JL 433 P . sp. 442 P . sp. JL 432 P . sp. JL JL 431 P . sp. 441 P . sp. JL 430 P . sp. JL JL 429 P . sp. JL JL 428 P . sp. 440 P . sp. JL 427 P . sp. 439 P . sp. JL 426 P . sp. JL JL 425 P . sp. 438 P . sp. JL 424 P . sp. JL JL 423 P . sp. JL JL 422 P . sp. 437 P . sp. JL 421 P . sp. 436 P . sp. Verified JL n Specimen designation 420 P . sp. Identification† DbOT27 DbOT27 DbOT27 DbOT27 DbOT27 DbOT27 DbOT27 DbOT27 DbOT27 DbOT27 DbOT27 DbOT27 DbOT27 DbOT27 DbOT27 DbOT27 DbOT27 DbOT27 DbOT27 DbOT27 DbOT27 DbOT26 DbOT26 DbOT26 DbOT26 DbOT26 DbOT26 DbOT26 DbOT26 DbOT26 DbOT26 DbOT26 DbOT26 DbOT26 DbOT26 DbOT ID 601 601 601 601 601 502 601 601 556 601 601 601 601 601 601 601 601 599 599 601 367 599 601 601 601 601 601 575 575 601 526 601 597 477 COI 601 706 706 706 706 ITS1 no. basepairs Pipi517-09 Pipi516-09 Pipi495-09 Pipi494-09 Pipi493-09 Perna267-09 Perna266-09 Perna265-09 Perna264-09 Perna159-09 Perna158-09 Perna157-09 Perna156-09 Perna155-09 Perna154-09 Perna153-09 Perna152-09 Lymmk189-09 Lymmk188-09 Hygen436-10 Pipi238-09 Vnmb786-09 Pipi518-09 Pipi499-09 Pipi497-09 Pipi472-09 Pipi471-09 Perna278-09 Perna274-09 Perna273-09 Perna247-09 Perna237-09 Perna235-09 Perna233-09 Perna230-09 Process ID 2002-05 2002-05 1999-09 1999-09 1999-09 2007-09 2007-09 2007-09 2007-09 2007-09 2007-09 2007-09 2007-05 2007-05 2007-05 2007-05 2007-05 2007-05 2007-05 2009-05 1981-10 2008-09 2002-05 1999-09 1999-09 2002-05 2002-05 2009-04 2002-05 2002-05 2002-05 2002-05 2002-05 2002-05 Date 2002-05 Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Country Canada Dryden (ON) Dryden (ON) Liebenthal (SK) Liebenthal (SK) Liebenthal (SK) Waterton L N P (AB) Waterton L N P (AB) Waterton L N P (AB) Waterton L N P (AB) Waterton L N P (AB) Waterton L N P (AB) Waterton L N P (AB) Waterton L N P (AB) Waterton L N P (AB) Waterton L N P (AB) Waterton L N P (AB) Waterton L N P (AB) Waterton L N P (AB) Waterton L N P (AB) Sudbury (ON) Macklin (SK) Barber`s Bay (ON) Dryden (ON) Liebenthal (SK) Liebenthal (SK) Timmins (ON) Timmins (ON) Renfrew (ON) Timmins (ON) Timmins (ON) Lethbridge (AB) Timmins (ON) Timmins (ON) Timmins (ON) Site (Province or Region) Timmins (ON) Collection‡ STO, JDS STO, JDS JDS, MRS JDS, MRS JDS, MRS JDS, MRS JDS, MRS JDS, MRS JDS, MRS JDS, MRS JDS, MRS JDS, MRS JDS, MRS JDS, MRS JDS, MRS JDS, MRS JDS, MRS JDS JDS JDS RGL, JDS GL, JL STO, JDS JDS, MRS JDS, MRS JDS JDS MRS, JDS JDS JDS JDS JDS JDS JDS Team JDS 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 Voucher 2 173 JL JL JL JL JL JL JL ADR ADR ADR ADR ADR 479 P . sp. 480 P . sp. 481 P . sp. 482 P . sp. 483 P . sp. 484 P . sp. 485 P. piceus 486 P. piceus 487 P. piceus 488 P. piceus 489 P. piceus JL 470 P . sp. JL JL 469 P . sp. 478 P . sp. JL 468 P . sp. 477 P . sp. JL 467 P . sp. JL JL 466 P . sp. 476 P . sp. JL 465 P . sp. JL JL 464 P . sp. 475 P . sp. JL 463 P . sp. JL JL 462 P . sp. 474 P . sp. JL 461 P . sp. JL JL 460 P . sp. 473 P . sp. JL 459 P . sp. JL JL 458 P . sp. 472 P . sp. JL 457 P . sp. JL JL 456 P . sp. 471 P . sp. Verified JL n Specimen designation 455 P . sp. Identification† DbOT29 DbOT29 DbOT29 DbOT29 DbOT29 DbOT28 DbOT28 DbOT28 DbOT27 DbOT27 DbOT27 DbOT27 DbOT27 DbOT27 DbOT27 DbOT27 DbOT27 DbOT27 DbOT27 DbOT27 DbOT27 DbOT27 DbOT27 DbOT27 DbOT27 DbOT27 DbOT27 DbOT27 DbOT27 DbOT27 DbOT27 DbOT27 DbOT27 DbOT27 DbOT27 DbOT ID 367 367 367 367 365 601 601 601 601 601 601 601 601 601 601 601 601 601 601 601 601 601 601 601 601 601 601 601 601 601 601 601 601 601 COI 601 703 703 703 ITS1 no. basepairs Pipi236-09 Pipi235-09 Pipi233-09 Pipi232-09 Perna022-09 Hygen373-10 Hygen372-10 Hygen371-10 Rose612-08 Rose572-08 Rose571-08 Rose570-08 Rose569-08 Rose568-08 Pipi547-09 Pipi546-09 Pipi545-09 Pipi544-09 Pipi543-09 Pipi542-09 Pipi541-09 Pipi540-09 Pipi531-09 Pipi530-09 Pipi529-09 Pipi528-09 Pipi527-09 Pipi526-09 Pipi525-09 Pipi524-09 Pipi523-09 Pipi522-09 Pipi521-09 Pipi520-09 Pipi519-09 Process ID 1972-03 1972-03 1972-03 1972-03 1972-03 2009-05 2009-05 2009-05 2007-05 2007-05 2007-05 2007-05 2007-05 2007-05 2007-05 2007-05 2007-05 2007-05 2007-05 2007-05 2007-05 2007-05 2007-05 2007-05 2007-05 2007-05 2007-05 2007-05 2007-05 2007-05 2002-05 2002-05 2002-05 2002-05 Date 2002-05 USA USA USA USA USA Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Country Canada Solano C (CA) Solano C (CA) Solano C (CA) Solano C (CA) Solano C (CA) Peachland (BC) Peachland (BC) Peachland (BC) Waterton L N P (AB) Waterton L N P (AB) Waterton L N P (AB) Waterton L N P (AB) Waterton L N P (AB) Waterton L N P (AB) Waterton L N P (AB) Waterton L N P (AB) Waterton L N P (AB) Waterton L N P (AB) Waterton L N P (AB) Waterton L N P (AB) Waterton L N P (AB) Waterton L N P (AB) Waterton L N P (AB) Waterton L N P (AB) Waterton L N P (AB) Waterton L N P (AB) Waterton L N P (AB) Waterton L N P (AB) Waterton L N P (AB) Waterton L N P (AB) Dryden (ON) Dryden (ON) Dryden (ON) Dryden (ON) Site (Province or Region) Dryden (ON) Collection‡ JDS JDS JDS JDS JDS RGL RGL RGL JDS, MRS JDS, MRS JDS, MRS JDS, MRS JDS, MRS JDS, MRS JDS, MRS JDS, MRS JDS, MRS JDS, MRS JDS, MRS JDS, MRS JDS, MRS JDS, MRS JDS, MRS JDS, MRS JDS, MRS JDS, MRS JDS, MRS JDS, MRS JDS, MRS JDS, MRS STO, JDS STO, JDS STO, JDS STO, JDS Team STO, JDS 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 Voucher 2 174 JL JL JL JL JL JL JL JL JL JL JL JL JL 512 P . sp. 513 P . sp. 514 P . sp. 515 P . sp. 516 P . sp. 517 P . sp. 518 P . sp. 519 P . sp. 520 P . sp. 521 P . sp. 522 P . sp. 523 P . sp. 524 P . sp. JL 505 P . sp. JL JL 504 P . sp. 511 P . sp. JL 503 P . sp. JL JL 502 P . sp. 510 P . sp. JL 501 P . sp. JL JL 500 P . sp. 509 P . sp. JL 499 P . sp. JL JL 498 P . sp. 508 P . sp. JL 497 P . sp. JL JL 496 P . sp. 507 P . sp. JL 495 P . sp. JL DbOT30 JL 506 P . sp. DbOT30 ADR DbOT30 DbOT30 DbOT30 DbOT30 DbOT30 DbOT30 DbOT30 DbOT30 DbOT30 DbOT30 DbOT30 DbOT30 DbOT30 DbOT30 DbOT30 DbOT30 DbOT30 DbOT30 DbOT30 DbOT30 DbOT30 DbOT30 DbOT30 DbOT30 DbOT30 DbOT30 DbOT30 DbOT30 DbOT30 DbOT30 DbOT30 DbOT30 ADR ADR DbOT30 Verified ADR DbOT ID 492 "P. weldi (nom . nud .)"§ 493 "P. weldi (nom . nud .)"§ 494 P . sp. n Specimen designation 490 "P. weldi (nom . nud .)"§ 491 "P. weldi (nom . nud .)"§ Identification† 566 601 560 601 601 601 601 601 601 601 601 601 601 599 599 593 593 599 599 599 599 599 599 599 599 599 599 601 601 601 601 367 367 367 COI 365 ITS1 no. basepairs Perna195-09 Perna192-09 Perna191-09 Perna181-09 Perna180-09 Perna178-09 Perna177-09 Perna176-09 Perna175-09 Perna174-09 Perna173-09 Perna169-09 Perna168-09 Perna094-09 Perna093-09 Perna090-09 Perna089-09 Perna056-09 Perna055-09 Perna054-09 Perna053-09 Perna052-09 Perna051-09 Perna050-09 Perna049-09 Perna046-09 Perna045-09 Hygen370-10 Hygen366-10 Hygen295-10 Hygen294-10 Pipi268-09 Pipi264-09 Pipi262-09 Perna035-09 Process ID 2005-05 2005-05 2003-05 2001-08 2001-08 2001-08 1999-10 1999-10 2005-05 2005-05 2005-05 2003-05 2003-05 2001-08 2001-08 1999-10 1999-10 2005-05 2005-05 2005-05 2005-05 2005-05 2005-05 2005-05 2005-05 2003-05 2003-05 2008-09 2008-09 2009-05 2009-05 1981-10 1981-10 1971-08 Date 1981-10 Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Country Canada Thunder Bay (ON) Thunder Bay (ON) Coaldale (AB) Timmins (ON) Timmins (ON) Timmins (ON) Winfield (BC) Winfield (BC) Fort Albany (ON) Fort Albany (ON) Fort Albany (ON) Coaldale (AB) Coaldale (AB) Timmins (ON) Timmins (ON) Winfield (BC) Winfield (BC) Fort Albany (ON) Fort Albany (ON) Fort Albany (ON) Fort Albany (ON) Thunder Bay (ON) Thunder Bay (ON) Thunder Bay (ON) Thunder Bay (ON) Coaldale (AB) Coaldale (AB) Timmins (ON) Timmins (ON) Fort Macleod (AB) Fort Macleod (AB) Lethbridge (AB) Banff (AB) Dawson City (YK) Site (Province or Region) Banff (AB) Collection‡ MJTB, JDS MJTB, JDS JDS, MRS JDS JDS JDS RGL, JDS RGL, JDS MJTB MJTB MJTB JDS, MRS JDS, MRS JDS JDS RGL, JDS RGL, JDS MJTB MJTB MJTB MJTB MJTB, JDS MJTB, JDS MJTB, JDS MJTB, JDS JDS, MRS JDS, MRS GL, JL GL, JL JDS JDS RGL, JDS RGL, JDS RGL, JDS Team RGL, JDS 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 Voucher 1 175 JL JL JL JL JL JL JL JL JL JL JL JL 539 P . sp. 550 P . sp. 551 P . sp. 552 P . sp. 553 P . sp. 553 P . sp. 555 P . sp. 556 P . sp. 557 P . sp. 558 P . sp. 559 P . sp. JL 530 P . sp. JL JL 539 P . sp. 538 P . sp. JL 538 P . sp. 537 P . sp. JL 537 P . sp. JL JL 536 P . sp. 536 P . sp. JL 535 P . sp. JL JL 534 P . sp. 535 P . sp. JL 533 P . sp. JL JL 532 P . sp. 534 P . sp. JL 531 P . sp. JL JL 530 P . sp. 533 P . sp. JL 529 P . sp. JL JL 528 P . sp. 532 P . sp. JL 527 P . sp. JL JL 526 P . sp. 531 P . sp. Verified JL n Specimen designation 525 P . sp. Identification† DbOT30 DbOT30 DbOT30 DbOT30 DbOT30 DbOT30 DbOT30 DbOT30 DbOT30 DbOT30 DbOT30 DbOT30 DbOT30 DbOT30 DbOT30 DbOT30 DbOT30 DbOT30 DbOT30 DbOT30 DbOT30 DbOT30 DbOT30 DbOT30 DbOT30 DbOT30 DbOT30 DbOT30 DbOT30 DbOT30 DbOT30 DbOT30 DbOT30 DbOT30 DbOT30 DbOT ID 601 601 601 601 601 601 601 601 601 601 601 601 601 601 601 601 601 601 601 601 601 601 601 601 601 597 582 597 582 601 601 565 601 557 COI 553 704 704 704 704 704 ITS1 no. basepairs Pipi435-09 Pipi434-09 Pipi433-09 Pipi432-09 Pipi431-09 Pipi430-09 Pipi429-09 Pipi428-09 Pipi427-09 Pipi424-09 Pipi423-09 Pipi422-09 Pipi421-09 Pipi420-09 Pipi419-09 Pipi418-09 Pipi417-09 Pipi416-09 Pipi415-09 Pipi414-09 Pipi412-09 Pipi410-09 Pipi405-09 Pipi386-09 Pipi178-09 Pipi176-09 Pipi175-09 Pipi174-09 Pipi172-09 Pipi039-09 Perna201-09 Perna200-09 Perna198-09 Perna197-09 Perna196-09 Process ID 2002-10 2002-10 2002-10 2002-10 2002-10 2002-10 2002-10 2003-05 2003-05 2003-05 2003-05 2003-05 2003-05 2005-05 2005-05 2005-05 2005-05 2005-05 2005-05 2005-05 2005-05 2005-05 2005-05 2003-05 2008-09 2008-09 2008-09 2008-09 2008-09 2008-09 2005-05 2005-05 2005-05 2005-05 Date 2005-05 Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Country Canada Coaldale (AB) Coaldale (AB) Coaldale (AB) Coaldale (AB) Coaldale (AB) Coaldale (AB) Coaldale (AB) Coaldale (AB) Coaldale (AB) Coaldale (AB) Coaldale (AB) Coaldale (AB) Coaldale (AB) Fort Albany (ON) Fort Albany (ON) Fort Albany (ON) Fort Albany (ON) Fort Albany (ON) Fort Albany (ON) Fort Albany (ON) Thunder Bay (ON) Thunder Bay (ON) Thunder Bay (ON) Pincher Creek (AB) Sudbury (ON) Sudbury (ON) Sudbury (ON) Sudbury (ON) Sudbury (ON) Sudbury (ON) Fort Albany (ON) Fort Albany (ON) Fort Albany (ON) Fort Albany (ON) Site (Province or Region) Thunder Bay (ON) Collection‡ JDS JDS JDS JDS JDS JDS JDS JDS, MRS JDS, MRS JDS, MRS JDS, MRS JDS, MRS JDS, MRS MJTB MJTB MJTB MJTB MJTB MJTB MJTB MJTB, JDS MJTB, JDS MJTB, JDS JDS, MRS GL, JL GL, JL GL, JL GL, JL GL, JL GL, JL MJTB MJTB MJTB MJTB Team MJTB, JDS 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 Voucher 2 176 JL JL JL JL JL JL JL JL JL JL JL JL JL 583 P . sp. 584 P . sp. 585 P . sp. 586 P . sp. 587 P . sp. 588 P . sp. 589 P . sp. 590 P . sp. 591 P . sp. 592 P . sp. 593 P . sp. 594 P . sp. ADR 582 P . sp. ADR JL ADR 573 "P. ashmeadi (nom . nud .)"§ 574 "P. ashmeadi (nom . nud .)"§ 575 "P. cataractans (nom . nud .)"§ 581 P . sp. JL 572 P . sp. JL JL 571 P . sp. 580 P . sp. JL 570 P . sp. JL JL 569 P . sp. JL JL 568 P . sp. 579 P . sp. JL 567 P . sp. 578 P . sp. JL 566 P . sp. JL JL 565 P . sp. 577 P . sp. DbOT32 JL 564 P . sp. JL DbOT32 JL 563 P . sp. 576 P . sp. DbOT32 JL 562 P . sp. DbOT32 DbOT32 DbOT32 DbOT32 DbOT32 DbOT32 DbOT32 DbOT32 DbOT32 DbOT32 DbOT32 DbOT32 DbOT32 DbOT32 DbOT32 DbOT32 DbOT32 DbOT32 DbOT32 DbOT31 DbOT31 DbOT31 DbOT30 DbOT30 DbOT30 DbOT30 DbOT30 DbOT30 DbOT30 DbOT30 DbOT30 JL 561 P . sp. DbOT30 Verified JL DbOT ID n Specimen designation 560 P . sp. Identification† 601 601 601 601 601 601 601 601 601 601 601 601 601 599 599 601 601 601 601 367 367 367 601 601 601 599 601 601 574 601 601 569 601 601 COI 601 699 699 699 ITS1 no. basepairs Perna160-09 Perna151-09 Perna150-09 Perna147-09 Perna146-09 Perna142-09 Perna139-09 Perna138-09 Perna136-09 Perna125-09 Perna124-09 Perna117-09 Perna116-09 Perna077-09 Perna072-09 Hygen367-10 Hygen358-10 Hygen356-10 Hygen311-10 Pipi209-09 Pipi197-09 Pipi195-09 Pipi514-09 Pipi508-09 Perna145-09 Vnmb766-09 Pipi566-09 Pipi565-09 Pipi491-09 Pipi490-09 Pipi482-09 Pipi481-09 Pipi479-09 Pipi478-09 Pipi436-09 Process ID 2008-02 2002-05 2002-05 2002-05 2002-05 2002-05 2002-05 2002-05 2002-05 2004-10 2004-10 2007-05 2007-05 2004-10 2007-05 2008-09 2008-09 2009-05 2009-10 1979-05 1979-05 1979-05 2002-05 2002-05 2002-05 2008-09 2002-10 2002-10 1999-10 1999-10 2001-08 2001-08 2001-08 2001-08 Date 2002-10 Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Country Canada Peachland (BC) Dryden (ON) Dryden (ON) Red Lake (ON) Red Lake (ON) Cochrane (ON) Cochrane (ON) Cochrane (ON) Cochrane (ON) Manitoulin I (ON) Manitoulin I (ON) Coaldale (AB) Coaldale (AB) Manitoulin I (ON) Coaldale (AB) Timmins (ON) Timmins (ON) Chelmsford (ON) Sudbury (ON) Sudbury (ON) Manitoulin I (ON) Manitoulin I (ON) Red Lake (ON) Red Lake (ON) Red Lake (ON) Timmins (ON) Coaldale (AB) Coaldale (AB) Winfield (BC) Winfield (BC) Timmins (ON) Timmins (ON) Timmins (ON) Timmins (ON) Site (Province or Region) Coaldale (AB) Collection‡ JB, RGL, JDS STO, JDS STO, JDS STO, JDS STO, JDS STO, JDS STO, JDS STO, JDS STO, JDS ADR, JDR, JDS ADR, JDR, JDS JDS, MRS JDS, MRS ADR, JDR, JDS JDS, MRS GL, JL GL, JL JDS JDS JDS JDS JDS STO, JDS STO, JDS STO, JDS GL, JL JDS JDS RGL, JDS RGL, JDS JDS JDS JDS JDS Team JDS 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 Voucher 2 177 JL JL JL JL JL JL JL JL JL JL JL JL 619 P . sp. 620 P . sp. 621 P . sp. 622 P . sp. 623 P . sp. 624 P . sp. 625 P . sp. 626 P . sp. 627 P . sp. 628 P . sp. 629 P . sp. JL 610 P . sp. JL JL 609 P . sp. 618 P . sp. JL 608 P . sp. 617 P . sp. JL 607 P . sp. JL JL 606 P . sp. 616 P . sp. JL 605 P . sp. JL JL 604 P . sp. 615 P . sp. JL 603 P . sp. JL JL 602 P . sp. 614 P . sp. JL 601 P . sp. JL JL 600 P . sp. JL JL 599 P . sp. 613 P . sp. JL 598 P . sp. 612 P . sp. JL 597 P . sp. JL JL 596 P . sp. 611 P . sp. Verified JL n Specimen designation 595 P . sp. Identification† DbOT32 DbOT32 DbOT32 DbOT32 DbOT32 DbOT32 DbOT32 DbOT32 DbOT32 DbOT32 DbOT32 DbOT32 DbOT32 DbOT32 DbOT32 DbOT32 DbOT32 DbOT32 DbOT32 DbOT32 DbOT32 DbOT32 DbOT32 DbOT32 DbOT32 DbOT32 DbOT32 DbOT32 DbOT32 DbOT32 DbOT32 DbOT32 DbOT32 DbOT32 DbOT32 DbOT ID 601 601 601 601 601 601 601 601 597 588 582 582 590 601 597 582 582 582 582 584 601 555 593 530 601 555 601 529 601 601 601 601 601 601 COI 601 699 699 699 699 ITS1 no. basepairs Pipi515-09 Pipi513-09 Pipi511-09 Pipi509-09 Pipi507-09 Pipi505-09 Pipi503-09 Pipi500-09 Pipi177-09 Pipi173-09 Pipi171-09 Pipi170-09 Pipi168-09 Pipi166-09 Pipi165-09 Pipi164-09 Pipi163-09 Pipi162-09 Pipi160-09 Perna270-09 Perna269-09 Perna268-09 Perna262-09 Perna260-09 Perna259-09 Perna257-09 Perna226-09 Perna223-09 Perna167-09 Perna166-09 Perna165-09 Perna164-09 Perna163-09 Perna162-09 Perna161-09 Process ID 2002-05 2002-05 2002-05 2002-05 2002-05 2002-05 2002-05 2002-05 2008-09 2008-09 2008-09 2008-09 2008-09 2008-09 2008-09 2008-09 2008-09 2008-09 2008-09 2008-02 2008-02 2008-02 2002-05 2002-05 2002-05 2002-05 2004-10 2004-10 2008-02 2008-02 2008-02 2008-02 2008-02 2008-02 Date 2008-02 Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Country Canada Red Lake (ON) Red Lake (ON) Red Lake (ON) Red Lake (ON) Cochrane (ON) Cochrane (ON) Cochrane (ON) Cochrane (ON) Sudbury (ON) Sudbury (ON) Sudbury (ON) Sudbury (ON) Sudbury (ON) Sudbury (ON) Sudbury (ON) Sudbury (ON) Sudbury (ON) Sudbury (ON) Sudbury (ON) Peachland (BC) Peachland (BC) Peachland (BC) Cochrane (ON) Cochrane (ON) Cochrane (ON) Cochrane (ON) Manitoulin I (ON) Manitoulin I (ON) Peachland (BC) Peachland (BC) Peachland (BC) Peachland (BC) Peachland (BC) Peachland (BC) Site (Province or Region) Peachland (BC) Collection‡ STO, JDS STO, JDS STO, JDS STO, JDS STO, JDS STO, JDS STO, JDS STO, JDS GL, JL GL, JL GL, JL GL, JL GL, JL GL, JL GL, JL GL, JL GL, JL GL, JL GL, JL JB, RGL, JDS JB, RGL, JDS JB, RGL, JDS STO, JDS STO, JDS STO, JDS STO, JDS ADR, JDR, JDS ADR, JDR, JDS JB, RGL, JDS JB, RGL, JDS JB, RGL, JDS JB, RGL, JDS JB, RGL, JDS JB, RGL, JDS Team JB, RGL, JDS 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 Voucher 2 178 DbOT34 DbOT34 ADR ADR JL JL JL JL JL JL JL JL 657 P . sp. 658 P . sp. 659 P . sp. 660 P . sp. 661 P . sp. 662 P . sp. 663 P . sp. 664 P . sp. DbOT34 DbOT34 DbOT34 DbOT34 DbOT34 DbOT34 DbOT34 DbOT34 DbOT34 ADR 653 "P. fusicolus (nom . nud .)"§ 655 "P. fusicolus (nom . nud .)"§ 656 "P. fusicolus (nom . nud .)"§ DbOT33 DbOT33 DbOT33 DbOT33 DbOT34 DbOT33 DbOT33 DbOT34 JL 645 P . sp. DbOT33 ADR JL 644 P . sp. DbOT33 ADR JL 643 P . sp. DbOT33 DbOT34 JL 642 P . sp. DbOT33 ADR JL 641 P . sp. DbOT33 651 "P. fusicolus (nom . nud .)"§ 652 "P. fusicolus (nom . nud .)"§ 653 "P. fusicolus (nom . nud .)"§ JL 640 P . sp. DbOT33 JL JL 639 P . sp. DbOT33 650 P . sp. JL 638 P . sp. DbOT33 DbOT32 JL JL 637 P . sp. 649 P . sp. JL 636 P . sp. DbOT32 JL JL 635 P . sp. DbOT32 648 P . sp. JL 634 P . sp. DbOT32 JL JL 633 P . sp. DbOT32 DbOT32 647 P . sp. JL 632 P . sp. JL JL 631 P . sp. DbOT32 DbOT ID 646 P . sp. Verified JL n Specimen designation 630 P . sp. Identification† 601 601 601 601 601 599 599 599 367 367 367 367 367 599 601 601 537 558 601 584 575 601 601 601 599 601 601 601 599 601 601 601 601 601 COI 601 702 ITS1 no. basepairs Pipi426-09 Pipi425-09 Pipi401-09 Pipi394-09 Pipi390-09 Perna048-09 Perna047-09 Perna041-09 Pipi221-09 Pipi220-09 Pipi219-09 Pipi218-09 Pipi214-09 Perna016-09 Pipi458-09 Pipi455-09 Pipi447-09 Perna285-09 Perna283-09 Perna222-09 Perna218-09 Perna188-09 Perna120-09 Perna115-09 Perna075-09 Hygen316-10 Hygen314-10 Hygen312-10 Vnmb771-09 Pipi559-09 Pipi557-09 Pipi555-09 Pipi553-09 Pipi550-09 Pipi533-09 Process ID 2003-05 2003-05 2002-10 2002-05 2002-05 2003-05 2003-05 2002-05 1979-05 1979-05 1979-05 1979-05 1981-10 1979-05 2007-05 2007-05 1999-09 2002-10 2002-10 2007-05 2003-05 1999-09 2002-10 2003-05 2002-10 2009-05 2009-05 2009-05 2008-09 2008-02 2008-02 2007-05 2007-05 2007-05 Date 2007-05 Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Country Canada Coaldale (AB) Coaldale (AB) Coaldale (AB) Coaldale (AB) Coaldale (AB) Coaldale (AB) Coaldale (AB) Coaldale (AB) Manitoulin I (ON) Manitoulin I (ON) Manitoulin I (ON) Manitoulin I (ON) Macklin (SK) Manitoulin I (ON) Coaldale (AB) Coaldale (AB) Douglas P P (SK) Coaldale (AB) Coaldale (AB) Coaldale (AB) Coaldale (AB) Douglas P P (SK) Coaldale (AB) Coaldale (AB) Coaldale (AB) Fort Macleod (AB) Sudbury (ON) Fort Macleod (AB) Clute (ON) Peachland (BC) Peachland (BC) Peachland (BC) Peachland (BC) Peachland (BC) Site (Province or Region) Waterton L N P (AB) Collection‡ JDS, MRS JDS, MRS BE, JDS JDS JDS JDS, MRS JDS, MRS JDS JDS JDS JDS JDS RGL, JDS JDS JDS, MRS JDS, MRS JDS, MRS JDS JDS JDS, MRS JDS, MRS JDS, MRS JDS JDS, MRS JDS JDS JDS JDS GL, JL JB, RGL, JDS JB, RGL, JDS JB, RGL, JDS JB, RGL, JDS JB, RGL, JDS Team JDS, MRS 2 2 2 2 2 2 2 2 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 Voucher 2 179 JL JL JL JL JL JL JL JL JL JL JL JL JL 687 P . sp. 688 P . sp. 689 P . sp. 690 P . sp. 691 P . sp. 692 P . sp. 693 P . sp. 694 P . sp. 695 P . sp. 696 P . sp. 697 P . sp. 698 P . sp. 699 P . sp. JL 680 P . sp. JL JL 679 P . sp. 686 P . sp. JL 678 P . sp. JL JL 677 P . sp. 685 P . sp. JL 676 P . sp. JL JL 675 P . sp. 684 P . sp. JL 674 P . sp. JL JL 673 P . sp. 683 P . sp. JL 672 P . sp. JL JL 671 P . sp. 682 P . sp. JL 670 P . sp. JL JL 669 P . sp. 681 P . sp. DbOT35 JL DbOT36 DbOT36 DbOT36 DbOT36 DbOT36 DbOT36 DbOT36 DbOT36 DbOT36 DbOT36 DbOT36 DbOT36 DbOT36 DbOT36 DbOT36 DbOT36 DbOT36 DbOT36 DbOT36 DbOT36 DbOT36 DbOT35 DbOT35 DbOT35 DbOT35 DbOT35 DbOT35 DbOT35 DbOT35 DbOT35 DbOT35 DbOT35 DbOT35 ADR ADR DbOT35 Verified ADR DbOT ID 667 "P. fusicolus (nom . nud .)"§ 668 P . sp. n Specimen designation 665 "P. fusicolus (nom . nud .)"§ 666 "P. fusicolus (nom . nud .)"§ Identification† 601 601 601 601 601 601 601 601 601 601 599 599 599 599 599 599 599 599 601 601 601 601 601 601 601 601 576 579 601 601 601 598 599 599 COI 599 706 701 701 ITS1 no. basepairs Perna185-09 Perna111-09 Perna110-09 Perna109-09 Perna108-09 Perna107-09 Perna106-09 Perna105-09 Perna104-09 Perna103-09 Perna064-09 Perna063-09 Perna062-09 Perna061-09 Perna060-09 Perna059-09 Perna058-09 Perna057-09 Hygen368-10 Hygen306-10 Hygen288-10 Pipi444-09 Pipi439-09 Pipi438-09 Pipi437-09 Pipi404-09 Pipi403-09 Pipi398-09 Perna102-09 Perna101-09 Perna100-09 Perna096-09 Perna014-09 Perna013-09 Perna012-09 Process ID 1999-09 1999-09 1999-09 1999-09 1999-09 1999-09 1999-09 1999-09 1999-09 2003-04 1999-09 1999-09 1999-09 1999-09 1999-09 1999-09 1999-09 1999-09 2009-05 2009-04 2009-05 2001-04 2003-04 2003-04 2003-04 2002-10 2002-10 2002-10 2003-04 2003-04 2003-04 2001-04 1977-05 1977-05 Date 1977-05 Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Country Canada Saskatoon (SK) Douglas P P (SK) Douglas P P (SK) Douglas P P (SK) Douglas P P (SK) Saskatoon (SK) Saskatoon (SK) Saskatoon (SK) Saskatoon (SK) Renfrew (ON) Douglas P P (SK) Douglas P P (SK) Douglas P P (SK) Saskatoon (SK) Saskatoon (SK) Saskatoon (SK) Douglas P P (SK) Douglas P P (SK) Waterton L N P (AB) Renfrew (ON) Waterton L N P (AB) Renfrew (ON) Renfrew (ON) Renfrew (ON) Renfrew (ON) Coaldale (AB) Coaldale (AB) Coaldale (AB) Renfrew (ON) Renfrew (ON) Renfrew (ON) Renfrew (ON) Arnprior (ON) Arnprior (ON) Site (Province or Region) Allumette I (QC) Collection‡ JDS, MRS JDS, MRS JDS, MRS JDS, MRS JDS, MRS JDS, MRS JDS, MRS JDS, MRS JDS, MRS JDS JDS, MRS JDS, MRS JDS, MRS JDS, MRS JDS, MRS JDS, MRS JDS, MRS JDS, MRS JDS MRS, JDS JDS JDS JDS JDS JDS BE, JDS BE, JDS BE, JDS JDS JDS JDS JDS JDS JDS Team JDS 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 Voucher 1 180 SR SR SR SR 712 T. magnificus 713 T. magnificus 714 T. chrysochlorus 715 T. chrysochlorus SR JL JL JL JL JL JL JL JL JL JL JL JL 722 T. chrysochlorus 723 T . sp. 724 T . sp. 725 T . sp. 726 T . sp. 727 T . sp. 728 T . sp. 729 T . sp. 730 T . sp. 731 T . sp. 732 T . sp. 733 T . sp. 734 T . sp. SR JL 711 T . sp. 721 T. chrysochlorus JL 710 T . sp. SR JL 709 T . sp. 720 T. chrysochlorus JL 708 T . sp. SR JL 707 T . sp. 719 T. chrysochlorus JL 706 T . sp. SR SR 705 T. flavicoxa 718 T. chrysochlorus SR 704 T. flavicoxa SR JL 703 P . sp. 717 T. chrysochlorus JL 702 P . sp. SR JL 701 P . sp. 716 T. chrysochlorus Verified JL n Specimen designation 700 P . sp. Identification† DbOT40 DbOT40 DbOT40 DbOT40 DbOT40 DbOT40 DbOT40 DbOT40 DbOT40 DbOT40 DbOT40 DbOT40 DbOT40 DbOT40 DbOT40 DbOT40 DbOT40 DbOT40 DbOT40 DbOT40 DbOT40 DbOT39 DbOT39 DbOT38 DbOT38 DbOT38 DbOT38 DbOT38 DbOT38 DbOT37 DbOT37 DbOT36 DbOT36 DbOT36 DbOT36 DbOT ID 381 465 465 381 381 381 307 464 305 464 367 601 367 367 367 318 367 367 367 367 367 367 367 464 464 367 601 367 367 367 367 601 601 601 COI 601 450 450 ITS1 no. basepairs Torna172-10 Torna170-10 Torna168-10 Torna119-10 Torna118-10 Torna117-10 Torna116-10 Torna115-10 Torna024-10 Torna022-10 Hygen398-10 Hygen383-10 Pipi357-09 Pipi345-09 Pipi344-09 Pipi343-09 Pipi342-09 Pipi341-09 Pipi339-09 Pipi338-09 Pipi337-09 Pipi370-09 Pipi369-09 Torna035-10 Torna033-10 Hygen404-10 Hygen402-10 Hygen401-10 Hygen399-10 Pipi366-09 Pipi361-09 Pipi448-09 Perna190-09 Perna189-09 Perna187-09 Process ID 2004-10 2004-10 2004-10 2004-10 2004-10 2004-10 2004-10 2004-10 2004-10 2004-10 2009-10 2009-09 1999-09 1997-05 1997-05 1997-05 1997-05 1999-09 1999-09 1999-09 1999-09 1997-09 1992-10 2000-05 2000-05 2009-05 2009-05 2009-05 2009-05 1998-04 1996-05 1999-09 1999-09 1999-09 Date 1999-09 Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Country Canada Manitoulin I (ON) Manitoulin I (ON) Manitoulin I (ON) Manitoulin I (ON) Manitoulin I (ON) Manitoulin I (ON) Manitoulin I (ON) Manitoulin I (ON) Manitoulin I (ON) Manitoulin I (ON) Sudbury (ON) Deux Rivieres (ON) Saskatoon (SK) Manitoulin I (ON) Manitoulin I (ON) Manitoulin I (ON) Manitoulin I (ON) Douglas P P (SK) Douglas P P (SK) Douglas P P (SK) Douglas P P (SK) Kelowna (BC) (SK) Sudbury (ON) Sudbury (ON) Chelmsford (ON) Chelmsford (ON) Chelmsford (ON) Chelmsford (ON) Chelmsford (ON) Manitoulin I (ON) Douglas P P (SK) Douglas P P (SK) Douglas P P (SK) Site (Province or Region) Saskatoon (SK) Collection‡ ADR, JDR, JDS ADR, JDR, JDS ADR, JDR, JDS ADR, JDR, JDS ADR, JDR, JDS ADR, JDR, JDS ADR, JDR, JDS ADR, JDR, JDS ADR, JDR, JDS ADR, JDR, JDS JDS JDS JDS, MRS SEB, JDS SEB, JDS SEB, JDS SEB, JDS JDS, MRS JDS, MRS JDS, MRS JDS, MRS RGL JDS JLe JLe JL JL JL JL JDS, MSJ JDS JDS, MRS JDS, MRS JDS, MRS Team JDS, MRS 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 1 1 2 2 2 Voucher 2 181 JL JL JL JL JL JL JL JL JL JL JL SR 759 T . sp. 760 T . sp. 761 T . sp. 762 T . sp. 763 T . sp. 764 T . sp. 765 T . sp. 766 T . sp. 767 T . sp. 768 T . sp. 769 T. bedeguaris SR 750 T. chrysochlorus JL JL 749 T. sp. 758 T . sp. JL 748 T . sp. 757 T . sp. JL 747 T . sp. SR JL 746 T . sp. 756 T. chrysochlorus JL 745 T . sp. SR JL 744 T . sp. 755 T. chrysochlorus JL 743 T . sp. SR JL 742 T . sp. 753 T. chrysochlorus JL 741 T . sp. SR JL 740 T . sp. 753 T. chrysochlorus SR 739 T. chrysochlorus SR SR 738 T. chrysochlorus 752 T. chrysochlorus JL 737 T . sp. SR JL 736 T . sp. 751 T. chrysochlorus Verified JL n Specimen designation 735 T . sp. Identification† DbOT44 DbOT43 DbOT43 DbOT43 DbOT43 DbOT43 DbOT43 DbOT43 DbOT43 DbOT43 DbOT43 DbOT43 DbOT43 DbOT43 DbOT43 DbOT43 DbOT42 DbOT42 DbOT42 DbOT42 DbOT41 DbOT41 DbOT41 DbOT41 DbOT41 DbOT41 DbOT41 DbOT41 DbOT41 DbOT41 DbOT41 DbOT41 DbOT40 DbOT40 DbOT40 DbOT ID 364 319 341 367 381 381 381 381 421 464 464 601 367 367 367 367 367 367 367 367 367 601 367 367 367 367 367 381 464 464 367 367 367 465 COI 381 448 382 ITS1 no. basepairs Pipi286-09 Torna204-10 Torna202-10 Torna200-10 Torna183-10 Torna182-10 Torna181-10 Torna180-10 Torna043-10 Torna011-10 Torna010-10 Hygen439-10 Hygen407-10 Pipi353-09 Pipi352-09 Pipi340-09 Pipi351-09 Pipi350-09 Pipi349-09 Pipi347-09 Torna232-10 Torna231-10 Torna228-10 Torna225-10 Torna220-10 Torna216-10 Torna215-10 Torna148-10 Torna146-10 Torna144-10 Pipi359-09 Pipi358-09 Torna198-10 Torna175-10 Torna173-10 Process ID 1998-05 2002-05 2002-05 2002-05 2002-05 2002-05 2002-05 2002-05 2002-05 2007-09 2007-09 2009-05 2009-05 2000-04 1999-08 1999-09 1997-09 1997-09 1997-09 1997-09 2008-01 2008-01 2005-05 2005-05 2005-05 2005-05 2005-05 2005-05 2005-05 2005-05 1998-05 1998-05 2004-10 2004-10 Date 2004-10 Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Country Canada Cochrane (ON) Dryden (ON) Dryden (ON) Dryden (ON) Dryden (ON) Dryden (ON) Dryden (ON) Dryden (ON) Barber`s Bay (ON) Waterton L N P (AB) Waterton L N P (AB) Chelmsford (ON) Timmins (ON) Manitoulin I (ON) Timmins (ON) Douglas P P (SK) Queen Charlotte I (BC) Queen Charlotte I (BC) Queen Charlotte I (BC) Queen Charlotte I (BC) Sudbury (ON) Sudbury (ON) Fort Albany (ON) Fort Albany (ON) Fort Albany (ON) Fort Albany (ON) Fort Albany (ON) Fort Albany (ON) Fort Albany (ON) Fort Albany (ON) Moosonee (ON) Moosonee (ON) Manitoulin I (ON) Manitoulin I (ON) Site (Province or Region) Manitoulin I (ON) Collection‡ RGL, JDS STO, JDS STO, JDS STO, JDS STO, JDS STO, JDS STO, JDS STO, JDS STO, JDS JDS, MRS JDS, MRS JDS ADR, JDS JB, JLe, SR GB, JLe, JDS, JW JDS, MRS JDS JDS JDS JDS AJR, JDS AJR, JDS MJTB MJTB MJTB MJTB MJTB MJTB MJTB MJTB JDS, MSJ JDS, MSJ ADR, JDR, JDS ADR, JDR, JDS Team ADR, JDR, JDS 1 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 1 1 2 2 Voucher 2 182 SR SR SR SR SR 778 T. bedeguaris 779 T. bedeguaris 780 T. bedeguaris 781 T. bedeguaris 782 T. bedeguaris SR SR SR SR SR SR SR SR JL JL JL JL JL JL JL JL JL JL JL 786 T. bedeguaris 787 T. bedeguaris 788 T. bedeguaris 789 T. bedeguaris 790 T. bedeguaris 791 T. bedeguaris 792 T. bedeguaris 793 T. bedeguaris 794 T . sp. 795 T . sp. 796 T . sp. 797 T . sp. 798 T . sp. 799 T . sp. 800 T . sp. 801 T . sp. 802 T . sp. 803 T . sp. 804 T . sp. SR SR 777 T. bedeguaris 785 T. bedeguaris SR 776 T. bedeguaris SR SR 775 T. bedeguaris SR SR 774 T. bedeguaris 783 T. bedeguaris DbOT44 SR 773 T. bedeguaris 784 T. bedeguaris DbOT44 SR 772 T. bedeguaris DbOT44 DbOT44 DbOT44 DbOT44 DbOT44 DbOT44 DbOT44 DbOT44 DbOT44 DbOT44 DbOT44 DbOT44 DbOT44 DbOT44 DbOT44 DbOT44 DbOT44 DbOT44 DbOT44 DbOT44 DbOT44 DbOT44 DbOT44 DbOT44 DbOT44 DbOT44 DbOT44 DbOT44 DbOT44 DbOT44 DbOT44 DbOT44 SR 771 T. bedeguaris DbOT44 Verified SR DbOT ID n Specimen designation 770 T. bedeguaris Identification† 367 367 367 367 367 367 367 601 367 367 367 367 367 367 367 367 367 367 367 367 367 367 367 367 367 367 367 367 367 367 367 367 367 367 COI 367 393 ITS1 no. basepairs Hygen393-10 Hygen392-10 Hygen391-10 Hygen390-10 Hygen389-10 Hygen388-10 Hygen387-10 Hygen386-10 Hygen385-10 Hygen384-10 Hygen381-10 Pipi329-09 Pipi328-09 Pipi327-09 Pipi326-09 Pipi325-09 Pipi323-09 Pipi319-09 Pipi318-09 Pipi311-09 Pipi310-09 Pipi309-09 Pipi308-09 Pipi303-09 Pipi302-09 Pipi301-09 Pipi299-09 Pipi297-09 Pipi296-09 Pipi295-09 Pipi294-09 Pipi291-09 Pipi289-09 Pipi288-09 Pipi287-09 Process ID 2009-04 2009-04 2009-04 2006-05 2006-05 2009-05 2009-05 2009-05 2009-05 2006-05 2009-05 1999-10 1999-10 1999-06 1999-10 1999-10 2000-04 1999-09 1999-09 1997-10 1997-10 1995-10 1995-10 1997-05 1997-05 1997-05 1999-05 1999-05 1997-05 1997-05 1999-09 1999-09 2000-04 2000-04 Date 1998-05 Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Country Canada Picton (ON) Picton (ON) Picton (ON) Coaldale (AB) Coaldale (AB) Coaldale (AB) Coaldale (AB) Coaldale (AB) Coaldale (AB) Coaldale (AB) Sudbury (ON) Kelowna (BC) Kelowna (BC) Chelmsford (ON) Oliver (BC) Kelowna (BC) Sudbury (ON) Cypress Hills P P (SK) Cypress Hills P P (SK) Fort McMurray (AB) Fort McMurray (AB) Victoria (BC) Sooke (BC) Manitoulin I (ON) Manitoulin I (ON) Manitoulin I (ON) H-S-I B J (AB) H-S-I B J (AB) Lethbridge (AB) Lethbridge (AB) Douglas P P (SK) Douglas P P (SK) Manitoulin I (ON) Manitoulin I (ON) Site (Province or Region) South Porcupine (ON) Collection‡ JDS JDS JDS JDS JDS JDS JDS JDS JDS JDS JDS RGL, JDS RGL, JDS JLe, JDS RGL, JDS RGL, JDS JDS JDS, MRS JDS, MRS JDS JDS JDS JDS SEB, JDS SEB, JDS SEB, JDS JDS, MRS JDS, MRS SEB, JDS SEB, JDS JDS, MRS JDS, MRS JB, JLe, SR JB, JLe, SR Team JDS, MSJ 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Voucher 1 183 JL JL JL JL JL JL JL JL JL JL JL JL 829 T . sp. 830 T . sp. 831 T . sp. 832 T . sp. 833 T . sp. 834 T . sp. 835 T . sp. 836 T . sp. 837 T . sp. 838 T . sp. 839 T . sp. JL 820 T . sp. JL JL 819 T . sp. 828 T . sp. JL 818 T . sp. 827 T . sp. JL 817 T . sp. JL JL 816 T . sp. 826 T . sp. JL 815 T . sp. JL JL 814 T . sp. 825 T . sp. JL 813 T . sp. JL JL 812 T . sp. 824 T . sp. JL 811 T . sp. JL JL 810 T . sp. 823 T . sp. JL 809 T . sp. JL JL 808 T . sp. 822 T . sp. JL 807 T . sp. JL JL 806 T . sp. 821 T . sp. Verified JL n Specimen designation 805 T . sp. Identification† DbOT44 DbOT44 DbOT44 DbOT44 DbOT44 DbOT44 DbOT44 DbOT44 DbOT44 DbOT44 DbOT44 DbOT44 DbOT44 DbOT44 DbOT44 DbOT44 DbOT44 DbOT44 DbOT44 DbOT44 DbOT44 DbOT44 DbOT44 DbOT44 DbOT44 DbOT44 DbOT44 DbOT44 DbOT44 DbOT44 DbOT44 DbOT44 DbOT44 DbOT44 DbOT44 DbOT ID 464 464 317 464 464 464 460 464 464 386 464 464 601 601 601 601 599 601 601 601 601 578 582 417 574 599 367 367 367 367 563 367 601 367 COI 601 ITS1 no. basepairs Torna050-10 Torna049-10 Torna038-10 Torna023-10 Torna021-10 Torna020-10 Torna019-10 Torna018-10 Torna017-10 Torna015-10 Torna014-10 Torna008-10 Rose617-08 Rose613-08 Rose580-08 Rose579-08 Rose578-08 Rose577-08 Rose575-08 Rose574-08 Rose573-08 Pipi179-09 Pipi138-09 Pipi134-09 Pipi133-09 Lymmk190-09 Hygen424-10 Hygen423-10 Hygen421-10 Hygen417-10 Hygen409-10 Hygen397-10 Hygen396-10 Hygen395-10 Hygen394-10 Process ID 2007-05 2007-05 2003-05 2004-10 2002-10 2002-10 2002-10 2002-10 2002-10 2003-05 2003-05 2005-05 2007-05 2007-05 2007-05 2007-05 2007-05 2007-05 2007-05 2007-05 2007-05 2008-09 2008-09 2008-09 2008-09 2007-05 2009-05 2009-05 2009-05 2009-05 2009-05 2009-04 2009-04 2009-04 Date 2009-04 Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Country Canada Waterton L N P (AB) Waterton L N P (AB) Sceptre (SK) Manitoulin I (ON) Coaldale (AB) Coaldale (AB) Coaldale (AB) Coaldale (AB) Coaldale (AB) Coaldale (AB) Coaldale (AB) Fort Albany (ON) Waterton L N P (AB) Waterton L N P (AB) Waterton L N P (AB) Waterton L N P (AB) Waterton L N P (AB) Waterton L N P (AB) Waterton L N P (AB) Waterton L N P (AB) Waterton L N P (AB) Sudbury (ON) Sudbury (ON) Sudbury (ON) Sudbury (ON) Waterton L N P (AB) Peachland (BC) Peachland (BC) Peachland (BC) Timmins (ON) Timmins (ON) Picton (ON) Picton (ON) Picton (ON) Site (Province or Region) Picton (ON) Collection‡ JDS, MRS JDS, MRS JDS, MRS ADR, JDR, JDS JDS JDS JDS JDS JDS JDS, MRS JDS, MRS MJTB JDS, MRS JDS, MRS JDS, MRS JDS, MRS JDS, MRS JDS, MRS JDS, MRS JDS, MRS JDS, MRS GL, JL GL, JL GL, JL GL, JL JDS RGL RGL RGL ADR, JDS ADR, JDS JDS JDS JDS Team JDS 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 Voucher 2 184 JL JL JL JL JL JL JL JL JL JL JL JL 864 T . sp. 865 T . sp. 866 T . sp. 867 T . sp. 868 T . sp. 869 T . sp. 870 T . sp. 871 T . sp. 872 T . sp. 873 T . sp. 874 T . sp. JL 855 T . sp. JL JL 853 T . sp. 863 T . sp. JL 853 T . sp. 862 T . sp. JL 852 T . sp. JL JL 851 T . sp. 861 T . sp. JL 850 T . sp. JL JL 849 T . sp. 860 T . sp. JL 848 T . sp. JL JL 847 T . sp. 859 T . sp. JL 846 T . sp. JL JL 845 T . sp. 858 T . sp. JL 844 T . sp. JL JL 843 T . sp. 857 T . sp. JL 842 T . sp. JL JL 841 T . sp. 856 T . sp. Verified JL n Specimen designation 840 T . sp. Identification† DbOT44 DbOT44 DbOT44 DbOT44 DbOT44 DbOT44 DbOT44 DbOT44 DbOT44 DbOT44 DbOT44 DbOT44 DbOT44 DbOT44 DbOT44 DbOT44 DbOT44 DbOT44 DbOT44 DbOT44 DbOT44 DbOT44 DbOT44 DbOT44 DbOT44 DbOT44 DbOT44 DbOT44 DbOT44 DbOT44 DbOT44 DbOT44 DbOT44 DbOT44 DbOT44 DbOT ID 381 381 464 464 452 453 381 464 464 464 386 365 396 464 339 464 464 464 464 464 396 464 464 464 464 464 464 464 464 464 464 464 464 464 COI 464 ITS1 no. basepairs Torna110-10 Torna109-10 Torna108-10 Torna107-10 Torna105-10 Torna104-10 Torna103-10 Torna097-10 Torna095-10 Torna094-10 Torna093-10 Torna091-10 Torna090-10 Torna089-10 Torna082-10 Torna081-10 Torna079-10 Torna076-10 Torna075-10 Torna074-10 Torna072-10 Torna071-10 Torna070-10 Torna069-10 Torna068-10 Torna067-10 Torna066-10 Torna065-10 Torna060-10 Torna056-10 Torna055-10 Torna053-10 Torna053-10 Torna052-10 Torna051-10 Process ID 2007-09 2007-09 2007-09 2007-09 2003-05 2003-05 2009-05 2005-05 2004-10 2004-10 2002-10 2002-10 2002-10 2002-10 2003-05 2003-05 2005-05 2005-05 2005-05 2005-05 2007-05 2007-05 2007-05 2007-05 2007-05 2007-05 2007-05 2007-05 2005-05 2007-05 2007-05 2007-05 2007-05 2007-05 Date 2007-05 Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Country Canada Coaldale (AB) Coaldale (AB) Coaldale (AB) Coaldale (AB) Coaldale (AB) Coaldale (AB) Sudbury (ON) Thunder Bay (ON) Manitoulin I (ON) Manitoulin I (ON) Coaldale (AB) Coaldale (AB) Coaldale (AB) Coaldale (AB) Coaldale (AB) Coaldale (AB) Fort Albany (ON) Fort Albany (ON) Fort Albany (ON) Fort Albany (ON) Peachland (BC) Peachland (BC) Peachland (BC) Peachland (BC) Peachland (BC) Peachland (BC) Peachland (BC) Peachland (BC) Fort Albany (ON) Waterton L N P (AB) Waterton L N P (AB) Waterton L N P (AB) Waterton L N P (AB) Waterton L N P (AB) Site (Province or Region) Waterton L N P (AB) Collection‡ JDS, MRS JDS, MRS JDS, MRS JDS, MRS JDS, MRS JDS, MRS JDS MJTB, JDS ADR, JDR, JDS ADR, JDR, JDS JDS JDS JDS JDS JDS, MRS JDS, MRS MJTB MJTB MJTB MJTB RGL, JDS RGL, JDS RGL, JDS RGL, JDS RGL, JDS RGL, JDS RGL, JDS RGL, JDS MJTB JDS, MRS JDS, MRS JDS, MRS JDS, MRS JDS, MRS Team JDS, MRS 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 Voucher 2 185 JL JL JL JL JL JL JL JL JL JL JL JL 899 T . sp. 900 T . sp. 901 T . sp. 902 T . sp. 903 T . sp. 904 T . sp. 905 T . sp. 906 T . sp. 907 T . sp. 908 T . sp. 909 T . sp. JL 890 T . sp. JL JL 889 T . sp. 898 T . sp. JL 888 T . sp. 897 T . sp. JL 887 T . sp. JL JL 886 T . sp. 896 T . sp. JL 885 T . sp. JL JL 884 T . sp. 895 T . sp. JL 883 T . sp. JL JL 882 T . sp. 894 T . sp. JL 881 T . sp. JL JL 880 T . sp. 893 T . sp. JL 879 T . sp. JL JL 878 T . sp. 892 T . sp. JL 877 T . sp. JL JL 876 T . sp. 891 T . sp. Verified JL n Specimen designation 875 T . sp. Identification† DbOT44 DbOT44 DbOT44 DbOT44 DbOT44 DbOT44 DbOT44 DbOT44 DbOT44 DbOT44 DbOT44 DbOT44 DbOT44 DbOT44 DbOT44 DbOT44 DbOT44 DbOT44 DbOT44 DbOT44 DbOT44 DbOT44 DbOT44 DbOT44 DbOT44 DbOT44 DbOT44 DbOT44 DbOT44 DbOT44 DbOT44 DbOT44 DbOT44 DbOT44 DbOT44 DbOT ID 352 367 367 367 465 381 465 381 381 381 381 464 464 464 464 381 381 381 381 464 464 464 437 381 381 381 381 464 464 464 464 464 464 464 COI 381 ITS1 no. basepairs Torna196-10 Torna195-10 Torna193-10 Torna192-10 Torna184-10 Torna174-10 Torna169-10 Torna167-10 Torna166-10 Torna165-10 Torna164-10 Torna163-10 Torna162-10 Torna161-10 Torna160-10 Torna159-10 Torna158-10 Torna157-10 Torna156-10 Torna155-10 Torna153-10 Torna153-10 Torna152-10 Torna143-10 Torna142-10 Torna141-10 Torna140-10 Torna139-10 Torna138-10 Torna137-10 Torna136-10 Torna114-10 Torna113-10 Torna112-10 Torna111-10 Process ID 2007-05 2007-05 2007-05 2007-05 2007-05 2004-10 2004-10 2007-05 2007-05 2007-05 2007-05 2007-05 2007-05 2007-05 2007-05 2007-05 2007-05 2007-05 2007-05 2007-05 2007-05 2007-05 2007-05 2007-05 2007-05 2007-05 2007-05 2007-05 2007-05 2007-05 2007-05 2004-10 2004-10 2004-10 Date 2007-09 Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Country Canada Coaldale (AB) Coaldale (AB) Coaldale (AB) Coaldale (AB) Waterton L N P (AB) Manitoulin I (ON) Manitoulin I (ON) Coaldale (AB) Coaldale (AB) Coaldale (AB) Coaldale (AB) Coaldale (AB) Coaldale (AB) Coaldale (AB) Coaldale (AB) Peachland (BC) Peachland (BC) Peachland (BC) Peachland (BC) Peachland (BC) Peachland (BC) Peachland (BC) Peachland (BC) Waterton L N P (AB) Waterton L N P (AB) Waterton L N P (AB) Waterton L N P (AB) Waterton L N P (AB) Waterton L N P (AB) Waterton L N P (AB) Waterton L N P (AB) Manitoulin I (ON) Manitoulin I (ON) Manitoulin I (ON) Site (Province or Region) Coaldale (AB) Collection‡ JDS, MRS JDS, MRS JDS, MRS JDS, MRS JDS, MRS ADR, JDR, JDS ADR, JDR, JDS JDS, MRS JDS, MRS JDS, MRS JDS, MRS JDS, MRS JDS, MRS JDS, MRS JDS, MRS RGL, JDS RGL, JDS RGL, JDS RGL, JDS RGL, JDS RGL, JDS RGL, JDS RGL, JDS JDS, MRS JDS, MRS JDS, MRS JDS, MRS JDS, MRS JDS, MRS JDS, MRS JDS, MRS ADR, JDR, JDS ADR, JDR, JDS ADR, JDR, JDS Team JDS, MRS 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 Voucher 2 186 SR SR SR SR SR SR JL JL JL JL JL JL 934 T. solitarius 935 T. solitarius 936 T. solitarius 937 T. solitarius 938 T. solitarius 939 T . sp. 940 T . sp. 941 T . sp. 942 T . sp. 943 T . sp. 944 T . sp. JL 925 T . sp. SR JL 924 T . sp. 933 T. bedeguaris JL 923 T . sp. 932 T. bedeguaris JL 922 T . sp. SR JL 921 T . sp. 931 T. bedeguaris JL 920 T . sp. SR JL 919 T . sp. 930 T. bedeguaris JL 918 T . sp. JL JL 917 T . sp. 929 T . sp. JL 916 T . sp. JL JL 915 T . sp. 928 T . sp. JL 914 T . sp. JL JL 913 T . sp. 927 T . sp. JL 912 T . sp. JL JL 911 T . sp. 926 T . sp. Verified JL n Specimen designation 910 T . sp. Identification† DbOT45 DbOT45 DbOT45 DbOT45 DbOT45 DbOT45 DbOT45 DbOT45 DbOT45 DbOT45 DbOT45 DbOT45 DbOT45 DbOT45 DbOT45 DbOT44 DbOT44 DbOT44 DbOT44 DbOT44 DbOT44 DbOT44 DbOT44 DbOT44 DbOT44 DbOT44 DbOT44 DbOT44 DbOT44 DbOT44 DbOT44 DbOT44 DbOT44 DbOT44 DbOT44 DbOT ID 464 464 464 464 464 418 367 367 367 367 367 367 363 367 367 601 367 367 601 367 367 601 367 367 367 362 367 367 367 601 601 601 367 367 COI 367 ITS1 no. basepairs Torna030-10 Torna007-10 Torna006-10 Torna005-10 Torna004-10 Torna002-10 Pipi379-09 Pipi377-09 Pipi376-09 Pipi375-09 Pipi371-09 Pipi324-09 Pipi322-09 Pipi320-09 Pipi304-09 Vnmb779-09 Torna241-10 Torna240-10 Torna239-10 Torna238-10 Torna237-10 Torna236-10 Torna235-10 Torna234-10 Torna233-10 Torna221-10 Torna214-10 Torna213-10 Torna212-10 Torna211-10 Torna210-10 Torna209-10 Torna208-10 Torna207-10 Torna197-10 Process ID 2002-05 2005-05 2005-05 2005-05 2005-05 2005-05 2000-04 1998-05 1998-04 1998-04 1998-04 2000-04 2000-04 1999-11 2000-04 2008-09 2009-04 2009-04 2009-04 2009-04 2009-04 2009-04 2009-04 2007-05 2007-05 2005-05 2007-05 2007-05 2007-05 2007-05 2007-05 2007-05 2007-05 2007-05 Date 2007-05 Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Country Canada Timmins (ON) Fort Albany (ON) Fort Albany (ON) Fort Albany (ON) Fort Albany (ON) Fort Albany (ON) Sudbury (ON) Timmins (ON) Manitoulin I (ON) Chelmsford (ON) Chelmsford (ON) Sudbury (ON) Sudbury (ON) Manitoulin I (ON) Manitoulin I (ON) Timmins (ON) Picton (ON) Picton (ON) Picton (ON) Picton (ON) Picton (ON) Picton (ON) Picton (ON) Peachland (BC) Peachland (BC) Fort Albany (ON) Waterton L N P (AB) Waterton L N P (AB) Waterton L N P (AB) Waterton L N P (AB) Waterton L N P (AB) Waterton L N P (AB) Waterton L N P (AB) Waterton L N P (AB) Site (Province or Region) Coaldale (AB) Collection‡ JDS MJTB MJTB MJTB MJTB MJTB JDS JDS, MSJ JDS, MSJ JDS, MSJ JDS, MSJ JDS JDS JLe, JDS JB, JLe, SR GL, JL JDS JDS JDS JDS JDS JDS JDS RGL, JDS RGL, JDS MJTB JDS, MRS JDS, MRS JDS, MRS JDS, MRS JDS, MRS JDS, MRS JDS, MRS JDS, MRS Team JDS, MRS 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 Voucher 2 187 JL JL JL JL JL JL JL JL SR SR SR SR 969 T . sp. 970 T . sp. 971 T . sp. 972 T . sp. 973 T . sp. 974 T . sp. 975 T . sp. 976 T. bicoloratus 977 T. bicoloratus 978 T. bicoloratus 979 T. bicoloratus JL 960 T . sp. JL JL 959 T . sp. 968 T . sp. JL 958 T . sp. 967 T . sp. JL 957 T . sp. JL JL 956 T . sp. JL JL 955 T . sp. 966 T . sp. JL 953 T . sp. 965 T . sp. JL 953 T . sp. JL SR 952 T. solitarius 964 T . sp. SR 951 T. bedeguaris JL JL 950 T . sp. 963 T . sp. JL 949 T . sp. JL JL 948 T . sp. 962 T . sp. JL 947 T . sp. JL JL 946 T . sp. 961 T . sp. Verified JL n Specimen designation 945 T . sp. Identification† DbOT48 DbOT47 DbOT47 DbOT47 DbOT46 DbOT46 DbOT46 DbOT46 DbOT46 DbOT45 DbOT45 DbOT45 DbOT45 DbOT45 DbOT45 DbOT45 DbOT45 DbOT45 DbOT45 DbOT45 DbOT45 DbOT45 DbOT45 DbOT45 DbOT45 DbOT45 DbOT45 DbOT45 DbOT45 DbOT45 DbOT45 DbOT45 DbOT45 DbOT45 DbOT45 DbOT ID 367 367 367 367 381 381 464 464 460 282 381 381 381 465 465 465 601 593 601 601 367 381 381 447 464 464 464 367 367 465 464 447 464 464 COI 464 378 378 378 ITS1 no. basepairs Pipi332-09 Pipi335-09 Pipi331-09 Pipi330-09 Torna151-10 Torna149-10 Torna145-10 Torna063-10 Torna059-10 Torna206-10 Torna190-10 Torna189-10 Torna188-10 Torna187-10 Torna186-10 Torna185-10 Rose616-08 Rose615-08 Rose614-08 Rose576-08 Hygen413-10 Torna127-10 Torna126-10 Torna100-10 Torna080-10 Torna078-10 Torna003-10 Pipi374-09 Pipi306-09 Torna179-10 Torna147-10 Torna125-10 Torna077-10 Torna073-10 Torna032-10 Process ID 1997-04 1999-10 1997-04 1999-10 2005-05 2005-05 2005-05 2005-05 2005-05 2007-05 2007-05 2007-05 2007-05 2007-05 2007-05 2007-05 2007-05 2007-05 2007-05 2007-05 2009-05 2002-05 2002-05 2005-05 2005-05 2005-05 2005-05 1998-04 2000-04 2002-05 2005-05 2002-05 2005-05 2005-05 Date 2002-05 Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Country Canada Kelowna (BC) Kelowna (BC) Kelowna (BC) Kelowna (BC) Fort Albany (ON) Fort Albany (ON) Fort Albany (ON) Fort Albany (ON) Fort Albany (ON) Waterton L N P (AB) Waterton L N P (AB) Waterton L N P (AB) Waterton L N P (AB) Waterton L N P (AB) Waterton L N P (AB) Waterton L N P (AB) Waterton L N P (AB) Waterton L N P (AB) Waterton L N P (AB) Waterton L N P (AB) Fort Macleod (AB) Timmins (ON) Timmins (ON) Thunder Bay (ON) Thunder Bay (ON) Fort Albany (ON) Fort Albany (ON) Chelmsford (ON) Manitoulin I (ON) Timmins (ON) Fort Albany (ON) Timmins (ON) Fort Albany (ON) Fort Albany (ON) Site (Province or Region) Timmins (ON) Collection‡ RGL RGL, JDS RGL RGL, JDS MJTB MJTB MJTB MJTB MJTB JDS, MRS JDS, MRS JDS, MRS JDS, MRS JDS, MRS JDS, MRS JDS, MRS JDS, MRS JDS, MRS JDS, MRS JDS, MRS JDS JDS JDS MJTB, JDS MJTB, JDS MJTB MJTB JDS, MSJ JB, JLe, SR JDS MJTB JDS MJTB MJTB Team JDS 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 2 2 2 2 2 Voucher 2 188 JL JL JL JL JL 988 Eurytomidae 989 Eurytomidae 990 Eurytomidae 991 Eurytomidae 992 Eurytomidae JL JL JL JL JL JL JL JL JL JL JL JL JL JL JL JL JL JL JL 996 Eurytomidae 997 Eurytomidae 998 Eurytomidae 999 Eurytomidae 1000 Eurytomidae 1001 Eurytomidae 1002 Eurytomidae 1003 Eurytomidae 1004 Eurytomidae 1005 Eurytomidae 1006 Eurytomidae 1007 Eurytomidae 1008 Eurytomidae 1009 Eurytomidae 1010 Eurytomidae 1011 Eurytomidae 1012 Eurytomidae 1013 Eurytomidae 1014 Eurytomidae JL JL 987 Eurytomidae 995 Eurytomidae JL 986 Eurytomidae JL JL 985 Eurytomidae JL JL 984 Eurytomidae 993 Eurytomidae DbOT50 JL 983 Eupelmidae 994 Eurytomidae DbOT50 JL 982 Eupelmidae DbOT50 DbOT50 DbOT50 DbOT50 DbOT50 DbOT50 DbOT50 DbOT50 DbOT50 DbOT50 DbOT50 DbOT50 DbOT50 DbOT50 DbOT50 DbOT50 DbOT50 DbOT50 DbOT50 DbOT50 DbOT50 DbOT50 DbOT50 DbOT50 DbOT50 DbOT50 DbOT50 DbOT50 DbOT50 DbOT49 DbOT49 DbOT49 JL 981 Eupelmidae DbOT48 Verified SR DbOT ID n Specimen designation 980 T. bicoloratus Identification† 600 600 600 601 601 601 601 601 601 601 Pipi064-09 Pipi062-09 Pipi060-09 Pipi059-09 Pipi057-09 Pipi052-09 Pipi050-09 Pipi048-09 Pipi047-09 Pipi045-09 Pipi040-09 601 Pipi036-09 Pipi035-09 Pipi033-09 Pipi030-09 Pipi028-09 Pipi026-09 Pipi024-09 Pipi016-09 Pipi015-09 Pipi014-09 Pipi012-09 Pipi010-09 Pipi005-09 Pipi004-09 Pipi002-09 Pipi001-09 Hygen490-10 Hygen489-10 Hygen488-10 Hygen458-10 Hygen462-10 Hygen464-10 Pipi334-09 Pipi038-09 ITS1 Process ID 601 601 596 601 579 601 601 601 601 601 601 601 601 601 601 601 601 601 601 601 518 518 518 COI 367 no. basepairs 2008-09 2008-09 2008-09 2008-09 2008-09 2008-09 2008-09 2008-09 2008-09 2008-09 2008-09 2008-09 2008-09 2008-09 2008-09 2008-09 2008-09 2008-09 2008-09 2008-09 2008-09 2008-09 2008-09 2008-09 2008-09 2008-09 2008-09 2008-09 2009-05 2009-05 2009-05 2009-05 2009-05 2009-05 Date 1999-10 Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Country Canada Sudbury (ON) Sudbury (ON) Sudbury (ON) Sudbury (ON) Sudbury (ON) Sudbury (ON) Sudbury (ON) Sudbury (ON) Sudbury (ON) Sudbury (ON) Sudbury (ON) Sudbury (ON) Sudbury (ON) Sudbury (ON) Sudbury (ON) Sudbury (ON) Sudbury (ON) Sudbury (ON) Sudbury (ON) Sudbury (ON) Sudbury (ON) Sudbury (ON) Sudbury (ON) Sudbury (ON) Sudbury (ON) Sudbury (ON) Sudbury (ON) Sudbury (ON) Chelmsford (ON) Timmins (ON) Chelmsford (ON) Fort Macleod (AB) Lethbridge (AB) Lethbridge (AB) Site (Province or Region) Kelowna (BC) Collection‡ GL, JL GL, JL GL, JL GL, JL GL, JL GL, JL GL, JL GL, JL GL, JL GL, JL GL, JL GL, JL GL, JL GL, JL GL, JL GL, JL GL, JL GL, JL GL, JL GL, JL GL, JL GL, JL GL, JL GL, JL GL, JL GL, JL GL, JL GL, JL JDS ADR, JDS JDS JDS JDS JDS Team RGL, JDS 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 Voucher 1 189 JL JL JL JL JL JL JL JL JL JL JL JL JL 1038 Eurytomidae 1039 Eurytomidae 1040 Eurytomidae 1041 Eurytomidae 1042 Eurytomidae 1043 Eurytomidae 1044 Eurytomidae 1045 Eurytomidae 1046 Eurytomidae 1047 Eurytomidae 1048 Eurytomidae 1049 Eurytomidae JL 1030 Eurytomidae 1037 Eurytomidae JL 1029 Eurytomidae JL JL 1028 Eurytomidae 1036 Eurytomidae JL 1027 Eurytomidae JL JL 1026 Eurytomidae 1035 Eurytomidae JL 1025 Eurytomidae JL JL 1024 Eurytomidae 1034 Eurytomidae JL 1023 Eurytomidae JL JL 1022 Eurytomidae 1033 Eurytomidae JL 1021 Eurytomidae JL JL 1020 Eurytomidae 1032 Eurytomidae JL 1019 Eurytomidae JL DbOT51 JL 1018 Eurytomidae 1031 Eurytomidae DbOT51 JL 1017 Eurytomidae DbOT52 DbOT52 DbOT52 DbOT52 DbOT52 DbOT52 DbOT52 DbOT52 DbOT52 DbOT51 DbOT51 DbOT51 DbOT51 DbOT51 DbOT51 DbOT51 DbOT51 DbOT51 DbOT51 DbOT51 DbOT51 DbOT51 DbOT51 DbOT50 DbOT50 DbOT50 DbOT50 DbOT50 DbOT50 DbOT50 DbOT50 DbOT50 JL 1016 Eurytomidae DbOT50 Verified JL DbOT ID n Specimen designation 1015 Eurytomidae Identification† 469 469 469 469 469 469 463 469 565 538 Pipi093-09 Pipi091-09 Pipi081-09 Pipi069-09 Pipi067-09 Pipi055-09 Pipi021-09 Pipi018-09 Pipi007-09 Vnmb780-09 Pipi073-09 586 Pipi061-09 Pipi056-09 Pipi044-09 Pipi043-09 Pipi037-09 Pipi034-09 Pipi031-09 Pipi029-09 Pipi025-09 Pipi022-09 Pipi013-09 Pipi003-09 Hygen494-10 Pipi095-09 Pipi089-09 Pipi088-09 Pipi084-09 Pipi082-09 Pipi079-09 Pipi077-09 Pipi076-09 Pipi072-09 Pipi070-09 Pipi065-09 ITS1 Process ID 574 597 469 456 521 574 469 525 517 601 469 589 583 409 600 600 600 600 589 600 579 586 596 COI 586 no. basepairs 2008-09 2008-09 2008-09 2008-09 2008-09 2008-09 2008-09 2008-09 2008-09 2008-09 2008-09 2008-09 2008-09 2008-09 2008-09 2008-09 2008-09 2008-09 2008-09 2008-09 2008-09 2008-09 2008-09 2008-09 2008-09 2008-09 2008-09 2008-09 2008-09 2008-09 2008-09 2008-09 2008-09 2008-09 Date 2008-09 Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Country Canada Sudbury (ON) Sudbury (ON) Sudbury (ON) Sudbury (ON) Sudbury (ON) Sudbury (ON) Sudbury (ON) Sudbury (ON) Sudbury (ON) Timmins (ON) Sudbury (ON) Sudbury (ON) Sudbury (ON) Sudbury (ON) Sudbury (ON) Sudbury (ON) Sudbury (ON) Sudbury (ON) Sudbury (ON) Sudbury (ON) Sudbury (ON) Sudbury (ON) Sudbury (ON) Sudbury (ON) Timmins (ON) Sudbury (ON) Sudbury (ON) Sudbury (ON) Sudbury (ON) Sudbury (ON) Sudbury (ON) Sudbury (ON) Sudbury (ON) Sudbury (ON) Site (Province or Region) Sudbury (ON) Collection‡ GL, JL GL, JL GL, JL GL, JL GL, JL GL, JL GL, JL GL, JL GL, JL GL, JL GL, JL GL, JL GL, JL GL, JL GL, JL GL, JL GL, JL GL, JL GL, JL GL, JL GL, JL GL, JL GL, JL GL, JL GL, JL GL, JL GL, JL GL, JL GL, JL GL, JL GL, JL GL, JL GL, JL GL, JL Team GL, JL 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 Voucher 2 190 JL JL JL JL JL JL JL JL JL JL JL JL JL 1073 Eulophidae 1074 Eulophidae 1075 Eulophidae 1076 Eulophidae 1077 Eulophidae 1078 Pteromalidae 1079 Pteromalidae 1080 Pteromalidae 1081 Pteromalidae 1082 Pteromalidae 1083 Pteromalidae 1084 Pteromalidae JL 1065 Eulophidae 1072 Eulophidae JL 1064 Eulophidae JL JL 1063 Eulophidae 1071 Eulophidae JL 1062 Eulophidae JL JL 1061 Eulophidae 1070 Eulophidae JL 1060 Eulophidae JL JL 1059 Eulophidae 1069 Eulophidae JL 1058 Eulophidae JL JL 1057 Eulophidae 1068 Eulophidae JL 1056 Eulophidae JL JL 1055 Eulophidae 1067 Eulophidae JL 1054 Eurytomidae JL DbOT60 JL 1053 Eurytomidae 1066 Eulophidae DbOT59 JL 1052 Eurytomidae DbOT65 DbOT65 DbOT65 DbOT65 DbOT64 DbOT63 DbOT62 DbOT61 DbOT61 DbOT61 DbOT61 DbOT61 DbOT61 DbOT61 DbOT61 DbOT61 DbOT61 DbOT61 DbOT61 DbOT61 DbOT60 DbOT60 DbOT58 DbOT58 DbOT57 DbOT57 DbOT56 DbOT55 DbOT54 DbOT54 DbOT54 DbOT54 JL 1051 Eurytomidae DbOT53 Verified JL DbOT ID n Specimen designation 1050 Eurytomidae Identification† 469 469 469 459 469 469 469 469 469 469 Pipi156-09 Pipi154-09 Hygen515-10 Hygen499-10 Hygen502-10 Pipi140-09 Hygen506-10 Rose596-08 Rose595-08 Rose594-08 Rose593-08 469 Rose591-08 Rose590-08 Rose589-08 Lymmk185-09 Lymmk184-09 Hygen519-10 Hygen510-10 Hygen508-10 Hygen514-10 Hygen512-10 Hygen511-10 Vnmb767-09 Hygen517-10 Hygen516-10 Pipi141-09 Pipi094-09 Hygen498-10 Hygen497-10 Vnmb788-09 Vnmb787-09 Pipi051-09 Pipi011-09 Hygen486-10 Rose592-08 ITS1 Process ID 469 469 469 469 467 467 601 468 469 601 601 601 601 601 601 596 601 601 601 601 601 601 601 COI 580 no. basepairs 2008-09 2008-09 2009-05 2009-05 2009-05 2008-09 2009-05 2007-05 2007-05 2007-05 2007-05 2007-05 2007-05 2007-05 2007-05 2007-05 2007-05 2009-05 2009-05 2009-05 2009-05 2009-05 2009-05 2008-09 2009-05 2009-05 2008-09 2008-09 2009-05 2009-05 2008-09 2008-09 2008-09 2008-09 Date 2009-05 Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Country Canada Sudbury (ON) Sudbury (ON) Chelmsford (ON) Lethbridge (AB) Waterton L N P (AB) Sudbury (ON) Timmins (ON) Waterton L N P (AB) Waterton L N P (AB) Waterton L N P (AB) Waterton L N P (AB) Waterton L N P (AB) Waterton L N P (AB) Waterton L N P (AB) Waterton L N P (AB) Waterton L N P (AB) Waterton L N P (AB) Manitoulin I (ON) Manitoulin I (ON) Manitoulin I (ON) Manitoulin I (ON) Manitoulin I (ON) Manitoulin I (ON) Clute (ON) Peachland (BC) Peachland (BC) Sudbury (ON) Sudbury (ON) Fort Macleod (AB) Fort Macleod (AB) Barber`s Bay (ON) Barber`s Bay (ON) Sudbury (ON) Sudbury (ON) Site (Province or Region) Chelmsford (ON) Collection‡ GL, JL GL, JL JDS JDS JDS GL, JL ADR, JDS JDS, MRS JDS, MRS JDS, MRS JDS, MRS JDS, MRS JDS, MRS JDS, MRS JDS, MRS JDS JDS JDR, JDS JDR, JDS JDR, JDS JDR, JDS JDR, JDS JDR, JDS GL, JL RGL RGL GL, JL GL, JL JDS JDS GL, JL GL, JL GL, JL GL, JL Team JL 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 Voucher 2 191 JL JL JL JL JL JL JL JL JL JL JL JL JL 1108 Ormyridae 1109 Ormyridae 1110 Ormyridae 1111 Ormyridae 1112 Ormyridae 1113 Ormyridae 1114 Ormyridae 1115 Ormyridae 1116 Ichneumonidae 1117 Ichneumonidae 1118 Ichneumonidae 1119 Ichneumonidae JL 1100 Ormyridae 1107 Ormyridae JL 1099 Ormyridae JL JL 1098 Ormyridae 1106 Ormyridae JL 1097 Ormyridae JL JL 1096 Ormyridae 1105 Ormyridae JL 1095 Ormyridae JL JL 1094 Pteromalidae 1104 Ormyridae JL 1093 Pteromalidae JL JL 1092 Pteromalidae 1103 Ormyridae JL 1091 Pteromalidae JL JL 1090 Pteromalidae 1102 Ormyridae JL 1089 Pteromalidae JL DbOT67 JL 1088 Pteromalidae 1101 Ormyridae DbOT67 JL 1087 Pteromalidae DbOT69 DbOT69 DbOT69 DbOT69 DbOT68 DbOT68 DbOT68 DbOT68 DbOT68 DbOT68 DbOT68 DbOT68 DbOT68 DbOT68 DbOT68 DbOT68 DbOT68 DbOT68 DbOT68 DbOT68 DbOT68 DbOT68 DbOT67 DbOT66 DbOT66 DbOT66 DbOT66 DbOT66 DbOT66 DbOT66 DbOT66 DbOT66 JL 1086 Pteromalidae DbOT65 Verified JL DbOT ID n Specimen designation 1085 Pteromalidae Identification† 597 601 601 601 598 581 601 601 592 601 Pipi120-09 Hygen457-10 Hygen456-10 Hygen446-10 Pipi153-09 Pipi139-09 Pipi131-09 Pipi130-09 Pipi129-09 Pipi128-09 Pipi127-09 600 Hygen477-10 Hygen476-10 Hygen474-10 Hygen472-10 Hygen471-10 Hygen470-10 Hygen469-10 Hygen468-10 Hygen467-10 Hygen465-10 Pipi180-09 Pipi132-09 Hygen475-10 Rose604-08 Rose603-08 Rose601-08 Rose600-08 Rose599-08 Rose598-08 Rose597-08 Lymmk183-09 Lymmk182-09 Rose602-08 Hygen478-10 ITS1 Process ID 601 601 591 601 601 601 601 601 591 591 601 601 601 601 442 445 469 469 469 445 469 467 469 COI 469 no. basepairs 2008-09 2009-05 2009-05 2008-09 2008-09 2008-09 2008-09 2008-09 2008-09 2008-09 2008-09 2009-09 2009-09 2008-09 2008-09 2009-05 2008-09 2008-09 2008-09 2009-04 2009-04 2009-04 2008-09 2008-09 2008-09 2007-05 2007-05 2007-05 2007-05 2007-05 2007-05 2007-05 2007-05 2007-05 Date 2007-05 Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Country Canada Sudbury (ON) Waterton L N P (AB) Waterton L N P (AB) Timmins (ON) Sudbury (ON) Sudbury (ON) Sudbury (ON) Sudbury (ON) Sudbury (ON) Sudbury (ON) Sudbury (ON) Deux Rivieres (ON) Deux Rivieres (ON) Timmins (ON) Timmins (ON) Chelmsford (ON) Timmins (ON) Timmins (ON) Timmins (ON) Renfrew (ON) Renfrew (ON) Renfrew (ON) Sudbury (ON) Sudbury (ON) Timmins (ON) Waterton L N P (AB) Waterton L N P (AB) Waterton L N P (AB) Waterton L N P (AB) Waterton L N P (AB) Waterton L N P (AB) Waterton L N P (AB) Waterton L N P (AB) Waterton L N P (AB) Site (Province or Region) Waterton L N P (AB) Collection‡ GL, JL JDS JDS GL, JL GL, JL GL, JL GL, JL GL, JL GL, JL GL, JL GL, JL JDS JDS GL, JL GL, JL JDS GL, JL GL, JL GL, JL MRS, JDS MRS, JDS MRS, JDS GL, JL GL, JL GL, JL JDS, MRS JDS, MRS JDS, MRS JDS, MRS JDS, MRS JDS, MRS JDS, MRS JDS JDS Team JDS, MRS 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 Voucher 2 192 JL JL JL JL JL JL JL JL JL JL JL JL JL 1143 Ichneumonidae 1144 Ichneumonidae 1145 Ichneumonidae 1146 Ichneumonidae 1147 Ichneumonidae 1148 Ichneumonidae 1149 Ichneumonidae 1150 Ichneumonidae 1151 Ichneumonidae 1152 Ichneumonidae 1153 Ichneumonidae 1154 Ichneumonidae JL 1135 Ichneumonidae 1142 Ichneumonidae JL 1134 Ichneumonidae JL JL 1133 Ichneumonidae 1141 Ichneumonidae JL 1132 Ichneumonidae JL JL 1131 Ichneumonidae 1140 Ichneumonidae JL 1130 Ichneumonidae JL JL 1129 Ichneumonidae 1139 Ichneumonidae JL 1128 Ichneumonidae JL JL 1127 Ichneumonidae 1138 Ichneumonidae JL 1126 Ichneumonidae JL JL 1125 Ichneumonidae 1137 Ichneumonidae JL 1124 Ichneumonidae JL DbOT72 JL 1123 Ichneumonidae 1136 Ichneumonidae DbOT72 JL 1122 Ichneumonidae DbOT72 DbOT72 DbOT72 DbOT72 DbOT72 DbOT72 DbOT72 DbOT72 DbOT72 DbOT72 DbOT72 DbOT72 DbOT72 DbOT72 DbOT72 DbOT72 DbOT72 DbOT72 DbOT72 DbOT72 DbOT72 DbOT72 DbOT71 DbOT71 DbOT71 DbOT70 DbOT70 DbOT69 DbOT69 DbOT69 DbOT69 DbOT69 JL 1121 Ichneumonidae DbOT69 Verified JL DbOT ID n Specimen designation 1120 Ichneumonidae Identification† 601 601 601 601 601 597 597 597 601 576 Pipi110-09 Pipi109-09 Pipi108-09 Pipi107-09 Pipi106-09 Pipi105-09 Pipi104-09 Pipi103-09 Pipi102-09 Pipi101-09 Pipi100-09 601 Pipi098-09 Pipi097-09 Pipi096-09 Hygen450-10 Hygen449-10 Hygen448-10 Hygen445-10 Hygen444-10 Hygen443-10 Hygen442-10 Hygen441-10 Hygen440-10 Hygen455-10 Hygen454-10 Hygen451-10 Hygen453-10 Hygen452-10 Rose628-08 Rose626-08 Rose608-08 Rose606-08 Rose605-08 Pipi121-09 Pipi099-09 ITS1 Process ID 601 601 600 601 601 601 601 601 601 601 601 601 601 601 601 601 601 601 601 601 601 601 601 COI 601 no. basepairs 2008-09 2008-09 2008-09 2008-09 2008-09 2008-09 2008-09 2008-09 2008-09 2008-09 2008-09 2008-09 2008-09 2008-09 2008-09 2009-04 2009-05 2009-05 2009-05 2009-09 2008-09 2009-05 2008-09 2008-09 2009-05 2009-05 2009-04 2009-05 2009-05 2007-05 2007-05 2007-05 2007-05 2007-05 Date 2008-09 Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Country Canada Sudbury (ON) Sudbury (ON) Sudbury (ON) Sudbury (ON) Sudbury (ON) Sudbury (ON) Sudbury (ON) Sudbury (ON) Sudbury (ON) Sudbury (ON) Sudbury (ON) Sudbury (ON) Sudbury (ON) Sudbury (ON) Sudbury (ON) Picton (ON) Coaldale (AB) Coaldale (AB) Peachland (BC) Deux Rivieres (ON) Timmins (ON) Chelmsford (ON) Timmins (ON) Timmins (ON) Manitoulin I (ON) Manitoulin I (ON) Picton (ON) Chelmsford (ON) Chelmsford (ON) Waterton L N P (AB) Waterton L N P (AB) Waterton L N P (AB) Waterton L N P (AB) Waterton L N P (AB) Site (Province or Region) Sudbury (ON) Collection‡ GL, JL GL, JL GL, JL GL, JL GL, JL GL, JL GL, JL GL, JL GL, JL GL, JL GL, JL GL, JL GL, JL GL, JL GL, JL JDS JDS JDS RGL JDS GL, JL JDS GL, JL GL, JL JDR, JDS JDR, JDS JDS JL JL JDS, MRS JDS, MRS JDS, MRS JDS, MRS JDS, MRS Team GL, JL 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 Voucher 2 193 DbOT72 DbOT72 JL JL JL JL JL JL JL JL JL JL JL JL 1157 Ichneumonidae 1158 Ichneumonidae 1159 Ichneumonidae 1160 Ichneumonidae 1161 Ichneumonidae 1162 Ichneumonidae 1163 Ichneumonidae 1164 Ichneumonidae 1165 Ichneumonidae 1166 Ichneumonidae 1167 Ichneumonidae 1168 Ichneumonidae DbOT72 DbOT72 DbOT72 DbOT72 DbOT72 DbOT72 DbOT72 DbOT72 DbOT72 DbOT72 DbOT72 JL 1156 Ichneumonidae DbOT72 Verified JL DbOT ID n Specimen designation 1155 Ichneumonidae Identification† 600 601 595 600 601 601 601 601 584 597 597 599 597 COI 601 ITS1 no. basepairs Pipi126-09 Pipi125-09 Pipi124-09 Pipi123-09 Pipi122-09 Pipi119-09 Pipi118-09 Pipi117-09 Pipi116-09 Pipi115-09 Pipi114-09 Pipi113-09 Pipi112-09 Pipi111-09 Process ID 2008-09 2008-09 2008-09 2008-09 2008-09 2008-09 2008-09 2008-09 2008-09 2008-09 2008-09 2008-09 2008-09 Date 2008-09 Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Canada Country Canada Sudbury (ON) Sudbury (ON) Sudbury (ON) Sudbury (ON) Sudbury (ON) Sudbury (ON) Sudbury (ON) Sudbury (ON) Sudbury (ON) Sudbury (ON) Sudbury (ON) Sudbury (ON) Sudbury (ON) Site (Province or Region) Sudbury (ON) Collection‡ GL, JL GL, JL GL, JL GL, JL GL, JL GL, JL GL, JL GL, JL GL, JL GL, JL GL, JL GL, JL GL, JL Team GL, JL 2 2 2 2 2 2 2 2 2 2 2 2 2 Voucher 2 194 volunteers: TE and GL. curator = JL. JLima collection (University of Guelph): contributors and volunteers = ADR, AW, BE, CD, FGA, GB, JB, JDR, JLe, JS, JW, KNS, MJTB, MRS, MSJ, NS, RGL, RH, RWW, SEB, SG, and STO. curators = AJR, JDS, and SR. JDS reference collection: Collection voucher: acronym of location is as follows: 1 = JDS reference collection and 2 = JLima collection (University of Guelph). JDS = Shorthouse JD, MRS = Shorthouse MR, JS = J Smith, MSJ = St. John Mark, AW = West A, RWW = West RW, and JW = Williams J. STO = Offman ST, SR = Rempel S, ADR = Renelli AD, JDR = Renelli JD, AJR = Ritchie AJ, KNS = Schick KN, NS = Sekita N, SEB = Brooks SE, CD = Dailey C, TE = Elliott T, BE = Evans B, SG = Guclu S, RH = Hyat R, RGL = Lalonde RG, JLe = Leggo J, GL = Lima G, JL = Lima J, Collection team: acronym of names is as follows: FGA = Andrews FG, JB = Babin J, GB = Bagatto G, JB = Bannerman J, MJTB = Bodnar MJT, Waterton L N P = Waterton Lakes National Park, and Yolo C = Yolo County. Smooth Rock F = Smooth Rock Falls, San Diego C = San Diego County, Solano C = Solano County, Niagara F = Niagara Falls, Pacific Rim N P = Pacific Rim National Park, Prince Edward C = Prince Edward County, Queen Charlotte I = Queen Charlotte Island, Douglas P P = Douglas Provincial Park,Great Sand H = Great Sand Hills, H-S-I B J = Head-Smashed-In Buffalo Jump, Mantoulin I = Mantoulin Island, ‡ Collection site: acronym of province and regions are as follows: Allumette I = Allumette Island, Cypress Hills P P = Cypress Hills Provincial Park, § Species names of Ritchie (1984) are considered nomina nuda (nom . nud .). However, those species names are retained in this thesis for comparison. Identiication verified: acronym of names is as follows: JL = Lima J, SR = Rempel S, AJR = Ritchie AJ, JDS = Shorthouse JD. Family identifications: Eulophidae, Eupelmidae, Eurytomidae, Ichneumonidae, Ormyridae, and Pteromalidae identified by JL (n = 188). Specimens of Torymus identified by SR (n = 63) and JL (n = 214). Specimens of Periclistus identified by AJR (n = 26) and JL (n = 275). Specimens of Diplolepis identified by JDS (n = 259) and JL (n = 143). † Specimen designation: acronym of species name is as follows: D . = Diplolepis , P . = Periclistus , and T . = Torymus . 195 Appendix 2. Genome size estimation of Hymenoptera with information on specimen identification. Identification† n DbOT ID Verified Superfamily Family Subfamily Species Apoidea Apidae Apinae DbOT 77 A. mellifera 1 JL Apoidea Apidae Apinae DbOT 77 A. mellifera 2 JL Apoidea Apidae Apinae DbOT 77 A. mellifera 3 JL Apoidea Apidae Apinae DbOT 77 A. mellifera 4 JL Apoidea Apidae Apinae DbOT 77 A. mellifera 5 JL Apoidea Apidae Apinae DbOT 77 A. mellifera 6 JL Apoidea Apidae Apinae DbOT 77 A. mellifera 7 JL Apoidea Apidae Apinae DbOT 78 B. balteatus 8 JL Apoidea Apidae Apinae DbOT 79 B. rufocinctus 9 JL Apoidea Apidae Apinae DbOT 79 B. rufocinctus 10 JL Apoidea Apidae Apinae DbOT 80 B. sylvicola 11 JL Apoidea Apidae Apinae DbOT 80 B. sylvicola 12 JL Apoidea Apidae Apinae DbOT 80 B. sylvicola 13 JL Apoidea Apidae Apinae DbOT 81 B. impatiens 14 JL Apoidea Apidae Apinae DbOT 81 B. impatiens 15 JL Apoidea Apidae Apinae DbOT 81 B. impatiens 16 JL Apoidea Apidae Apinae DbOT 81 B. impatiens 17 JL Apoidea Apidae Apinae DbOT 81 B. impatiens 18 JL Apoidea Apidae Apinae DbOT 81 B. impatiens 19 JL Apoidea Apidae Apinae DbOT 82 M. desponsa 20 JL Apoidea Apidae Apinae DbOT 83 N. perplexa 21 JL Apoidea Apidae Colletinae DbOT 84 H. affinis 22 JL Apoidea Apidae Colletinae DbOT 85 H. modestus 23 JL Apoidea Apidae Colletinae DbOT 86 H. mesillae 24 JL Apoidea Apidae Halictinae DbOT 87 A. virescens 25 JL Apoidea Apidae Halictinae DbOT 88 H. rubicundus 26 JL Apoidea Apidae Halictinae DbOT 91 L. lineatulum 27 JL Apoidea Apidae Halictinae DbOT 91 L. lineatulum 28 JL Apoidea Apidae Halictinae DbOT 91 L. lineatulum 29 JL Apoidea Crabronidae DbOT 92 • R. clavipes 30 JL Apoidea Crabronidae DbOT 92 • R. clavipes 31 JL Apoidea Crabronidae DbOT350 • P. gracilis 32 JL Apoidea Sphecidae DbOT 93 • • 33 JL Apoidea Sphecidae DbOT 94 • S. caementarium 34 JL HYGEN700-10 HYGEN280-10 HYGEN946-10 HYGEN621-10 HYGEN567-10 HYGEN642-10 HYGEN600-10 HYGEN586-10 HYGEN614-10 HYGEN644-10 HYGEN908-10 HYGEN640-10 HYGEN641-10 HYGEN542-10 HYGEN639-10 HYGEN637-10 HYGEN565-10 HYGEN636-10 HYGEN635-10 HYGEN634-10 HYGEN560-10 HYGEN125-10 HYGEN121-10 HYGEN070-10 HYGEN576-10 HYGEN575-10 HYGEN071-10 HYGEN651-10 HYGEN650-10 HYGEN648-10 HYGEN647-10 HYGEN554-10 HYGEN553-10 HYGEN552-10 f f f f f f f f m m f f f f f f f m m f m f f f m m m m m m m f m f Process ID sex size (pg)∆ 0.24 0.24 0.23 0.24 0.24 0.24 0.24 0.43 0.46 0.47 0.45 0.49 0.46 0.51 0.49 0.50 0.50 0.49 0.50 0.57 0.27 0.65 0.67 0.38 0.80 0.70 0.70 0.63 0.68 0.33 0.35 0.29 0.58 1.15 Cytometer§ FACS FACS FACS FACS FACS FACS FACS FACS FACS FACS FACS FACS FACS FACS FACS FACS FACS FACS FACS FACS FACS FACS FACS CyAn FACS FACS FACS FACS FACS FACS FACS CyAn FACS CyAn Genome Flow 196 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 n Verified Superfamily Apoidea JL Ceraphronoidea JL Ceraphronoidea JL Chalcidoidea BBCL Chalcidoidea BBCL Chalcidoidea BBCL Chalcidoidea BBCL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea BBCL Chalcidoidea BBCL Chalcidoidea BBCL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL • • • • • • • • • • • • Encyrtidae Encyrtidae Encyrtidae Encyrtidae Encyrtidae Encyrtidae Encyrtidae Encyrtidae Encyrtidae Encyrtidae Encyrtidae • Encyrtidae Encyrtidae • Encyrtidae • • Chalcididae Encyrtidae • Chalcididae • • Chalcididae • • Chalcididae Encyrtidae • Chalcididae Encyrtidae • Chalcididae • • Chalcididae • • Aphelinidae Encyrtidae • Aphelinidae Encyrtidae • Aphelinidae • • Aphelinidae Encyrtidae • Megaspilidae • • Ceraphronidae Encyrtidae • Sphecidae Identification† Family Subfamily • • • • • • • • • • • • • • • • • • L. dactylopii L. dactylopii L. dactylopii • • • • • • • E. formosa E. formosa E. eremicus E. eremicus • • C. californicus Species DbOT122 DbOT122 DbOT122 DbOT122 DbOT121 DbOT121 DbOT121 DbOT120 DbOT120 DbOT120 DbOT120 DbOT120 DbOT120 DbOT120 DbOT120 DbOT120 DbOT119 DbOT119 • • • DbOT127 DbOT127 DbOT127 DbOT127 DbOT127 DbOT127 DbOT127 DbOT133 DbOT133 • • • • DbOT351 DbOT ID HYGEN785-10 HYGEN766-10 HYGEN765-10 HYGEN764-10 HYGEN709-10 HYGEN708-10 HYGEN707-10 HYGEN782-10 HYGEN781-10 HYGEN774-10 HYGEN768-10 HYGEN784-10 HYGEN783-10 HYGEN779-10 HYGEN778-10 HYGEN767-10 HYGEN780-10 HYGEN775-10 • • • HYGEN813-10 HYGEN812-10 HYGEN794-10 HYGEN793-10 HYGEN740-10 HYGEN733-10 HYGEN687-10 VNMB450-08 VNMB356-08 • • • • HYGEN725-10 m f f f f f f m m m m m m m f f f f f f f f f f m m m m f m m f f f f Process ID sex size (pg)∆ 0.56 0.27 0.42 0.60 0.58 0.39 0.38 0.41 0.44 0.45 0.39 0.40 0.41 0.42 0.56 0.57 0.58 0.30 0.30 0.60 0.63 0.63 0.65 0.63 0.62 0.62 0.64 0.63 0.29 0.30 0.28 0.52 0.53 0.54 0.52 Cytometer§ CyAn CyAn CyAn Quanta Quanta Quanta Quanta CyAn CyAn CyAn CyAn CyAn CyAn CyAn Quanta Quanta Quanta CyAn CyAn CyAn CyAn CyAn CyAn CyAn CyAn CyAn CyAn CyAn CyAn CyAn CyAn CyAn CyAn CyAn CyAn Genome Flow 197 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 n Verified Superfamily Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea BBCL Chalcidoidea BBCL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL • • • • • • • • • • • • Eulophidae Eulophidae Eulophidae Eulophidae Eulophidae Eulophidae Eulophidae Eulophidae Eulophidae Eulophidae Eulophidae • Eulophidae Eulophidae • Eulophidae • • Eulophidae Eulophidae • Eulophidae • • Eulophidae • • Eulophidae Eulophidae • Eulophidae Eulophidae • Eucharitidae • • Encyrtidae Eulophidae • Encyrtidae • • Encyrtidae Eulophidae • Encyrtidae • • Encyrtidae Eulophidae • Encyrtidae • • Encyrtidae Eulophidae • Encyrtidae Identification† Family Subfamily • • • • • • • D. isaea D. isaea • • • • • • • • • • • • • • • • • • • • • • • • • • Species DbOT109 DbOT109 DbOT108 DbOT108 DbOT108 DbOT108 DbOT108 DbOT107 DbOT107 DbOT106 DbOT105 DbOT105 DbOT105 DbOT105 DbOT105 DbOT 61 DbOT 61 DbOT 61 DbOT 60 DbOT 60 DbOT 60 DbOT 58 DbOT 58 DbOT 57 DbOT 56 DbOT 55 • DbOT124 DbOT124 DbOT124 DbOT124 DbOT124 DbOT123 DbOT122 DbOT122 DbOT ID HYGEN932-10 HYGEN931-10 HYGEN901-10 HYGEN900-10 HYGEN899-10 HYGEN898-10 HYGEN572-10 ROSE643-08 ROSE642-08 HYGEN738-10 HYGEN679-10 HYGEN678-10 HYGEN677-10 HYGEN704-10 HYGEN703-10 HYGEN510-10 HYGEN519-10 HYGEN508-10 HYGEN514-10 HYGEN512-10 HYGEN511-10 HYGEN517-10 HYGEN516-10 PIPI141-09 HYGEN498-10 HYGEN497-10 • HYGEN770-10 HYGEN769-10 HYGEN761-10 HYGEN702-10 HYGEN762-10 HYGEN777-10 HYGEN787-10 HYGEN786-10 f f m f m m m m f f f f f f f f f f f f f f m m m m f f f m m m m f f Process ID sex size (pg)∆ 0.53 0.53 0.35 0.29 0.29 0.28 0.28 0.30 0.45 0.43 0.43 0.54 0.55 0.54 0.49 0.48 0.50 0.59 0.60 0.58 0.51 0.50 0.47 0.50 0.50 0.44 0.23 0.23 0.91 0.91 0.88 0.88 0.91 0.92 0.93 Cytometer§ CyAn CyAn CyAn CyAn CyAn CyAn CyAn CyAn CyAn FACS FACS Quanta FACS FACS FACS FACS FACS FACS FACS FACS CyAn CyAn CyAn CyAn CyAn CyAn Quanta Quanta FACS CyAn CyAn CyAn CyAn CyAn CyAn Genome Flow 198 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 n Verified Superfamily Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL • • • • • • • • • • • • Eurytomidae Eurytomidae Eurytomidae Eurytomidae Eurytomidae Eurytomidae Eurytomidae Eurytomidae Eurytomidae Eurytomidae Eurytomidae • Eurytomidae Eurytomidae • Eurytomidae • • Eurytomidae Eurytomidae • Eurytomidae • • Eupelmidae • • Eupelmidae Eurytomidae • Eupelmidae Eurytomidae • Eupelmidae • • Eupelmidae Eurytomidae • Eupelmidae • • Eupelmidae Eurytomidae • Eupelmidae • • Eupelmidae Eurytomidae • Eupelmidae • • Eupelmidae Eurytomidae • Eulophidae Identification† Family Subfamily • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • Species DbOT 50 DbOT 50 DbOT 50 DbOT 50 DbOT 50 DbOT 50 DbOT 50 DbOT 50 DbOT 50 DbOT 50 DbOT 50 DbOT 50 DbOT 50 DbOT 50 DbOT 50 DbOT 50 DbOT 50 DbOT 50 DbOT 50 DbOT 50 DbOT 50 DbOT 50 DbOT 50 DbOT126 DbOT125 DbOT125 DbOT125 DbOT125 DbOT125 DbOT125 DbOT125 DbOT 49 DbOT 49 DbOT 49 DbOT109 DbOT ID PIPI033-09 PIPI045-09 PIPI079-09 PIPI030-09 PIPI077-09 PIPI089-09 PIPI005-09 PIPI016-09 PIPI028-09 PIPI040-09 PIPI064-09 PIPI050-09 PIPI038-09 PIPI026-09 PIPI014-09 PIPI002-09 PIPI001-09 PIPI024-09 PIPI036-09 PIPI048-09 PIPI060-09 PIPI072-09 PIPI084-09 HYGEN607-10 HYGEN937-10 HYGEN818-10 HYGEN817-10 HYGEN816-10 HYGEN797-10 HYGEN796-10 HYGEN795-10 HYGEN458-10 HYGEN464-10 HYGEN462-10 HYGEN933-10 f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f f Process ID sex size (pg)∆ 0.95 0.71 0.68 0.65 0.46 0.54 0.53 0.50 0.51 0.53 0.56 0.29 0.51 0.56 0.57 0.56 0.55 0.56 0.52 0.55 0.51 0.50 0.55 0.57 0.53 0.55 0.51 0.55 0.57 0.47 0.53 0.51 0.49 0.55 0.50 Cytometer§ CyAn FACS FACS FACS CyAn CyAn CyAn CyAn CyAn CyAn CyAn FACS Quanta Quanta Quanta Quanta Quanta Quanta Quanta Quanta Quanta Quanta Quanta Quanta Quanta Quanta Quanta Quanta Quanta Quanta Quanta Quanta Quanta Quanta Quanta Genome Flow 199 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 n Verified Superfamily Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL • • • • • • • • • • • • Eurytomidae Eurytomidae Eurytomidae Eurytomidae Eurytomidae Eurytomidae Eurytomidae Eurytomidae Eurytomidae Eurytomidae Eurytomidae • Eurytomidae Eurytomidae • Eurytomidae • • Eurytomidae Eurytomidae • Eurytomidae • • Eurytomidae • • Eurytomidae Eurytomidae • Eurytomidae Eurytomidae • Eurytomidae • • Eurytomidae Eurytomidae • Eurytomidae • • Eurytomidae Eurytomidae • Eurytomidae • • Eurytomidae Eurytomidae • Eurytomidae • • Eurytomidae Eurytomidae • Eurytomidae Identification† Family Subfamily • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • Species DbOT113 DbOT112 DbOT111 DbOT 54 DbOT 54 DbOT 53 DbOT 52 DbOT 52 DbOT 52 DbOT 52 DbOT 52 DbOT 52 DbOT 52 DbOT 52 DbOT 52 DbOT 51 DbOT 51 DbOT 51 DbOT 51 DbOT 51 DbOT 51 DbOT 51 DbOT 51 DbOT 51 DbOT 51 DbOT 51 DbOT 51 DbOT 51 DbOT 51 DbOT 50 DbOT 50 DbOT 50 DbOT 50 DbOT 50 DbOT 50 DbOT ID HYGEN938-10 HYGEN839-10 HYGEN274-10 PIPI011-09 PIPI051-09 HYGEN486-10 PIPI021-09 PIPI069-09 PIPI055-09 PIPI091-09 PIPI007-09 PIPI081-09 PIPI093-09 PIPI067-09 PIPI018-09 PIPI022-09 PIPI056-09 PIPI043-09 PIPI029-09 PIPI065-09 PIPI025-09 PIPI061-09 PIPI073-09 HYGEN494-10 PIPI034-09 PIPI044-09 PIPI031-09 PIPI003-09 PIPI037-09 PIPI057-09 HYGEN489-10 HYGEN488-10 PIPI070-09 PIPI082-09 PIPI010-09 f f f f f m f f f f f f m m m m m m m m f f f f m m m m m f f f f f f Process ID sex size (pg)∆ 0.50 0.50 0.50 0.53 0.50 0.52 0.69 0.71 0.68 0.72 0.68 0.71 0.72 0.72 0.74 0.75 0.76 0.67 0.69 0.77 0.53 0.50 0.49 0.52 0.50 0.51 0.53 0.48 0.49 0.77 0.55 0.52 0.55 0.67 0.60 Cytometer§ Quanta Quanta Quanta FACS FACS Quanta Quanta Quanta Quanta Quanta Quanta FACS Quanta Quanta Quanta Quanta Quanta Quanta Quanta Quanta Quanta Quanta Quanta Quanta Quanta Quanta Quanta Quanta Quanta FACS Quanta Quanta FACS CyAn CyAn Genome Flow 200 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 n Verified Superfamily Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL • • • • • • • • • • • • Ormyridae Ormyridae Ormyridae Ormyridae Ormyridae Ormyridae Ormyridae Ormyridae Ormyridae Ormyridae Ormyridae • Mymaridae Ormyridae • Mymaridae • • Mymaridae Mymaridae • Mymaridae • • Mymaridae • • Mymaridae Mymaridae • Mymaridae Mymaridae • Eurytomidae • • Eurytomidae Mymaridae • Eurytomidae • • Eurytomidae Mymaridae • Eurytomidae • • Eurytomidae Mymaridae • Eurytomidae • • Eurytomidae Mymaridae • Eurytomidae Identification† Family Subfamily • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • Species DbOT 68 DbOT 68 DbOT 68 DbOT 68 DbOT 68 DbOT 68 DbOT 68 DbOT 68 DbOT 68 DbOT 68 DbOT 67 DbOT 67 DbOT129 DbOT129 DbOT129 DbOT129 DbOT129 DbOT128 DbOT128 DbOT128 DbOT128 DbOT128 DbOT128 DbOT128 DbOT128 DbOT128 DbOT118 DbOT117 DbOT116 DbOT116 DbOT115 DbOT115 DbOT115 DbOT115 DbOT114 DbOT ID HYGEN472-10 HYGEN469-10 HYGEN471-10 HYGEN467-10 HYGEN474-10 PIPI128-09 PIPI129-09 PIPI131-09 PIPI130-09 PIPI127-09 HYGEN475-10 PIPI132-09 HYGEN884-10 HYGEN868-10 HYGEN867-10 HYGEN866-10 HYGEN849-10 HYGEN874-10 HYGEN873-10 HYGEN872-10 HYGEN821-10 HYGEN820-10 HYGEN819-10 HYGEN801-10 HYGEN800-10 HYGEN799-10 HYGEN909-10 HYGEN960-10 HYGEN973-10 HYGEN954-10 HYGEN804-10 HYGEN803-10 HYGEN802-10 HYGEN747-10 HYGEN939-10 f f f f f f f f f f f f f f f f f f f f f f m f f f f f f f f f f f f Process ID sex size (pg)∆ 0.57 0.43 0.41 0.41 0.40 0.36 0.36 0.42 0.47 1.31 1.42 1.40 1.22 1.26 1.26 1.27 1.28 1.27 0.27 0.25 0.24 0.25 0.26 0.29 0.25 0.34 0.33 0.33 0.33 0.33 0.31 0.31 0.30 0.30 0.32 Cytometer§ CyAn CyAn CyAn CyAn CyAn CyAn CyAn CyAn CyAn CyAn CyAn CyAn CyAn CyAn CyAn CyAn CyAn CyAn CyAn CyAn CyAn CyAn CyAn Quanta FACS Quanta Quanta Quanta Quanta Quanta FACS FACS FACS FACS FACS Genome Flow 201 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 n Verified Superfamily Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL • • • • • • • • • • • • Pteromalidae Pteromalidae Pteromalidae Pteromalidae Pteromalidae Pteromalidae Pteromalidae Pteromalidae Pteromalidae Pteromalidae Pteromalidae • Pteromalidae Pteromalidae • Perilampidae • • Perilampidae Pteromalidae • Perilampidae • • Perilampidae • • Perilampidae Pteromalidae • Ormyridae Pteromalidae • Ormyridae • • Ormyridae • • Ormyridae Pteromalidae • Ormyridae Pteromalidae • Ormyridae • • Ormyridae Pteromalidae • Ormyridae • • Ormyridae Pteromalidae • Ormyridae Identification† Family Subfamily • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • Species DbOT110 DbOT110 DbOT110 DbOT110 DbOT104 DbOT103 DbOT101 DbOT101 DbOT101 DbOT100 DbOT100 DbOT 99 DbOT 99 DbOT 99 DbOT 98 DbOT 65 DbOT 65 DbOT 64 DbOT 63 DbOT 62 DbOT 97 DbOT 96 DbOT 95 DbOT 95 DbOT 95 DbOT132 DbOT131 DbOT131 DbOT131 DbOT130 DbOT 68 DbOT 68 DbOT 68 DbOT 68 DbOT 68 DbOT ID HYGEN685-10 HYGEN684-10 HYGEN682-10 HYGEN681-10 HYGEN082-10 HYGEN276-10 HYGEN231-10 HYGEN199-10 HYGEN197-10 HYGEN176-10 HYGEN141-10 HYGEN549-10 HYGEN547-10 HYGEN284-10 HYGEN273-10 HYGEN515-10 HYGEN499-10 HYGEN502-10 PIPI140-09 HYGEN506-10 HYGEN792-10 HYGEN616-10 HYGEN645-10 HYGEN617-10 HYGEN596-10 HYGEN940-10 HYGEN955-10 HYGEN951-10 HYGEN950-10 HYGEN805-10 PIPI139-09 HYGEN476-10 HYGEN470-10 HYGEN465-10 HYGEN468-10 f f f f m f f f f f f f f f m f f f f f f f m m f f f f m f m f f f f Process ID sex size (pg)∆ 0.34 0.35 0.33 0.33 0.31 0.32 0.34 0.34 0.35 0.35 0.37 0.37 0.36 0.36 0.25 0.35 0.32 0.41 0.40 0.38 0.31 0.37 0.34 0.34 0.38 0.38 0.73 0.78 0.74 0.80 0.78 0.26 0.26 0.26 0.28 Cytometer§ FACS FACS FACS FACS Quanta CyAn CyAn CyAn CyAn CyAn FACS FACS FACS FACS CyAn FACS Quanta FACS FACS FACS FACS FACS FACS FACS FACS FACS FACS FACS FACS FACS FACS CyAn CyAn CyAn CyAn Genome Flow 202 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 n Verified Superfamily Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL • • • • • • • • • • • • Torymidae Torymidae Torymidae Torymidae Torymidae Torymidae Torymidae Torymidae Torymidae Torymidae Torymidae • Torymidae Torymidae • Torymidae • • Torymidae Torymidae • Torymidae • • Torymidae • • Torymidae Torymidae • Torymidae Torymidae • Torymidae • • Torymidae Torymidae • Torymidae • • Torymidae Torymidae • Torymidae • • Pteromalidae Torymidae • Pteromalidae • • Pteromalidae Torymidae • Pteromalidae Identification† Family Subfamily T . bedeguaris T . bedeguaris T . bedeguaris T . bedeguaris T . bedeguaris T . bedeguaris T . bedeguaris T . bedeguaris T . bedeguaris T . bedeguaris T . bedeguaris T . bedeguaris T . bedeguaris T . bedeguaris T . bedeguaris T . bedeguaris T . bedeguaris T . bedeguaris T . bedeguaris T . bedeguaris T . bedeguaris T . bedeguaris T . bedeguaris T . chrysochlorus T . chrysochlorus T . chrysochlorus T . chrysochlorus T . sp. T . sp. T . sp. T . sp. • • • • Species DbOT 44 DbOT 44 DbOT 44 DbOT 44 DbOT 44 DbOT 44 DbOT 44 DbOT 44 DbOT 44 DbOT 44 DbOT 44 DbOT 44 DbOT 44 DbOT 44 DbOT 44 DbOT 44 DbOT 44 DbOT 44 DbOT 44 DbOT 44 DbOT 44 DbOT 44 DbOT 44 DbOT 43 DbOT 43 DbOT 40 DbOT 40 DbOT 38 DbOT 38 DbOT 38 DbOT 38 DbOT110 DbOT110 DbOT110 DbOT110 DbOT ID PIPI134-09 PIPI133-09 PIPI179-09 HYGEN381-10 HYGEN386-10 HYGEN385-10 HYGEN397-10 HYGEN392-10 HYGEN395-10 HYGEN393-10 HYGEN394-10 HYGEN388-10 HYGEN389-10 HYGEN390-10 HYGEN384-10 HYGEN387-10 HYGEN409-10 HYGEN417-10 HYGEN396-10 HYGEN391-10 HYGEN423-10 HYGEN424-10 TORNA103-10 HYGEN407-10 HYGEN439-10 HYGEN383-10 HYGEN398-10 HYGEN401-10 HYGEN404-10 HYGEN399-10 HYGEN402-10 HYGEN718-10 HYGEN717-10 HYGEN716-10 HYGEN686-10 f f f f f f f f m m f f f f f f f f f f f f f f f f f f f f f f m m m Process ID sex size (pg)∆ 0.27 0.26 0.26 0.26 0.99 1.00 0.94 0.94 0.91 0.90 0.70 0.70 0.76 0.77 0.76 0.79 0.81 0.79 0.76 0.80 0.77 0.78 0.80 0.79 0.71 0.75 0.75 0.74 0.78 0.79 0.78 0.75 0.78 0.77 0.80 Cytometer§ CyAn CyAn CyAn CyAn FACS FACS FACS FACS FACS FACS FACS FACS FACS FACS FACS FACS FACS FACS FACS FACS FACS FACS FACS FACS FACS FACS FACS FACS FACS FACS FACS FACS Quanta Quanta Quanta Genome Flow 203 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 n Verified Superfamily Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea JL Chalcidoidea BIC Chalcidoidea BIC Chalcidoidea BIC Chalcidoidea BIC Chalcidoidea BIC Chalcidoidea BIC Chrysidoidea JL Chrysidoidea JL Chrysidoidea JL Chrysidoidea JL Cynipoidea JL Cynipoidea JL Cynipoidea JL Cynipoidea JL Cynipoidea JL Cynipoidea JL Cynipoidea JL Cynipoidea JL Cynipoidea JL Cynipoidea JL Cynipoidea JL Cynipoidea JL Cynipoidea JL Cynipoidea JL • • • • • • • • • • • • Cynipidae Cynipidae Cynipidae Cynipidae Cynipidae Cynipidae Cynipidae Cynipidae Cynipidae Cynipidae Cynipidae • Trichogrammatidae • • Trichogrammatidae Cynipidae • Trichogrammatidae Cynipidae • Trichogrammatidae • • Trichogrammatidae • • Torymidae Cynipidae • Torymidae Dryinidae • Torymidae • • Torymidae • • Torymidae Bethylidae • Torymidae Chrysididae • Torymidae • • Torymidae Chrysididae • Torymidae • • Torymidae Trichogrammatidae • Torymidae Identification† Family Subfamily D. rosae D. rosae D. rosae D. rosae D. rosae D. sp. D. sp. D. bassetti D. bassetti D. bicolor D. eglanteriae D. eglanteriae D. eglanteriae D. eglanteriae • • • • T. platneri T. platneri T. platneri T. brassicae T. brassicae T. brassicae • • • • • • • • T. bedeguaris /solitarius T . bedeguaris T . bedeguaris Species DbOT 11 DbOT 11 DbOT 11 DbOT 11 DbOT 11 DbOT 10 DbOT 10 • • • DbOT 01 DbOT 01 DbOT 01 DbOT 01 • • DbOT141 DbOT140 DbOT135 DbOT135 DbOT135 DbOT134 DbOT134 DbOT134 DbOT139 DbOT138 DbOT137 DbOT137 DbOT137 DbOT137 DbOT136 DbOT136 DbOT 45 DbOT 44 DbOT 44 DbOT ID HYGEN342-10 HYGEN347-10 HYGEN341-10 HYGEN348-10 HYGEN343-10 HYGEN340-10 HYGEN339-10 • • • HYGEN983-10 HYGEN982-10 HYGEN981-10 HYGEN980-10 • • HYGEN695-10 HYGEN734-10 ROSE658-08 ROSE657-08 ROSE656-08 ROSE655-08 ROSE654-08 ROSE653-08 HYGEN806-10 HYGEN623-10 HYGEN828-10 HYGEN807-10 HYGEN976-10 HYGEN943-10 HYGEN923-10 HYGEN924-10 HYGEN413-10 HYGEN421-10 PIPI138-09 m m f f m f f m m f m f f f f f f f f f m f f f f f m m f f f f f f f Process ID sex size (pg)∆ 0.78 0.73 0.74 0.50 0.51 0.61 0.58 0.60 0.55 0.59 0.57 0.25 0.24 0.23 0.20 0.20 0.20 0.27 0.24 0.29 0.26 0.48 0.48 0.48 0.49 0.62 0.56 0.72 0.61 0.63 0.62 0.62 0.66 0.67 0.67 Cytometer§ Quanta FACS FACS CyAn CyAn CyAn CyAn CyAn CyAn FACS CyAn Quanta Quanta Quanta Quanta Quanta Quanta CyAn CyAn CyAn CyAn CyAn CyAn CyAn CyAn Quanta Quanta Quanta Quanta Quanta Quanta Quanta Quanta Quanta Quanta Genome Flow 204 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 n Verified Superfamily Cynipoidea JL Cynipoidea JL Cynipoidea JL Cynipoidea JL Cynipoidea JL Cynipoidea JL Cynipoidea JL Cynipoidea JL Cynipoidea JL Cynipoidea JL Cynipoidea JL Cynipoidea JL Cynipoidea JL Cynipoidea JL Cynipoidea JL Cynipoidea JL Cynipoidea JL Cynipoidea JL Cynipoidea JL Cynipoidea JL Cynipoidea JL Cynipoidea JL Cynipoidea JL Cynipoidea JL Cynipoidea JL Cynipoidea JL Cynipoidea JL Cynipoidea JL Cynipoidea JL Cynipoidea JL Cynipoidea JL Cynipoidea JL Cynipoidea JL Cynipoidea JL Cynipoidea JL • • • • • • • • • • • • Cynipidae Cynipidae Cynipidae Cynipidae Cynipidae Cynipidae Cynipidae Cynipidae Cynipidae Cynipidae Cynipidae • Cynipidae Cynipidae • Cynipidae • • Cynipidae Cynipidae • Cynipidae • • Cynipidae • • Cynipidae Cynipidae • Cynipidae Cynipidae • Cynipidae • • Cynipidae Cynipidae • Cynipidae • • Cynipidae Cynipidae • Cynipidae • • Cynipidae Cynipidae • Cynipidae • • Cynipidae Cynipidae • Cynipidae Identification† Family Subfamily D. triforma D. triforma D. triforma D. triforma D. triforma D. triforma D. triforma D. triforma D. triforma D. triforma D. triforma D. triforma D. triforma D. nodulosa D. gracilis D. ignota /nebulosa /variabilis D. ignota /nebulosa /variabilis D. ignota /nebulosa /variabilis D. ignota /nebulosa /variabilis D. ignota /nebulosa /variabilis D. ignota /nebulosa /variabilis D. ignota /nebulosa /variabilis D. ignota /nebulosa /variabilis D. ignota /nebulosa /variabilis D. fusiformans D. fusiformans D. rosaefolii D. rosaefolii D. rosaefolii D. rosaefolii D. rosaefolii D. rosaefolii D. rosaefolii D. rosaefolii D. rosae Species DbOT 18 DbOT 18 DbOT 18 DbOT 18 DbOT 18 DbOT 18 DbOT 18 DbOT 18 DbOT 18 DbOT 18 DbOT 18 DbOT 18 DbOT 18 • DbOT 16 DbOT 15 DbOT 15 DbOT 15 DbOT 15 DbOT 15 DbOT 15 DbOT 15 DbOT 15 DbOT 15 DbOT 14 DbOT 14 DbOT 13 DbOT 13 DbOT 13 DbOT 13 DbOT 13 DbOT 13 DbOT 13 DbOT 13 DbOT 11 DbOT ID PIPI185-09 PIPI183-09 HYGEN991-10 HYGEN989-10 HYGEN984-10 HYGEN324-10 HYGEN323-10 HYGEN326-10 HYGEN327-10 PIPI187-09 PIPI186-09 PIPI181-09 PIPI189-09 • HYGEN308-10 HYGEN378-10 HYGEN310-10 HYGEN318-10 HYGEN377-10 HYGEN320-10 HYGEN375-10 HYGEN317-10 HYGEN376-10 HYGEN322-10 HYGEN302-10 HYGEN299-10 PIPI169-09 PIPI167-09 HYGEN355-10 HYGEN351-10 HYGEN354-10 HYGEN350-10 HYGEN349-10 PIPI158-09 HYGEN344-10 f f f f f f f m m f f f f f f f f f f m f f f f f f f f f f f f f m m Process ID sex size (pg)∆ 0.63 0.42 0.41 0.42 0.42 0.43 0.40 0.42 0.43 0.41 0.41 0.61 0.57 0.58 0.57 0.61 0.59 0.61 0.57 0.59 0.61 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.65 0.65 0.62 0.63 0.65 0.57 0.62 Cytometer§ Quanta Quanta Quanta Quanta Quanta FACS FACS Quanta Quanta Quanta Quanta Quanta Quanta Quanta Quanta Quanta Quanta Quanta FACS Quanta FACS Quanta Quanta Quanta Quanta Quanta Quanta Quanta Quanta Quanta CyAn CyAn CyAn Quanta Quanta Genome Flow 205 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 n Verified Superfamily Cynipoidea JL Cynipoidea JL Cynipoidea JL Cynipoidea JL Cynipoidea JL Cynipoidea JL Cynipoidea JL Cynipoidea JL Cynipoidea JL Cynipoidea JL Cynipoidea JL Cynipoidea JL Cynipoidea JL Cynipoidea JL Cynipoidea JL Cynipoidea JL Cynipoidea JL Cynipoidea JL Cynipoidea JL Cynipoidea JL Cynipoidea JL Cynipoidea JL Cynipoidea JL Cynipoidea JL Cynipoidea JL Cynipoidea JL Cynipoidea JL Cynipoidea JL Cynipoidea JL Cynipoidea JL Cynipoidea JL Cynipoidea JL Cynipoidea JL Cynipoidea JL Cynipoidea JL • • • • • • • • • • • • Cynipidae Cynipidae Cynipidae Cynipidae Cynipidae Cynipidae Cynipidae Cynipidae Cynipidae Cynipidae Cynipidae • Cynipidae Cynipidae • Cynipidae • • Cynipidae Cynipidae • Cynipidae • • Cynipidae • • Cynipidae Cynipidae • Cynipidae Cynipidae • Cynipidae • • Cynipidae Cynipidae • Cynipidae • • Cynipidae Cynipidae • Cynipidae • • Cynipidae Cynipidae • Cynipidae • • Cynipidae Cynipidae • Cynipidae Identification† Family Subfamily DbOT 30 DbOT 30 DbOT 30 DbOT 30 DbOT 30 DbOT 30 DbOT 30 DbOT 30 "P. weldi (nom . nud .)"‡ "P. weldi (nom . nud .)"‡ "P. weldi (nom . nud .)"‡ "P. weldi (nom . nud .)"‡ "P. weldi (nom . nud .)"‡ ‡ ‡ "P. weldi (nom . nud .)"‡ "P. weldi (nom . nud .)" "P. weldi (nom . nud .)" DbOT 28 DbOT 28 DbOT 28 DbOT 27 DbOT 26 DbOT 26 DbOT 26 DbOT 26 DbOT 26 DbOT 26 DbOT 23 DbOT 23 DbOT 20 DbOT 20 DbOT 20 DbOT 20 DbOT 20 DbOT 20 DbOT 20 DbOT 20 DbOT 20 DbOT 20 DbOT 20 DbOT 19 DbOT 19 DbOT 18 DbOT 18 P . sp. P . sp. P . sp. P . pirata P . pirata P . pirata P . pirata P . pirata P . pirata P . pirata D. radicum D. radicum D. spinosa D. spinosa D. spinosa D. spinosa D. spinosa D. spinosa D. spinosa D. spinosa D. spinosa D. spinosa D. spinosa D. triforma D. triforma D. triforma D. triforma Species DbOT ID HYGEN370-10 HYGEN294-10 PIPI174-09 PIPI176-09 PIPI178-09 PIPI172-09 HYGEN295-10 PIPI175-09 HYGEN372-10 HYGEN371-10 HYGEN373-10 HYGEN436-10 HYGEN437-10 HYGEN435-10 HYGEN438-10 HYGEN332-10 HYGEN334-10 HYGEN331-10 HYGEN364-10 HYGEN363-10 HYGEN990-10 HYGEN988-10 HYGEN986-10 HYGEN985-10 HYGEN425-10 HYGEN427-10 HYGEN434-10 HYGEN426-10 HYGEN428-10 HYGEN433-10 HYGEN430-10 HYGEN325-10 PIPI190-09 HYGEN992-10 HYGEN987-10 m m f f f f f f f f m m m m m f f f f f m m m f m m m f f m m m m m m Process ID sex size (pg)∆ 0.66 0.64 0.66 0.63 0.64 0.62 0.64 0.61 0.63 0.64 0.64 0.66 0.65 0.68 0.64 0.62 0.60 0.25 0.24 0.26 0.21 0.27 0.26 0.23 0.26 0.21 0.21 0.23 0.26 0.26 0.27 0.25 0.24 0.22 0.26 Cytometer§ CyAn CyAn Quanta Quanta Quanta Quanta Quanta Quanta Quanta FACS Quanta CyAn CyAn CyAn CyAn Quanta Quanta Quanta Quanta Quanta Quanta Quanta Quanta Quanta Quanta FACS FACS Quanta FACS Quanta Quanta Quanta Quanta FACS FACS Genome Flow 206 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 n Verified Superfamily Cynipoidea JL Cynipoidea JL Cynipoidea JL Cynipoidea JL Cynipoidea JL Cynipoidea JL Cynipoidea JL Cynipoidea JL Cynipoidea JL Cynipoidea JL Cynipoidea JL Cynipoidea JL Cynipoidea JL Cynipoidea JL Cynipoidea JL Cynipoidea JL Cynipoidea JL Cynipoidea JL Cynipoidea JL Cynipoidea JL Cynipoidea JL Cynipoidea JL Cynipoidea JL Cynipoidea JL Cynipoidea JL Cynipoidea JL Cynipoidea JL Cynipoidea JL Cynipoidea JL Cynipoidea JL Cynipoidea JL Cynipoidea JL Cynipoidea JL Cynipoidea JL Cynipoidea JL • • • • • • • • • • • • Cynipidae Cynipidae Cynipidae Cynipidae Cynipidae Cynipidae Cynipidae Cynipidae Cynipidae Cynipidae Cynipidae • Cynipidae Cynipidae • Cynipidae • • Cynipidae Cynipidae • Cynipidae • • Cynipidae • • Cynipidae Cynipidae • Cynipidae Cynipidae • Cynipidae • • Cynipidae Cynipidae • Cynipidae • • Cynipidae Cynipidae • Cynipidae • • Cynipidae Cynipidae • Cynipidae • • Cynipidae Cynipidae • Cynipidae Identification† Family Subfamily ‡ • • • • • • • • • • • • • • • • • P . sp. P . sp. P . sp. P . sp. P . sp. P . sp. "P. ashmeadi/ cataractans (nom . nud .)"‡ "P. ashmeadi/ cataractans (nom . nud .)"‡ "P. ashmeadi/ cataractans (nom . nud .)"‡ "P. ashmeadi/ cataractans (nom . nud .)"‡ "P. ashmeadi/ cataractans (nom . nud .)"‡ "P. ashmeadi/ cataractans (nom . nud .)"‡ "P. ashmeadi/ cataractans (nom . nud .)"‡ DbOT147 DbOT147 DbOT146 DbOT146 DbOT146 DbOT145 DbOT144 DbOT144 DbOT143 DbOT143 DbOT142 DbOT142 DbOT142 DbOT142 DbOT142 DbOT142 DbOT142 DbOT 36 DbOT 36 DbOT 36 DbOT 33 DbOT 33 DbOT 33 DbOT 32 DbOT 32 DbOT 32 DbOT 32 DbOT 32 DbOT 32 DbOT 32 HYGEN945-10 HYGEN942-10 NJCGS1164-11 HYGEN957-10 HYGEN956-10 HYGEN979-10 HYGEN978-10 HYGEN974-10 NJCGS1167-11 NJCGS1166-11 HYGEN811-10 HYGEN810-10 HYGEN809-10 HYGEN808-10 HYGEN730-10 HYGEN699-10 HYGEN748-10 HYGEN368-10 HYGEN288-10 HYGEN306-10 HYGEN316-10 HYGEN314-10 HYGEN312-10 HYGEN367-10 PIPI165-09 PIPI173-09 PIPI177-09 HYGEN358-10 HYGEN356-10 PIPI160-09 PIPI168-09 PIPI163-09 DbOT 32 DbOT 32 "P. ashmeadi/ cataractans (nom . nud .)"‡ "P. ashmeadi/ cataractans (nom . nud .)" PIPI170-09 DbOT 32 PIPI162-09 HYGEN366-10 ‡ DbOT 32 DbOT 30 m f f f f f f f m m m m f f f f m m f m m m m m m f f f f f f f f f f Process ID sex "P. ashmeadi/ cataractans (nom . nud .)"‡ "P. ashmeadi/ cataractans (nom . nud .)" "P. weldi (nom . nud .)"‡ Species DbOT ID size (pg)∆ 0.24 0.25 0.25 0.25 0.24 0.22 0.23 0.23 0.23 0.23 0.19 0.22 0.24 0.23 0.23 0.25 0.23 0.24 1.86 1.99 1.91 1.94 1.96 2.08 2.07 1.36 1.34 1.94 1.94 1.74 0.38 0.38 0.36 0.33 0.33 Cytometer§ FACS Quanta Quanta Quanta Quanta Quanta Quanta FACS Quanta Quanta Quanta FACS Quanta Quanta Quanta Quanta FACS FACS CyAn CyAn CyAn CyAn CyAn CyAn CyAn Cytomics Cytomics CyAn CyAn CyAn CyAn CyAn Cytomics CyAn CyAn Genome Flow 207 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 n Verified Superfamily Cynipoidea JL Cynipoidea JL Cynipoidea JL Cynipoidea JL Cynipoidea JL Cynipoidea JL Cynipoidea JL Cynipoidea JL Cynipoidea JL Cynipoidea JL Cynipoidea JL Cynipoidea JL Cynipoidea JL Cynipoidea JL Cynipoidea JL Cynipoidea JL Cynipoidea JL Cynipoidea JL Cynipoidea JL Cynipoidea JL Cynipoidea JL Cynipoidea JL Cynipoidea JL Cynipoidea JL Cynipoidea JL Cynipoidea JL Diaprioidea JL Diaprioidea JL Diaprioidea JL Diaprioidea JL Diaprioidea JL Diaprioidea JL Diaprioidea JL Diaprioidea JL Diaprioidea JL • • • • • • • • • • • • Figitidae Figitidae Diapriidae Diapriidae Diapriidae Diapriidae Diapriidae Diapriidae Diapriidae Diapriidae Diapriidae • Cynipidae Figitidae • Cynipidae • • Cynipidae Figitidae • Cynipidae • • Cynipidae • • Cynipidae Figitidae • Cynipidae Figitidae • Cynipidae • • Cynipidae Figitidae • Cynipidae • • Cynipidae Figitidae • Cynipidae • • Cynipidae Cynipidae • Cynipidae • • Cynipidae Cynipidae • Cynipidae Identification† Family Subfamily • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • Species DbOT161 DbOT161 DbOT159 DbOT158 DbOT158 DbOT158 DbOT158 DbOT158 DbOT158 DbOT154 DbOT153 DbOT152 DbOT151 DbOT150 DbOT149 DbOT148 DbOT148 DbOT157 DbOT157 DbOT156 DbOT156 DbOT155 DbOT155 DbOT155 DbOT147 DbOT147 DbOT147 DbOT147 DbOT147 DbOT147 DbOT147 DbOT147 DbOT147 DbOT147 DbOT147 DbOT ID HYGEN758-10 HYGEN756-10 HYGEN751-10 HYGEN772-10 HYGEN771-10 HYGEN760-10 HYGEN759-10 HYGEN755-10 HYGEN757-10 HYGEN815-10 HYGEN745-10 HYGEN754-10 HYGEN691-10 HYGEN735-10 HYGEN540-10 HYGEN994-10 HYGEN993-10 HYGEN971-10 HYGEN970-10 HYGEN959-10 HYGEN958-10 HYGEN977-10 HYGEN975-10 HYGEN972-10 HYGEN831-10 HYGEN969-10 HYGEN968-10 HYGEN967-10 HYGEN966-10 HYGEN965-10 HYGEN964-10 HYGEN963-10 HYGEN952-10 HYGEN948-10 HYGEN947-10 f f f f f f f f f f m f f f f f f f f f f f f f f f f m m m m m m f f Process ID sex size (pg)∆ 0.34 0.34 0.31 0.32 0.34 0.33 0.30 0.27 0.29 0.29 0.30 0.27 0.28 0.28 0.36 0.36 0.36 0.37 0.47 0.37 0.59 0.42 0.33 0.43 0.53 0.78 0.70 0.64 0.70 0.77 0.61 0.82 0.60 0.79 0.71 Cytometer§ CyAn CyAn CyAn CyAn CyAn CyAn CyAn CyAn CyAn CyAn CyAn CyAn CyAn CyAn CyAn CyAn CyAn CyAn Quanta Quanta FACS CyAn CyAn CyAn CyAn CyAn CyAn CyAn CyAn CyAn CyAn CyAn CyAn CyAn CyAn Genome Flow 208 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 n Verified Superfamily Evanioidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea BBCL Ichneumonoidea BBCL Ichneumonoidea BBCL Ichneumonoidea BBCL Ichneumonoidea BBCL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Rhyssalinae Rhyssalinae Rhyssalinae Rhyssalinae Hormiinae Rogadinae Rogadinae Rogadinae Rogadinae Rogadinae Rogadinae Braconinae Braconidae Braconidae Braconidae Braconidae Braconidae Braconidae Braconidae Braconidae Braconidae Braconidae Braconidae Aphidiinae Braconidae Braconidae Meteorinae Braconidae Rhyssalinae Meteorinae Braconidae Braconidae Meteorinae Braconidae Aphidiinae Meteorinae Braconidae Aphidiinae Euphorinae Braconidae Braconidae Euphorinae Braconidae Braconidae Macrocentrinae Braconidae Aphidiinae Macrocentrinae Braconidae Braconidae Macrocentrinae Braconidae Aphidiinae Macrocentrinae Braconidae Braconidae Macrocentrinae Braconidae Aphidiinae Macrocentrinae Braconidae Braconidae Helconinae Braconidae Aphidiinae Brachistinae Braconidae Braconidae • Gasteruptiidae Identification† Family Subfamily • C. fumiferanae • • • • • • • • • • • A. ervi A. ervi A. ervi A. colemani A. colemani • • • • • • P. braynae P. braynae • • • • • • W. ligator • • Species DbOT190 DbOT189 DbOT188 DbOT187 DbOT187 DbOT187 DbOT187 DbOT186 DbOT185 DbOT185 DbOT185 DbOT185 DbOT184 DbOT183 DbOT183 DbOT183 DbOT182 DbOT182 DbOT181 DbOT181 DbOT180 DbOT179 DbOT178 DbOT177 DbOT176 DbOT176 DbOT175 DbOT175 DbOT175 DbOT174 DbOT174 DbOT174 DbOT173 DbOT172 DbOT162 DbOT ID HYGEN220-10 HYGEN887-10 HYGEN587-10 HYGEN711-10 HYGEN710-10 HYGEN693-10 HYGEN673-10 HYGEN229-10 HYGEN906-10 HYGEN905-10 HYGEN904-10 HYGEN903-10 HYGEN072-10 ROSE637-08 ROSE636-08 ROSE635-08 ROSE634-08 ROSE633-08 HYGEN527-10 HYGEN528-10 HYGEN582-10 HYGEN562-10 HYGEN263-10 HYGEN918-10 HYGEN207-10 HYGEN195-10 HYGEN927-10 HYGEN926-10 HYGEN925-10 HYGEN914-10 HYGEN913-10 HYGEN912-10 HYGEN624-10 HYGEN921-10 HYGEN698-10 f m f f f f f f f f f m f f f f m f f m m m f f f f f m f f f f f m f Process ID sex size (pg)∆ 0.29 0.15 0.13 0.14 0.15 0.14 0.14 0.15 0.15 0.18 0.18 0.16 0.13 0.14 0.13 0.15 0.13 0.11 0.11 0.16 0.16 0.14 0.13 0.12 0.12 0.12 0.12 0.17 0.27 0.27 0.27 0.27 0.26 0.20 0.23 Cytometer§ CyAn CyAn FACS CyAn CyAn CyAn CyAn CyAn CyAn FACS FACS CyAn FACS FACS FACS FACS FACS Quanta Quanta Quanta Quanta Quanta FACS CyAn CyAn CyAn CyAn FACS CyAn CyAn CyAn CyAn FACS CyAn FACS Genome Flow 209 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 n Verified Superfamily Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea BBCL Ichneumonoidea BBCL Ichneumonoidea BBCL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Meteorinae Meteorinae Meteorinae Cheloninae Cheloninae Cheloninae Cheloninae Ichneutinae Ichneutinae Ichneutinae Orthopelmatinae Orthopelmatinae Braconidae Braconidae Braconidae Braconidae Braconidae Braconidae Braconidae Braconidae Braconidae Ichneumonidae Ichneumonidae Microgastrinae Braconidae Braconidae Alysiinae Braconidae Microgastrinae Alysiinae Braconidae Braconidae Alysiinae Braconidae Microgastrinae Alysiinae Braconidae Microgastrinae Alysiinae Braconidae Braconidae Alysiinae Braconidae Braconidae Alysiinae Braconidae Microgastrinae Alysiinae Braconidae Braconidae Alysiinae Braconidae Microgastrinae Alysiinae Braconidae Braconidae Alysiinae Braconidae Microgastrinae Alysiinae Braconidae Microgastrinae Alysiinae Braconidae Braconidae Alysiinae Braconidae Braconidae Alysiinae Braconidae Identification† Family Subfamily • • • • • C. inanitus C. inanitus C. inanitus C. inanitus M. trachynotus M. trachynotus M. trachynotus • • • • • • • • D. sibirica D. sibirica D. sibirica • • • • • • • • • • • • Species DbOT 69 DbOT 69 DbOT210 DbOT210 DbOT210 DbOT209 DbOT209 DbOT209 DbOT209 DbOT208 DbOT208 DbOT208 DbOT207 DbOT207 DbOT206 DbOT205 DbOT205 DbOT204 DbOT203 DbOT202 DbOT200 DbOT200 DbOT200 DbOT199 DbOT198 DbOT198 DbOT197 DbOT197 DbOT196 DbOT195 DbOT194 DbOT193 DbOT192 DbOT191 DbOT191 DbOT ID HYGEN457-10 HYGEN456-10 HYGEN127-10 HYGEN075-10 HYGEN045-10 HYGEN035-10 HYGEN021-10 HYGEN020-10 HYGEN017-10 HYGEN870-10 HYGEN893-10 HYGEN891-10 HYGEN869-10 HYGEN895-10 HYGEN936-10 HYGEN882-10 HYGEN860-10 HYGEN136-10 HYGEN185-10 HYGEN023-10 ROSE640-08 ROSE638-08 ROSE639-08 HYGEN568-10 HYGEN563-10 HYGEN561-10 HYGEN278-10 HYGEN275-10 HYGEN598-10 HYGEN618-10 HYGEN583-10 HYGEN222-10 HYGEN196-10 HYGEN223-10 HYGEN200-10 f m f f f f f f f f m f f m m m f f f f f f m f f m f f f f f f f f f Process ID sex size (pg)∆ 0.18 0.18 0.35 0.40 0.57 0.47 0.13 0.28 0.29 0.20 0.19 0.13 0.16 0.17 0.17 0.17 0.51 0.27 0.23 0.23 0.24 0.23 0.22 0.14 0.14 0.14 0.15 0.15 0.15 0.15 0.18 0.18 0.18 0.42 0.43 Cytometer§ FACS FACS FACS FACS FACS FACS FACS FACS FACS FACS FACS FACS Quanta Quanta Quanta FACS FACS FACS CyAn CyAn CyAn CyAn CyAn CyAn CyAn CyAn FACS FACS FACS FACS FACS FACS FACS FACS FACS Genome Flow 210 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 n Verified Superfamily Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Orthopelmatinae Orthopelmatinae Orthopelmatinae Orthopelmatinae Orthopelmatinae Orthopelmatinae Orthopelmatinae Orthopelmatinae Orthopelmatinae Orthopelmatinae • • Ichneumonidae Ichneumonidae Ichneumonidae Ichneumonidae Ichneumonidae Ichneumonidae Ichneumonidae Ichneumonidae Ichneumonidae Ichneumonidae Ichneumonidae Orthopelmatinae Ichneumonidae Orthopelmatinae Orthopelmatinae Ichneumonidae Ichneumonidae Orthopelmatinae Ichneumonidae Ichneumonidae Orthopelmatinae Ichneumonidae Orthopelmatinae Orthopelmatinae Ichneumonidae Orthopelmatinae Orthopelmatinae Ichneumonidae Ichneumonidae Orthopelmatinae Ichneumonidae Ichneumonidae Orthopelmatinae Ichneumonidae Orthopelmatinae Orthopelmatinae Ichneumonidae Ichneumonidae Orthopelmatinae Ichneumonidae Orthopelmatinae Orthopelmatinae Ichneumonidae Ichneumonidae Orthopelmatinae Ichneumonidae Orthopelmatinae Orthopelmatinae Ichneumonidae Ichneumonidae Orthopelmatinae Ichneumonidae Orthopelmatinae Orthopelmatinae Ichneumonidae Ichneumonidae Orthopelmatinae Ichneumonidae Identification† Family Subfamily • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • Species DbOT212 DbOT211 DbOT 72 DbOT 72 DbOT 72 DbOT 72 DbOT 72 DbOT 72 DbOT 72 DbOT 72 DbOT 72 DbOT 72 DbOT 72 DbOT 72 DbOT 72 DbOT 72 DbOT 72 DbOT 72 DbOT 72 DbOT 72 DbOT 72 DbOT 72 DbOT 72 DbOT 72 DbOT 72 DbOT 72 DbOT 72 DbOT 72 DbOT 72 DbOT 71 DbOT 71 DbOT 71 DbOT 70 DbOT 70 DbOT 69 DbOT ID HYGEN175-10 HYGEN019-10 HYGEN443-10 PIPI125-09 PIPI126-09 PIPI098-09 PIPI097-09 HYGEN445-10 HYGEN442-10 HYGEN450-10 HYGEN441-10 HYGEN440-10 HYGEN449-10 HYGEN448-10 PIPI124-09 PIPI123-09 PIPI101-09 PIPI100-09 PIPI102-09 PIPI103-09 PIPI105-09 PIPI106-09 PIPI108-09 PIPI109-09 PIPI115-09 PIPI116-09 PIPI117-09 PIPI118-09 PIPI119-09 HYGEN451-10 HYGEN455-10 HYGEN454-10 HYGEN453-10 HYGEN452-10 HYGEN446-10 m m m f f f f f f f f f f f f f f f f f f f f f f f f f m m m m m f f Process ID sex size (pg)∆ 0.44 0.44 0.38 0.47 0.48 0.45 0.41 0.40 0.41 0.41 0.41 0.43 0.40 0.39 0.42 0.35 0.41 0.38 0.43 0.40 0.40 0.38 0.43 0.42 0.40 0.42 0.41 0.42 0.46 0.45 0.40 0.40 0.41 0.27 0.42 Cytometer§ FACS FACS FACS FACS FACS FACS Quanta Quanta Quanta Quanta Quanta Quanta Quanta Quanta Quanta Quanta Quanta Quanta Quanta Quanta Quanta FACS FACS FACS FACS FACS FACS FACS Quanta Quanta Quanta Quanta FACS FACS FACS Genome Flow 211 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 n Verified Superfamily Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Campopleginae Campopleginae Campopleginae Campopleginae Campopleginae Campopleginae Campopleginae Campopleginae Anomaloninae Anomaloninae • • Ichneumonidae Ichneumonidae Ichneumonidae Ichneumonidae Ichneumonidae Ichneumonidae Ichneumonidae Ichneumonidae Ichneumonidae Ichneumonidae Ichneumonidae Campopleginae Ichneumonidae Ichneumonidae Campopleginae Ichneumonidae Campopleginae Campopleginae Ichneumonidae Ichneumonidae Campopleginae Ichneumonidae Campopleginae Campopleginae Ichneumonidae Campopleginae Campopleginae Ichneumonidae Ichneumonidae Cryptinae Ichneumonidae Ichneumonidae Cryptinae Ichneumonidae Campopleginae Cryptinae Ichneumonidae Ichneumonidae Ichneumoninae Ichneumonidae Campopleginae Ichneumoninae Ichneumonidae Ichneumonidae Ichneumoninae Ichneumonidae Campopleginae Cryptinae Ichneumonidae Ichneumonidae Cryptinae Ichneumonidae Campopleginae Ichneumoninae Ichneumonidae Ichneumonidae Ichneumoninae Ichneumonidae Identification† Family Subfamily • • • • • • • • • • • • • • • • • • • • • • • V. canescens V. canescens • • • • • • • • • • Species DbOT238 DbOT238 DbOT237 DbOT236 DbOT235 DbOT234 DbOT234 DbOT234 DbOT234 DbOT233 DbOT232 DbOT231 DbOT230 DbOT229 DbOT228 DbOT228 DbOT227 DbOT226 DbOT225 DbOT225 DbOT224 DbOT223 DbOT223 DbOT222 DbOT222 DbOT221 DbOT220 DbOT220 DbOT219 DbOT218 DbOT217 DbOT215 DbOT214 DbOT213 DbOT213 DbOT ID HYGEN883-10 HYGEN934-10 HYGEN922-10 HYGEN120-10 HYGEN050-10 HYGEN156-10 HYGEN149-10 HYGEN147-10 HYGEN146-10 HYGEN215-10 HYGEN131-10 HYGEN092-10 HYGEN174-10 HYGEN159-10 HYGEN033-10 HYGEN032-10 HYGEN148-10 HYGEN270-10 HYGEN935-10 HYGEN858-10 HYGEN221-10 HYGEN611-10 HYGEN262-10 HYGEN610-10 HYGEN608-10 HYGEN091-10 HYGEN203-10 HYGEN186-10 HYGEN057-10 HYGEN059-10 HYGEN078-10 HYGEN727-10 HYGEN090-10 HYGEN281-10 HYGEN272-10 m m m f f f m m m m f f m m f f m f f m m m m m m m f m m m f f f f m Process ID sex size (pg)∆ 0.42 0.43 0.29 0.34 0.37 0.40 0.36 0.30 0.29 0.30 0.29 0.30 0.24 0.24 0.28 0.21 0.20 0.24 0.26 0.22 0.21 0.24 0.23 0.22 0.22 0.23 0.28 0.25 0.24 0.24 0.23 0.33 0.26 0.28 0.28 Cytometer§ FACS FACS FACS CyAn FACS FACS FACS FACS FACS FACS FACS FACS FACS FACS FACS CyAn CyAn FACS FACS FACS FACS FACS FACS FACS FACS FACS FACS FACS FACS FACS FACS FACS CyAn CyAn CyAn Genome Flow 212 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 n Verified Superfamily Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL • • • • • • • • • • • • Ichneumonidae Ichneumonidae Ichneumonidae Ichneumonidae Ichneumonidae Ichneumonidae Ichneumonidae Ichneumonidae Ichneumonidae Ichneumonidae Ichneumonidae Mesochorinae Ichneumonidae Ichneumonidae Mesochorinae Ichneumonidae • Mesochorinae Ichneumonidae Ichneumonidae Mesochorinae Ichneumonidae • Mesochorinae Ichneumonidae Tryphoninae Mesochorinae Ichneumonidae Ichneumonidae Orthocentrinae Ichneumonidae Ichneumonidae Orthocentrinae Ichneumonidae Tryphoninae • Ichneumonidae Ichneumonidae • Ichneumonidae Mesochorinae • Ichneumonidae Ichneumonidae • Ichneumonidae Mesochorinae • Ichneumonidae Ichneumonidae • Ichneumonidae Mesochorinae • Ichneumonidae Ichneumonidae • Ichneumonidae Identification† Family Subfamily • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • Species DbOT254 DbOT253 DbOT253 DbOT252 DbOT251 DbOT251 DbOT251 DbOT250 DbOT249 DbOT248 DbOT247 DbOT247 DbOT247 DbOT246 DbOT245 DbOT244 DbOT243 DbOT243 DbOT243 DbOT243 DbOT243 DbOT243 DbOT243 DbOT243 DbOT243 DbOT242 DbOT241 DbOT240 DbOT240 DbOT240 DbOT239 DbOT239 DbOT239 DbOT239 DbOT238 DbOT ID HYGEN063-10 HYGEN225-10 HYGEN254-10 HYGEN168-10 HYGEN187-10 HYGEN191-10 HYGEN069-10 HYGEN213-10 HYGEN034-10 HYGEN205-10 HYGEN894-10 HYGEN889-10 HYGEN888-10 HYGEN155-10 HYGEN253-10 HYGEN051-10 HYGEN854-10 HYGEN853-10 HYGEN266-10 HYGEN929-10 HYGEN920-10 HYGEN876-10 HYGEN875-10 HYGEN855-10 HYGEN851-10 HYGEN079-10 HYGEN047-10 HYGEN880-10 HYGEN879-10 HYGEN863-10 HYGEN902-10 HYGEN897-10 HYGEN890-10 HYGEN871-10 HYGEN892-10 m m m m m f m m f m f f f f f f m m m f f f m m m f m f f f m f f m f Process ID sex size (pg)∆ 0.27 0.27 0.25 0.25 0.25 0.27 0.27 0.27 0.41 0.36 0.25 0.23 0.23 0.24 0.25 0.24 0.22 0.24 0.26 0.28 0.70 0.18 0.21 0.21 0.21 0.26 0.26 0.14 0.26 0.27 0.26 0.44 0.30 0.29 0.36 Cytometer§ CyAn CyAn CyAn CyAn CyAn CyAn CyAn CyAn FACS FACS CyAn CyAn CyAn CyAn CyAn CyAn FACS CyAn CyAn FACS FACS FACS CyAn CyAn CyAn FACS FACS FACS FACS FACS FACS FACS FACS FACS FACS Genome Flow 213 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 n Verified Superfamily Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL • • Cryptinae Cryptinae Cryptinae Cryptinae Cryptinae Cryptinae • Ctenopelmatinae Ctenopelmatinae Ctenopelmatinae Ichneumonidae Ichneumonidae Ichneumonidae Ichneumonidae Ichneumonidae Ichneumonidae Ichneumonidae Ichneumonidae Ichneumonidae Ichneumonidae Ichneumonidae Pimplinae Ichneumonidae Ichneumonidae Pimplinae Ichneumonidae • Pimplinae Ichneumonidae Ichneumonidae Pimplinae Ichneumonidae • Pimplinae Ichneumonidae Orthocentrinae Pimplinae Ichneumonidae Ichneumonidae Pimplinae Ichneumonidae Ichneumonidae Diplazontinae Ichneumonidae Pimplinae Diplazontinae Ichneumonidae Ichneumonidae Diplazontinae Ichneumonidae Pimplinae Diplazontinae Ichneumonidae Ichneumonidae Tryphoninae Ichneumonidae Pimplinae Tryphoninae Ichneumonidae Ichneumonidae Tryphoninae Ichneumonidae Pimplinae Diplazontinae Ichneumonidae Ichneumonidae • Ichneumonidae Identification† Family Subfamily • • • • • • • • • • • • • • • A. annulicornis A. ontario • • • • • • I. conquisitor I. conquisitor I. conquisitor • • • D. laetorius • • T. seminiger P. sulcator • Species DbOT274 DbOT273 DbOT273 DbOT272 DbOT271 DbOT271 DbOT271 DbOT270 DbOT269 DbOT269 DbOT268 DbOT268 DbOT268 DbOT268 DbOT267 DbOT266 DbOT265 DbOT264 DbOT264 DbOT264 DbOT263 DbOT263 DbOT262 DbOT261 DbOT261 DbOT261 DbOT260 DbOT260 DbOT259 DbOT258 DbOT257 DbOT257 DbOT256 DbOT255 DbOT254 DbOT ID HYGEN163-10 HYGEN531-10 HYGEN530-10 HYGEN152-10 HYGEN750-10 HYGEN741-10 HYGEN739-10 HYGEN829-10 HYGEN609-10 HYGEN597-10 HYGEN715-10 HYGEN713-10 HYGEN712-10 HYGEN680-10 HYGEN061-10 HYGEN627-10 HYGEN619-10 HYGEN878-10 HYGEN864-10 HYGEN859-10 HYGEN885-10 HYGEN881-10 HYGEN031-10 HYGEN896-10 HYGEN862-10 HYGEN714-10 HYGEN138-10 HYGEN134-10 HYGEN173-10 HYGEN588-10 HYGEN533-10 HYGEN532-10 HYGEN534-10 HYGEN116-10 HYGEN073-10 f f m m m f f f f f m m m f m f f m f m f f f f f m m f f f f m f f m Process ID sex size (pg)∆ 0.37 0.31 0.23 0.22 0.22 0.45 0.37 0.36 0.33 0.28 0.29 0.28 0.46 0.39 0.37 0.45 0.44 0.45 0.38 0.30 0.28 0.28 0.28 0.28 0.29 0.24 0.23 0.21 0.26 0.25 0.27 0.36 0.35 0.35 0.36 Cytometer§ FACS FACS FACS FACS FACS FACS FACS FACS FACS CyAn CyAn CyAn FACS CyAn CyAn CyAn CyAn CyAn FACS FACS FACS CyAn CyAn CyAn CyAn FACS FACS CyAn CyAn CyAn CyAn FACS FACS FACS FACS Genome Flow 214 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 n Verified Superfamily Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Ichneumonoidea JL Platygastroidea JL Cryptinae Cryptinae Cryptinae Cryptinae Tryphoninae Tryphoninae Tryphoninae Tryphoninae Tryphoninae Tryphoninae Ichneumoninae • Ichneumonidae Ichneumonidae Ichneumonidae Ichneumonidae Ichneumonidae Ichneumonidae Ichneumonidae Ichneumonidae Ichneumonidae Ichneumonidae Platygastridae Banchinae Ichneumonidae Ichneumonidae Banchinae Ichneumonidae • Banchinae Ichneumonidae Ichneumonidae Banchinae Ichneumonidae Cryptinae Banchinae Ichneumonidae Cryptinae Banchinae Ichneumonidae Ichneumonidae Banchinae Ichneumonidae Ichneumonidae Banchinae Ichneumonidae Cryptinae Banchinae Ichneumonidae Ichneumonidae Banchinae Ichneumonidae Cryptinae Banchinae Ichneumonidae Ichneumonidae Banchinae Ichneumonidae Cryptinae Banchinae Ichneumonidae Ichneumonidae Ophioninae Ichneumonidae Banchinae Anomaloninae Ichneumonidae Ichneumonidae • Ichneumonidae Identification† Family Subfamily • • • • • • • • • • • • • • • • • • • • • • • G. fumiferanae • • • • • • • • • • • Species DbOT163 DbOT352 DbOT297 DbOT297 DbOT297 DbOT297 DbOT296 DbOT295 DbOT294 DbOT293 DbOT292 DbOT291 DbOT290 DbOT289 DbOT288 DbOT287 DbOT286 DbOT285 DbOT284 DbOT284 DbOT284 DbOT284 DbOT283 DbOT282 DbOT281 DbOT280 DbOT280 DbOT280 DbOT279 DbOT279 DbOT279 DbOT278 DbOT277 DbOT276 DbOT275 DbOT ID HYGEN110-10 HYGEN257-10 HYGEN865-10 HYGEN944-10 HYGEN877-10 HYGEN850-10 HYGEN852-10 HYGEN886-10 HYGEN060-10 HYGEN271-10 HYGEN164-10 HYGEN595-10 HYGEN605-10 HYGEN150-10 HYGEN201-10 HYGEN058-10 HYGEN184-10 HYGEN077-10 HYGEN217-10 HYGEN144-10 HYGEN062-10 HYGEN208-10 HYGEN081-10 HYGEN602-10 HYGEN193-10 HYGEN192-10 HYGEN183-10 HYGEN182-10 HYGEN227-10 HYGEN135-10 HYGEN209-10 HYGEN857-10 HYGEN726-10 HYGEN559-10 HYGEN018-10 f f m f f m m m m m m f m f m m m m f m m m f f m f m m f f f f m f f Process ID sex size (pg)∆ 0.90 0.20 0.65 0.41 0.51 0.50 0.52 0.57 0.57 0.56 0.36 0.46 0.47 0.48 0.47 0.43 0.48 0.26 0.27 0.24 0.36 0.29 0.32 0.21 0.36 0.27 0.36 0.50 0.48 0.48 0.50 0.50 0.52 0.39 0.21 Cytometer§ FACS FACS CyAn CyAn FACS FACS FACS FACS FACS FACS FACS FACS FACS FACS FACS FACS FACS FACS FACS FACS FACS FACS FACS FACS FACS FACS FACS CyAn CyAn CyAn CyAn CyAn CyAn FACS FACS Genome Flow 215 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 n Verified Superfamily Platygastroidea JL Platygastroidea JL Platygastroidea JL Platygastroidea JL Platygastroidea JL Platygastroidea JL Platygastroidea JL Platygastroidea JL Platygastroidea JL Platygastroidea JL Platygastroidea JL Platygastroidea JL Platygastroidea JL Platygastroidea JL Platygastroidea JL Platygastroidea JL Platygastroidea JL Platygastroidea JL Platygastroidea JL Platygastroidea JL Platygastroidea JL Platygastroidea JL Platygastroidea JL Platygastroidea JL Platygastroidea JL Platygastroidea JL Platygastroidea JL Proctotrupoidea JL Tenthredinoidea JL Tenthredinoidea JL Tenthredinoidea JL Tenthredinoidea JL Tenthredinoidea JL Tenthredinoidea JL Tenthredinoidea JL • • • • • • • • • • • • Platygastridae Platygastridae Platygastridae Proctotrupidae Argidae Tenthredinidae Tenthredinidae Tenthredinidae Tenthredinidae Tenthredinidae Tenthredinidae • Platygastridae Platygastridae • Platygastridae • • Platygastridae Platygastridae • Platygastridae • • Platygastridae • • Platygastridae Platygastridae • Platygastridae Platygastridae • Platygastridae • • Platygastridae Platygastridae • Platygastridae • • Platygastridae Platygastridae • Platygastridae • • Platygastridae Platygastridae • Platygastridae • • Platygastridae Platygastridae • Platygastridae Identification† Family Subfamily • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • Species DbOT303 DbOT302 DbOT301 DbOT300 DbOT299 DbOT298 DbOT328 • DbOT171 DbOT171 DbOT171 DbOT171 DbOT171 DbOT170 DbOT170 DbOT170 DbOT170 DbOT170 DbOT169 DbOT169 DbOT169 DbOT169 DbOT168 DbOT168 DbOT168 DbOT168 DbOT167 DbOT167 DbOT167 DbOT166 DbOT165 DbOT164 DbOT164 DbOT164 DbOT164 DbOT ID HYGEN013-10 HYGEN181-10 HYGEN840-10 HYGEN551-10 HYGEN189-10 HYGEN277-10 HYGEN526-10 • HYGEN706-10 HYGEN705-10 HYGEN676-10 HYGEN675-10 HYGEN674-10 HYGEN928-10 HYGEN721-10 HYGEN720-10 HYGEN719-10 HYGEN697-10 HYGEN722-10 HYGEN724-10 HYGEN723-10 HYGEN696-10 HYGEN672-10 HYGEN671-10 HYGEN670-10 HYGEN669-10 HYGEN791-10 HYGEN790-10 HYGEN728-10 HYGEN827-10 HYGEN822-10 HYGEN823-10 HYGEN826-10 HYGEN825-10 HYGEN824-10 f f f m f m f f f f f f f f f f m f f m m m f f f f f f f f f f f f f Process ID sex size (pg)∆ 0.27 0.30 0.30 0.28 0.22 0.29 0.32 0.35 0.36 0.19 0.19 0.20 0.20 0.15 0.14 0.15 0.14 0.15 0.15 0.15 0.14 0.16 0.24 0.24 0.24 0.26 0.25 0.50 0.41 0.38 0.29 0.24 0.22 0.32 0.31 Cytometer§ CyAn CyAn CyAn CyAn CyAn CyAn CyAn CyAn CyAn FACS FACS FACS FACS CyAn CyAn CyAn CyAn CyAn CyAn CyAn CyAn CyAn CyAn CyAn CyAn CyAn CyAn FACS FACS FACS FACS FACS CyAn FACS FACS Genome Flow 216 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 n Verified Superfamily Tenthredinoidea JL Tenthredinoidea JL Tenthredinoidea JL Tenthredinoidea JL Tenthredinoidea JL Tenthredinoidea JL Tenthredinoidea JL Tenthredinoidea JL Tenthredinoidea JL Tenthredinoidea JL Tenthredinoidea JL Tenthredinoidea JL Tenthredinoidea JL Tenthredinoidea JL Tenthredinoidea JL Tenthredinoidea JL Tenthredinoidea JL Tenthredinoidea JL Tenthredinoidea JL Tenthredinoidea JL Tenthredinoidea JL Tenthredinoidea JL Tenthredinoidea JL Tenthredinoidea JL Tenthredinoidea JL Tenthredinoidea JL Tenthredinoidea JL Tenthredinoidea JL Tenthredinoidea JL Tenthredinoidea JL Tenthredinoidea JL Tenthredinoidea JL Tenthredinoidea JL Tenthredinoidea JL Tenthredinoidea JL • • • • • • • • • • • • Tenthredinidae Tenthredinidae Tenthredinidae Tenthredinidae Tenthredinidae Tenthredinidae Tenthredinidae Tenthredinidae Tenthredinidae Tenthredinidae Tenthredinidae • Tenthredinidae Tenthredinidae • Tenthredinidae • • Tenthredinidae Tenthredinidae • Tenthredinidae • • Tenthredinidae • • Tenthredinidae Tenthredinidae • Tenthredinidae Tenthredinidae • Tenthredinidae • • Tenthredinidae Tenthredinidae • Tenthredinidae • • Tenthredinidae Tenthredinidae • Tenthredinidae • • Tenthredinidae Tenthredinidae • Tenthredinidae • • Tenthredinidae Tenthredinidae • Tenthredinidae Identification† Family Subfamily • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • Species DbOT318 DbOT317 DbOT317 DbOT317 DbOT317 DbOT316 DbOT315 DbOT314 DbOT313 DbOT313 DbOT312 DbOT312 DbOT312 DbOT312 DbOT312 DbOT312 DbOT312 DbOT312 DbOT311 DbOT311 DbOT311 DbOT311 DbOT311 DbOT310 DbOT310 DbOT310 DbOT309 DbOT308 DbOT308 DbOT308 DbOT307 DbOT306 DbOT305 DbOT305 DbOT304 DbOT ID HYGEN143-10 HYGEN206-10 HYGEN157-10 HYGEN096-10 HYGEN055-10 HYGEN620-10 HYGEN655-10 HYGEN167-10 HYGEN180-10 HYGEN010-10 HYGEN539-10 HYGEN538-10 HYGEN537-10 HYGEN536-10 HYGEN535-10 HYGEN529-10 HYGEN522-10 HYGEN521-10 HYGEN162-10 HYGEN219-10 HYGEN211-10 HYGEN154-10 HYGEN128-10 HYGEN838-10 HYGEN835-10 HYGEN832-10 HYGEN039-10 HYGEN545-10 HYGEN544-10 HYGEN524-10 HYGEN523-10 HYGEN151-10 HYGEN837-10 HYGEN834-10 HYGEN218-10 f f f m f f f f m f f f f f f f m f f f f f f f f f f m f m f f f f f Process ID sex size (pg)∆ 0.22 0.22 0.23 0.24 0.27 0.28 0.32 0.30 0.26 0.29 0.29 0.29 0.61 0.57 0.58 0.59 0.56 0.23 0.22 0.23 0.23 0.23 0.23 0.23 0.23 0.49 0.51 0.36 0.39 0.22 0.21 0.21 0.22 0.19 0.24 Cytometer§ FACS CyAn CyAn FACS FACS FACS FACS FACS FACS CyAn CyAn CyAn FACS FACS FACS FACS FACS FACS FACS FACS FACS FACS FACS FACS FACS FACS FACS FACS FACS FACS FACS FACS FACS FACS FACS Genome Flow 217 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 n Verified Superfamily Tenthredinoidea JL Tenthredinoidea JL Tenthredinoidea JL Tenthredinoidea JL Tenthredinoidea JL Tenthredinoidea JL Tenthredinoidea JL Tenthredinoidea JL Tenthredinoidea JL Tenthredinoidea JL Tenthredinoidea JL Tenthredinoidea JL Tenthredinoidea JL Tenthredinoidea JL Tenthredinoidea JL Tenthredinoidea JL Tenthredinoidea JL Tenthredinoidea JL Tenthredinoidea JL Tenthredinoidea JL Tenthredinoidea JL Tenthredinoidea JL Tenthredinoidea JL Tenthredinoidea JL Tenthredinoidea JL Tenthredinoidea JL Tenthredinoidea JL Tenthredinoidea JL Vespoidea JL Vespoidea JL Vespoidea JL Vespoidea JL Vespoidea JL Vespoidea JL Vespoidea JL • • • • • • • • • • • • Tenthredinidae Tenthredinidae Tenthredinidae Tenthredinidae Formicidae Formicidae Formicidae Formicidae Formicidae Formicidae Formicidae • Tenthredinidae Tenthredinidae • Tenthredinidae • • Tenthredinidae Tenthredinidae • Tenthredinidae • • Tenthredinidae • • Tenthredinidae Tenthredinidae • Tenthredinidae Tenthredinidae • Tenthredinidae • • Tenthredinidae Tenthredinidae • Tenthredinidae • • Tenthredinidae Tenthredinidae • Tenthredinidae • • Tenthredinidae Tenthredinidae • Tenthredinidae • • Tenthredinidae Tenthredinidae • Tenthredinidae Identification† Family Subfamily • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • Species DbOT344 DbOT344 DbOT343 DbOT342 DbOT342 DbOT342 DbOT341 DbOT327 DbOT327 DbOT327 DbOT327 DbOT326 DbOT324 DbOT323 DbOT323 DbOT322 DbOT321 DbOT320 DbOT319 DbOT318 DbOT318 DbOT318 DbOT318 DbOT318 DbOT318 DbOT318 DbOT318 DbOT318 DbOT318 DbOT318 DbOT318 DbOT318 DbOT318 DbOT318 DbOT318 DbOT ID HYGEN667-10 HYGEN593-10 HYGEN660-10 HYGEN666-10 HYGEN658-10 HYGEN577-10 HYGEN628-10 HYGEN145-10 HYGEN249-10 HYGEN166-10 HYGEN165-10 HYGEN083-10 HYGEN843-10 HYGEN919-10 HYGEN916-10 HYGEN543-10 HYGEN105-10 HYGEN247-10 HYGEN520-10 HYGEN246-10 HYGEN243-10 HYGEN241-10 HYGEN240-10 HYGEN239-10 HYGEN238-10 HYGEN235-10 HYGEN228-10 HYGEN224-10 HYGEN210-10 HYGEN179-10 HYGEN178-10 HYGEN172-10 HYGEN171-10 HYGEN170-10 HYGEN132-10 m m m m m m m m m m m m m m m m f m f f f m f m f f f m f f f f f f f Process ID sex size (pg)∆ 0.23 0.24 0.24 0.23 0.23 0.23 0.23 0.23 0.24 0.22 0.23 0.24 0.23 0.20 0.24 0.24 0.28 0.27 0.29 0.25 0.30 0.29 0.24 0.36 0.30 0.29 0.28 0.26 0.48 0.51 0.48 0.48 0.36 0.32 0.31 Cytometer§ FACS FACS FACS FACS FACS FACS FACS FACS FACS FACS FACS FACS FACS FACS FACS FACS FACS FACS FACS FACS CyAn CyAn CyAn FACS FACS FACS FACS FACS FACS FACS FACS FACS FACS FACS FACS Genome Flow 218 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 n Verified Superfamily Vespoidea JL Vespoidea JL Vespoidea JL Vespoidea JL Vespoidea JL Vespoidea JL Vespoidea JL Vespoidea JL Vespoidea JL Vespoidea JL Vespoidea JL Vespoidea JL Vespoidea JL Vespoidea JL Vespoidea JL Vespoidea JL Vespoidea JL Vespoidea JL Vespoidea JL Vespoidea JL Vespoidea JL Vespoidea JL Vespoidea JL Vespoidea JL Vespoidea JL Vespoidea JL Vespoidea JL Vespoidea JL Vespoidea JL Vespoidea JL Vespoidea JL Vespoidea JL Vespoidea JL Vespoidea JL Vespoidea JL • • • • • • • • • • • • Vespidae Vespidae Vespidae Vespidae Vespidae Vespidae Vespidae Vespidae Vespidae Vespidae Vespidae • Formicidae Vespidae • Formicidae • • Formicidae Vespidae • Formicidae • • Formicidae • • Formicidae Vespidae • Formicidae Formicidae • Formicidae • • Formicidae Formicidae • Formicidae • • Formicidae Formicidae • Formicidae • • Formicidae Formicidae • Formicidae • • Formicidae Formicidae • Formicidae Identification† Family Subfamily • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • Species DbOT334 DbOT334 DbOT334 DbOT334 DbOT334 DbOT334 DbOT334 DbOT334 DbOT333 DbOT331 DbOT330 DbOT329 DbOT329 DbOT329 DbOT349 DbOT348 DbOT348 DbOT348 DbOT347 DbOT346 DbOT346 DbOT346 DbOT346 DbOT346 DbOT346 DbOT346 DbOT346 DbOT345 DbOT345 DbOT345 DbOT345 DbOT345 DbOT345 DbOT345 DbOT345 DbOT ID HYGEN633-10 HYGEN632-10 HYGEN631-10 HYGEN630-10 HYGEN629-10 HYGEN590-10 HYGEN556-10 HYGEN594-10 HYGEN848-10 HYGEN265-10 HYGEN581-10 HYGEN591-10 HYGEN573-10 HYGEN569-10 HYGEN564-10 HYGEN113-10 HYGEN056-10 HYGEN044-10 HYGEN664-10 HYGEN668-10 HYGEN665-10 HYGEN663-10 HYGEN657-10 HYGEN584-10 HYGEN579-10 HYGEN578-10 HYGEN571-10 HYGEN261-10 HYGEN260-10 HYGEN259-10 HYGEN258-10 HYGEN098-10 HYGEN052-10 HYGEN007-10 HYGEN006-10 f f f f f f f f f f f f f f f f f f f f f f f f f m f f m m m m m m m Process ID sex size (pg)∆ 0.36 0.36 0.37 0.36 0.36 0.35 0.35 0.35 0.64 0.65 0.65 0.70 0.66 0.70 0.67 0.65 0.30 0.31 0.30 0.29 0.34 0.27 0.29 0.28 0.38 0.24 0.11 0.29 0.27 0.29 0.28 0.28 0.27 0.27 0.27 Cytometer§ FACS FACS FACS FACS FACS FACS FACS FACS FACS FACS FACS FACS FACS FACS FACS FACS FACS FACS FACS FACS FACS FACS FACS FACS FACS FACS CyAn FACS FACS FACS FACS FACS FACS FACS FACS Genome Flow 219 Verified Superfamily Vespoidea JL Vespoidea JL Vespoidea JL Vespoidea JL Vespoidea JL Vespoidea JL Vespoidea JL Vespoidea JL Vespoidea JL Vespoidea JL Vespoidea JL Vespoidea JL Vespoidea JL Vespoidea JL • • • • • • • • • • • • • • Vespidae Vespidae Vespidae Vespidae Vespidae Vespidae Vespidae Vespidae Vespidae Vespidae Vespidae Vespidae Vespidae Vespidae Identification† Family Subfamily • • • • • • • • • • • • • • Species DbOT340 DbOT340 DbOT340 DbOT340 DbOT340 DbOT340 DbOT339 DbOT338 DbOT337 DbOT337 DbOT337 DbOT336 DbOT335 DbOT335 DbOT ID HYGEN661-10 HYGEN656-10 HYGEN653-10 HYGEN652-10 HYGEN570-10 HYGEN558-10 HYGEN557-10 HYGEN122-10 HYGEN662-10 HYGEN589-10 HYGEN574-10 HYGEN654-10 HYGEN555-10 HYGEN566-10 f m f f f f f m f m m m m m Process ID sex size (pg)∆ 0.28 0.27 0.19 0.19 0.22 0.19 0.26 0.23 0.27 0.27 0.27 0.26 0.27 0.26 Cytometer§ FACS FACS FACS FACS FACS FACS FACS FACS FACS FACS FACS FACS FACS FACS Genome Flow § Flow cytometer: acronyms of model of flow cytometer are as follows: CyAn = CyAn ADP, Cytomics = Cytomics FC 500, FACS = BD FACSCalibur flow cytometer, Quanta = Beckman Coulter Cell Lab Quanta SC MPL flow cytometer. ∆ Genome size estimation values of haploid males has been multiplied by two. ‡ Species names of Ritchie (1984) are considered nomina nuda (nom . nud .). However, those species names are retained in this thesis for comparison. † Identification verified: acronyms of names are as follows: BBCL = BioBest Canada Limited, BIC = Beneficial Insectary Canada, JL = Lima J. Family identifications by JL (n = 830). 840 841 842 843 844 845 846 847 848 849 850 851 852 853 n Appendix 3. Genome size estimation of Hymenoptera with information on specimen collection and biology. Collection‡ Parasitoid¶ n Guild# Date Site (Province) Team Voucher Placement Syndrome Host taxa Host stage GL, JL, JJW 2 1 2009-08 Guelph (ON) Phyto • • • • GL, JL, JJW 2 2 2009-08 Guelph (ON) Phyto • • • • GL, JL, JJW 2 3 2009-08 Guelph (ON) Phyto • • • • GL, JL, JJW 2 4 2009-08 Guelph (ON) Phyto • • • • GL, JL, JJW 2 5 2009-08 Guelph (ON) Phyto • • • • GL, JL, JJW 2 6 2009-08 Guelph (ON) Phyto • • • • GL, JL, JJW 2 7 2009-08 Guelph (ON) Phyto • • • • JL 2 8 2009-07 Churchill (MB) Phyto • • • • GL, JL, JJW 2 9 2009-08 Guelph (ON) Phyto • • • • GL, JL, JJW 2 10 2009-08 Guelph (ON) Phyto • • • • 2009-07 Churchill (MB) JL 2 11 Phyto • • • • JL 2 12 2009-07 Churchill (MB) Phyto • • • • JL 2 13 2009-07 Churchill (MB) Phyto • • • • GL, JL, JJW 2 14 2009-08 Guelph (ON) Phyto • • • • GL, JL, JJW 2 15 2009-08 Guelph (ON) Phyto • • • • GL, JL, JJW 2 16 2009-08 Guelph (ON) Phyto • • • • GL, JL, JJW 2 17 2009-08 Guelph (ON) Phyto • • • • GL, JL, JJW 2 18 2009-08 Guelph (ON) Phyto • • • • GL, JL, JJW 2 19 2009-08 Guelph (ON) Phyto • • • • GL, JL, JJW 2 20 2009-08 Guelph (ON) Phyto • • • • JL 2 21 2009-05 Sudbury (ON) Clepto eCto iDio Hym Egg GL, JL, JJW 2 22 2009-08 Guelph (ON) Phyto • • • • GL, JL, JJW 2 23 2009-08 Guelph (ON) Phyto • • • • GL, JL, TE 2 24 2010-08 Guelph (ON) Phyto • • • • GL, JL, JJW 2 25 2009-08 Guelph (ON) Phyto • • • • GL, JL, JJW 2 26 2009-08 Guelph (ON) Phyto • • • • GL, JL, JJW 2 27 2009-08 Guelph (ON) Phyto • • • • 2009-08 Guelph (ON) GL, JL, JJW 2 28 Phyto • • • • GL, JL, JJW 2 29 2009-08 Guelph (ON) Phyto • • • • GL, JL, JJW 2 30 2009-08 Guelph (ON) Pred • • • • GL, JL, JJW 2 31 2009-08 Guelph (ON) Pred • • • • GL, JL, TE 2 32 2010-08 Guelph (ON) Pred • • • • GL, JL, JJW 2 33 2009-08 Guelph (ON) Pred • • • • GL, JL, TE 2 34 2010-08 Guelph (ON) Pred • • • • GL, JL, TE 2 35 2010-08 Guelph (ON) Pred • • • • GL, JL, TE 2 36 2010-08 Guelph (ON) Par Endo Koino • • GL, JL, TE 2 37 2010-08 Guelph (ON) Par eCto iDio • • BBCL 2 38 2008-06 Leamington (ON) Par Endo iDio Hemi Nym, Ad BBCL 2 39 2008-06 Leamington (ON) Par Endo iDio Hemi Nym, Ad BBCL 2 40 2008-06 Leamington (ON) Par Endo iDio Hemi Nym, Ad BBCL 2 41 2008-06 Leamington (ON) Par Endo iDio Hemi Nym, Ad GL, JL, TE 2 42 2010-08 Guelph (ON) Par • • • • GL, JL, TE 2 43 2010-08 Guelph (ON) Par • • • • GL, JL, TE 2 44 2010-08 Guelph (ON) Par • • • • 2010-08 Guelph (ON) GL, JL, TE 2 45 Par • • • • GL, JL, TE 2 46 2010-08 Guelph (ON) Par • • • • GL, JL, TE 2 47 2010-08 Guelph (ON) Par • • • • GL, JL, TE 2 48 2010-08 Guelph (ON) Par • • • • BBCL 2 49 2008-06 Leamington (ON) Par • • • • 220 ‡ Date Collection Site (Province) Team 2008-06 Leamington (ON) BBCL 2008-06 Leamington (ON) BBCL 2 2010-08 Guelph (ON) GL, JL, TE 2 2010-08 Guelph (ON) GL, JL, TE 2 2010-08 Guelph (ON) GL, JL, TE 2 2010-08 Guelph (ON) GL, JL, TE 2 2010-08 Guelph (ON) GL, JL, TE 2 2010-08 Guelph (ON) GL, JL, TE 2 2010-08 Guelph (ON) GL, JL, TE 2 2010-08 Guelph (ON) GL, JL, TE 2 2010-08 Guelph (ON) GL, JL, TE 2 2010-08 Guelph (ON) GL, JL, TE 2 2010-08 Guelph (ON) GL, JL, TE 2 2010-08 Guelph (ON) GL, JL, TE 2 2010-08 Guelph (ON) GL, JL, TE 2 2010-08 Guelph (ON) GL, JL, TE 2 2010-08 Guelph (ON) GL, JL, TE 2 2010-08 Guelph (ON) GL, JL, TE 2 2010-08 Guelph (ON) GL, JL, TE 2 2010-08 Guelph (ON) GL, JL, TE 2 2010-08 Guelph (ON) GL, JL, TE 2 2010-08 Guelph (ON) GL, JL, TE 2 2010-08 Guelph (ON) GL, JL, TE 2 2010-08 Guelph (ON) GL, JL, TE 2 2010-08 Guelph (ON) GL, JL, TE 2 2010-08 Guelph (ON) GL, JL, TE 2 2010-08 Guelph (ON) GL, JL, TE 2 2010-08 Guelph (ON) GL, JL, TE 2 2010-08 Guelph (ON) GL, JL, TE 2 2009-05 Fort Macleod (AB) JDS 2 2009-05 Fort Macleod (AB) JDS 2 2008-09 Sudbury (ON) GL, JL 2 2009-05 Peachland (BC) RGL 2 2009-05 Peachland (BC) RGL 2 2009-05 Mantoulin I (ON) JDR, JDS 2 2009-05 Mantoulin I (ON) JDR, JDS 2 2009-05 Mantoulin I (ON) JDR, JDS 2 2009-05 Mantoulin I (ON) JDR, JDS 2 2009-05 Mantoulin I (ON) JDR, JDS 2 2009-05 Mantoulin I (ON) JDR, JDS 2 2010-08 Guelph (ON) GL, JL, TE 2 2010-08 Guelph (ON) GL, JL, TE 2 2010-08 Guelph (ON) GL, JL, TE 2 2010-08 Guelph (ON) GL, JL, TE 2 2010-08 Guelph (ON) GL, JL, TE 2 2010-08 Guelph (ON) GL, JL, TE 2 2008-06 Leamington (ON) BBCL 2 2008-06 Leamington (ON) BBCL 2 2009-08 Guelph (ON) GL, JL, JJW 2 2010-08 Guelph (ON) GL, JL, TE 2 n 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 # Voucher 2 Guild Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par 221 ¶ Parasitoid Placement Syndrome Host taxa • • • • • • • • Hemi • • Hemi • • Hemi • • Hemi • • Hemi • • Hemi • • Hemi • • Hemi • • Hemi • • Hemi • • Hemi Endo iDio Lep Endo iDio Lep Endo iDio Lep Endo Koino Lep Endo Koino Lep Endo Koino Lep Endo Koino Lep Endo Koino Lep Endo Koino Lep • • Hemi • • Hemi • • Hemi • • Hemi • • Hemi • • Hemi • Koino Hym Endo Koino Hym Endo Koino Hym Endo Koino Hym Endo Koino Hym Endo Koino Hym Endo Koino Hym Endo Koino Hym Endo Koino Hym Endo Koino Hym Endo Koino Hym Endo Koino Hym Endo iDio Lep Endo iDio Lep Endo iDio Lep Endo iDio Lep Endo iDio Lep • • • eCto iDio Dip eCto iDio Dip eCto iDio Lep eCto iDio Lep Host stage • • Nym, Ad Nym, Ad Nym, Ad Nym, Ad Nym, Ad Nym, Ad Nym, Ad Nym, Ad Nym, Ad Nym, Ad Nym, Ad Egg Egg Egg E-L E-L E-L E-L E-L E-L Nym, Ad Nym, Ad Nym, Ad Nym, Ad Nym, Ad Nym, Ad Larva Larva Larva Larva Larva Larva Larva Larva Larva Larva Larva Larva Egg Egg Egg Egg Egg • Larva Larva Larva Larva ‡ Date Collection Site (Province) Team 2010-08 Guelph (ON) GL, JL, TE 2 2010-08 Guelph (ON) GL, JL, TE 2 2010-08 Guelph (ON) GL, JL, TE 2 2010-08 Guelph (ON) GL, JL, TE 2 2010-08 Guelph (ON) GL, JL, TE 2 2010-08 Guelph (ON) GL, JL, TE 2 2009-05 Lethbridge (AB) JDS 2 2009-05 Lethbridge (AB) JDS 2 2009-05 Fort Macleod (AB) JDS 2 2010-08 Guelph (ON) GL, JL, TE 2 2010-08 Guelph (ON) GL, JL, TE 2 2010-08 Guelph (ON) GL, JL, TE 2 2010-08 Guelph (ON) GL, JL, TE 2 2010-08 Guelph (ON) GL, JL, TE 2 2010-08 Guelph (ON) GL, JL, TE 2 2010-08 Guelph (ON) GL, JL, TE 2 2009-08 Guelph (ON) GL, JL, JJW 2 2008-09 Sudbury (ON) GL, JL 2 2008-09 Sudbury (ON) GL, JL 2 2008-09 Sudbury (ON) GL, JL 2 2008-09 Sudbury (ON) GL, JL 2 2008-09 Sudbury (ON) GL, JL 2 2008-09 Sudbury (ON) GL, JL 2 2008-09 Sudbury (ON) GL, JL 2 2008-09 Sudbury (ON) GL, JL 2 2008-09 Sudbury (ON) GL, JL 2 2008-09 Sudbury (ON) GL, JL 2 2008-09 Sudbury (ON) GL, JL 2 2008-09 Sudbury (ON) GL, JL 2 2008-09 Sudbury (ON) GL, JL 2 2008-09 Sudbury (ON) GL, JL 2 2008-09 Sudbury (ON) GL, JL 2 2008-09 Sudbury (ON) GL, JL 2 2008-09 Sudbury (ON) GL, JL 2 2008-09 Sudbury (ON) GL, JL 2 2008-09 Sudbury (ON) GL, JL 2 2008-09 Sudbury (ON) GL, JL 2 2008-09 Sudbury (ON) GL, JL 2 2008-09 Sudbury (ON) GL, JL 2 2008-09 Sudbury (ON) GL, JL 2 2008-09 Sudbury (ON) GL, JL 2 2008-09 Sudbury (ON) GL, JL 2 2008-09 Sudbury (ON) GL, JL 2 2009-05 Chelmsford (ON) JDS 2 2009-05 Timmins (ON) ADR, JDS 2 2008-09 Sudbury (ON) GL, JL 2 2008-09 Sudbury (ON) GL, JL 2 2008-09 Sudbury (ON) GL, JL 2 2008-09 Sudbury (ON) GL, JL 2 2008-09 Sudbury (ON) GL, JL 2 n 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 # Voucher Guild Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par 222 ¶ Parasitoid Placement Syndrome Host taxa eCto iDio Lep eCto iDio Lep eCto iDio Lep eCto iDio Lep eCto iDio Lep eCto iDio Lep eCto iDio Hym eCto iDio Hym eCto iDio Hym eCto iDio • eCto iDio • eCto iDio • eCto iDio • eCto iDio • eCto iDio • eCto iDio • eCto iDio • eCto iDio Hym eCto iDio Hym eCto iDio Hym eCto iDio Hym eCto iDio Hym eCto iDio Hym eCto iDio Hym eCto iDio Hym eCto iDio Hym eCto iDio Hym eCto iDio Hym eCto iDio Hym eCto iDio Hym eCto iDio Hym eCto iDio Hym eCto iDio Hym eCto iDio Hym eCto iDio Hym eCto iDio Hym eCto iDio Hym eCto iDio Hym eCto iDio Hym eCto iDio Hym eCto iDio Hym eCto iDio Hym eCto iDio Hym eCto iDio Hym eCto iDio Hym eCto iDio Hym eCto iDio Hym eCto iDio Hym eCto iDio Hym eCto iDio Hym Host stage Larva Larva Larva Larva Larva Larva Larva Larva Larva • • • • • • • • Larva Larva Larva Larva Larva Larva Larva Larva Larva Larva Larva Larva Larva Larva Larva Larva Larva Larva Larva Larva Larva Larva Larva Larva Larva Larva Larva Larva Larva Larva Larva Larva Larva ‡ Date Collection Site (Province) Team 2008-09 Sudbury (ON) GL, JL 2 2008-09 Timmins (ON) GL, JL 2 2008-09 Sudbury (ON) GL, JL 2 2008-09 Sudbury (ON) GL, JL 2 2008-09 Sudbury (ON) GL, JL 2 2008-09 Sudbury (ON) GL, JL 2 2008-09 Sudbury (ON) GL, JL 2 2008-09 Sudbury (ON) GL, JL 2 2008-09 Sudbury (ON) GL, JL 2 2008-09 Sudbury (ON) GL, JL 2 2008-09 Sudbury (ON) GL, JL 2 2008-09 Sudbury (ON) GL, JL 2 2008-09 Sudbury (ON) GL, JL 2 2008-09 Sudbury (ON) GL, JL 2 2008-09 Sudbury (ON) GL, JL 2 2008-09 Sudbury (ON) GL, JL 2 2008-09 Sudbury (ON) GL, JL 2 2008-09 Sudbury (ON) GL, JL 2 2008-09 Sudbury (ON) GL, JL 2 2009-05 Chelmsford (ON) JL 2 2008-09 Sudbury (ON) GL, JL 2 2008-09 Sudbury (ON) GL, JL 2 2009-08 Guelph (ON) GL, JL, JJW 2 2010-08 Guelph (ON) GL, JL, TE 2 2010-08 Guelph (ON) GL, JL, TE 2 2010-08 Guelph (ON) GL, JL, TE 2 2010-08 Guelph (ON) GL, JL, TE 2 2010-08 Guelph (ON) GL, JL, TE 2 2010-08 Guelph (ON) GL, JL, TE 2 2010-08 Guelph (ON) GL, JL, TE 2 2010-08 Guelph (ON) GL, JL, TE 2 2010-08 Guelph (ON) GL, JL, TE 2 2010-08 Guelph (ON) GL, JL, TE 2 2010-08 Guelph (ON) GL, JL, TE 2 2010-08 Guelph (ON) GL, JL, TE 2 2010-08 Guelph (ON) GL, JL, TE 2 2010-08 Guelph (ON) GL, JL, TE 2 2010-08 Guelph (ON) GL, JL, TE 2 2010-08 Guelph (ON) GL, JL, TE 2 2010-08 Guelph (ON) GL, JL, TE 2 2010-08 Guelph (ON) GL, JL, TE 2 2010-08 Guelph (ON) GL, JL, TE 2 2010-08 Guelph (ON) GL, JL, TE 2 2010-08 Guelph (ON) GL, JL, TE 2 2010-08 Guelph (ON) GL, JL, TE 2 2010-08 Guelph (ON) GL, JL, TE 2 2010-08 Guelph (ON) GL, JL, TE 2 2010-08 Guelph (ON) GL, JL, TE 2 2008-09 Sudbury (ON) GL, JL 2 2008-09 Timmins (ON) GL, JL 2 n 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 # Voucher Guild Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par 223 ¶ Parasitoid Placement Syndrome Host taxa eCto iDio Hym eCto iDio Hym eCto iDio Hym eCto iDio Hym eCto iDio Hym eCto iDio Hym eCto iDio Hym eCto iDio Hym eCto iDio Hym eCto iDio Hym eCto iDio Hym eCto iDio Hym eCto iDio Hym eCto iDio Hym eCto iDio Hym eCto iDio Hym eCto iDio Hym eCto iDio Hym eCto iDio Hym eCto iDio Hym eCto iDio Hym eCto iDio Hym eCto iDio • eCto iDio Hym eCto iDio Hym eCto iDio Hym eCto iDio Hym eCto iDio Hym eCto iDio Hym eCto iDio Hym eCto iDio Hym eCto iDio Hym eCto iDio Hym eCto iDio Hym Endo iDio • Endo iDio • Endo iDio • Endo iDio • Endo iDio • Endo iDio • Endo iDio • Endo iDio • Endo iDio • Endo iDio • Endo iDio • Endo iDio • Endo iDio • Endo iDio • eCto iDio Hym eCto iDio Hym Host stage Larva Larva Larva Larva Larva Larva Larva Larva Larva Larva Larva Larva Larva Larva Larva Larva Larva Larva Larva Larva Larva Larva • Larva Larva Larva Larva Larva Larva Larva Larva Larva Larva Larva Egg Egg Egg Egg Egg Egg Egg Egg Egg Egg Egg Egg Egg Egg Larva Larva ‡ Date Collection Site (Province) Team 2008-09 Sudbury (ON) GL, JL 2 2008-09 Sudbury (ON) GL, JL 2 2008-09 Sudbury (ON) GL, JL 2 2008-09 Sudbury (ON) GL, JL 2 2008-09 Sudbury (ON) GL, JL 2 2008-09 Timmins (ON) GL, JL 2 2009-04 Renfrew (ON) MRS, JDS 2 2008-09 Timmins (ON) GL, JL 2 2008-09 Timmins (ON) GL, JL 2 2009-05 Chelmsford (ON) JDS 2 2009-04 Renfrew (ON) MRS, JDS 2 2009-04 Renfrew (ON) MRS, JDS 2 2008-09 Timmins (ON) GL, JL 2 2008-09 Timmins (ON) GL, JL 2 2008-09 Sudbury (ON) GL, JL 2 2010-08 Guelph (ON) GL, JL, TE 2 2010-08 Guelph (ON) GL, JL, TE 2 2010-08 Guelph (ON) GL, JL, TE 2 2010-08 Guelph (ON) GL, JL, TE 2 2010-08 Guelph (ON) GL, JL, TE 2 2009-08 Guelph (ON) GL, JL, JJW 2 2009-08 Guelph (ON) GL, JL, JJW 2 2009-08 Guelph (ON) GL, JL, JJW 2 2009-08 Guelph (ON) GL, JL, JJW 2 2010-08 Guelph (ON) GL, JL, TE 2 2009-05 Timmins (ON) ADR, JDS 2 2008-09 Sudbury (ON) GL, JL 2 2009-05 Waterton L N P (AB) JDS 2 2009-05 Lethbridge (AB) JDS 2 2009-05 Chelmsford (ON) JDS 2 2009-08 Guelph (ON) GL, JL, JJW 2 2009-08 Guelph (ON) GL, JL, JJW 2 2009-05 Sudbury (ON) JL 2 2009-05 Sudbury (ON) JL 2 2009-07 Churchill (MB) JL 2 2009-07 Churchill (MB) JL 2 2009-07 Churchill (MB) JL 2 2009-07 Churchill (MB) JL 2 2009-07 Churchill (MB) JL 2 2009-08 Guelph (ON) GL, JL, JJW 2 2009-07 Churchill (MB) JL 2 2010-08 Guelph (ON) GL, JL, TE 2 2010-08 Guelph (ON) GL, JL, TE 2 2010-08 Guelph (ON) GL, JL, TE 2 2010-08 Guelph (ON) GL, JL, TE 2 2010-08 Guelph (ON) GL, JL, TE 2 2010-08 Guelph (ON) GL, JL, TE 2 2010-08 Guelph (ON) GL, JL, TE 2 2010-08 Guelph (ON) GL, JL, TE 2 2009-05 Chelmsford (ON) JL 2 n 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 # Voucher Guild Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par 224 ¶ Parasitoid Placement Syndrome Host taxa eCto iDio Hym eCto iDio Hym eCto iDio Hym eCto iDio Hym eCto iDio Hym eCto iDio Hym eCto iDio Hym eCto iDio Hym eCto iDio Hym eCto iDio Hym eCto iDio Hym eCto iDio Hym eCto iDio Hym eCto iDio Hym eCto iDio Hym eCto iDio Hym eCto iDio Hym eCto iDio Hym eCto iDio Hym eCto iDio Hym Endo Koino Hym Endo Koino Hym Endo Koino Hym Endo Koino Hym Endo Koino Hym eCto iDio Hym eCto iDio Hym eCto iDio Hym eCto iDio Hym eCto iDio Hym eCto iDio Hym eCto iDio Hym eCto iDio Hym eCto iDio Hym eCto iDio • eCto iDio • eCto iDio • eCto iDio • eCto iDio • eCto iDio Hym eCto iDio • Endo iDio Hym Endo iDio Hym Endo iDio Hym Endo iDio Hym Endo iDio Hym Endo iDio Hym Endo iDio Hym Endo iDio Hym eCto iDio Hym Host stage Larva Larva Larva Larva Larva Larva Larva Larva Larva Larva Larva Larva Larva Larva Larva Larva Larva Larva Larva Larva Larva Larva Larva Larva Larva Larva Larva Larva Larva Larva Larva Larva Larva Larva • • • • • • • Pupa Pupa Pupa Pupa Pupa Pupa Pupa Pupa Larva ‡ Date Collection Site (Province) Team 2009-05 Chelmsford (ON) JL 2009-05 Chelmsford (ON) JL 2009-05 Chelmsford (ON) JL 2009-10 Sudbury (ON) JDS 2009-09 Deux Rivieres (ON) JDS 2009-05 Chelmsford (ON) JDS 2009-05 Timmins (ON) ADR, JDS 2009-05 Sudbury (ON) JDS 2009-05 Peachland (BC) RGL 2009-05 Peachland (BC) RGL 2009-04 Picton (ON) JDS 2009-04 Picton (ON) JDS 2009-05 Timmins (ON) ADR, JDS 2009-05 Timmins (ON) ADR, JDS 2009-05 Coaldale (AB) JDS 2006-05 Coaldale (AB) JDS 2006-05 Coaldale (AB) JDS 2006-05 Coaldale (AB) JDS 2009-05 Coaldale (AB) JDS 2009-04 Picton (ON) JDS 2009-04 Picton (ON) JDS 2009-04 Picton (ON) JDS 2009-04 Picton (ON) JDS 2009-04 Picton (ON) JDS 2009-05 Coaldale (AB) JDS 2009-05 Coaldale (AB) JDS 2009-05 Sudbury (ON) JDS 2008-09 Sudbury (ON) GL, JL 2008-09 Sudbury (ON) GL, JL 2008-09 Sudbury (ON) GL, JL 2008-09 Sudbury (ON) GL, JL 2009-05 Peachland (BC) RGL 2009-05 Fort Macleod (AB) JDS 2010-08 Guelph (ON) GL, JL, TE 2010-08 Guelph (ON) GL, JL, TE 2010-08 Guelph (ON) GL, JL, TE 2010-08 Guelph (ON) GL, JL, TE 2010-08 Guelph (ON) GL, JL, TE 2010-08 Guelph (ON) GL, JL, TE 2009-08 Guelph (ON) GL, JL, JJW 2010-08 Guelph (ON) GL, JL, TE 2008-06 Guelph (ON) BIC 2008-06 Guelph (ON) BIC 2008-06 Guelph (ON) BIC 2008-06 Guelph (ON) BIC 2008-06 Guelph (ON) BIC 2008-06 Guelph (ON) BIC 2010-08 Guelph (ON) GL, JL, TE 2010-08 Guelph (ON) GL, JL, TE 2010-08 Guelph (ON) GL, JL, TE n 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 ¶ Parasitoid Voucher Placement Syndrome Host taxa 2 Par eCto iDio Hym 2 Par eCto iDio Hym 2 Par eCto iDio Hym 2 Par eCto iDio Hym 2 Par eCto iDio Hym 2 Par eCto iDio Hym 2 Par eCto iDio Hym 2 Par eCto iDio Hym 2 Par eCto iDio Hym 2 Par eCto iDio Hym 2 Par eCto iDio Hym 2 Par eCto iDio Hym 2 Par eCto iDio Hym 2 Par eCto iDio Hym 2 Par eCto iDio Hym 2 Par eCto iDio Hym 2 Par eCto iDio Hym 2 Par eCto iDio Hym 2 Par eCto iDio Hym 2 Par eCto iDio Hym 2 Par eCto iDio Hym 2 Par eCto iDio Hym 2 Par eCto iDio Hym 2 Par eCto iDio Hym 2 Par eCto iDio Hym 2 Par eCto iDio Hym 2 Par eCto iDio Hym 2 Par eCto iDio Hym 2 Par eCto iDio Hym 2 Par eCto iDio Hym 2 Par eCto iDio Hym 2 Par eCto iDio Hym 2 Par eCto iDio Hym 2 Par eCto iDio Lep 2 Par eCto iDio Lep 2 Par eCto iDio Hym 2 Par eCto iDio Hym 2 Par eCto iDio Hym 2 Par eCto iDio Hym 2 Par eCto iDio Hym 2 Par eCto iDio Hym 2 Par Endo iDio • 2 Par Endo iDio • 2 Par Endo iDio • 2 Par Endo iDio • 2 Par Endo iDio • 2 Par Endo iDio • 2 Clepto eCto iDio Hym 2 Clepto eCto iDio Hym 2 Par eCto iDio • # Guild 225 Host stage Larva Larva Larva Larva Larva Larva Larva Larva Larva Larva Larva Larva Larva Larva Larva Larva Larva Larva Larva Larva Larva Larva Larva Larva Larva Larva Larva Larva Larva Larva Larva Larva Larva Pupa Pupa Larva Larva Larva Larva Larva Larva Egg Egg Egg Egg Egg Egg Egg Egg • ‡ Date Collection Site (Province) Team 2010-08 Guelph (ON) GL, JL, TE 2010-08 Guelph (ON) GL, JL, TE 2010-08 Guelph (ON) GL, JL, TE 2010-08 Guelph (ON) GL, JL, TE 2010-08 Guelph (ON) GL, JL, TE 2009-05 Timmins (ON) ADR, JDS 2009-05 Waterton L N P (AB) JDS 2009-05 Waterton L N P (AB) JDS 2009-04 Picton (ON) JDS 2009-04 Picton (ON) JDS 2009-05 Mantoulin I (ON) JDR, JDS 2009-05 Mantoulin I (ON) JDR, JDS 2009-05 Mantoulin I (ON) JDR, JDS 2009-05 Mantoulin I (ON) JDR, JDS 2009-05 Mantoulin I (ON) JDR, JDS 2009-05 Mantoulin I (ON) JDR, JDS 2008-09 Sudbury (ON) GL, JL 2008-09 Timmins (AB) GL, JL 2008-09 Timmins (AB) GL, JL 2008-09 Timmins (AB) GL, JL 2009-05 Timmins (ON) ADR, JDS 2009-05 Timmins (ON) ADR, JDS 2008-09 Sudbury (ON) GL, JL 2008-09 Sudbury (ON) GL, JL 2009-05 Chelmsford (ON) JDS 2009-04 Renfrew (ON) MRS, JDS 2009-05 Fort Macleod (AB) JDS 2009-05 Peachland (BC) RGL 2009-05 Fort Macleod (AB) JDS 2009-05 Peachland (BC) RGL 2009-05 Fort Macleod (AB) JDS 2009-05 Peachland (BC) RGL 2009-05 Fort Macleod (AB) JDS 2009-10 Sudbury (ON) JDS 2009-05 Peachland (BC) RGL 2009-09 Deux Rivieres (ON) JDS 2009-05 Mantoulin I (ON) JDS 2008-09 Sudbury (ON) GL, JL 2008-09 Sudbury (ON) GL, JL 2008-09 Sudbury (ON) GL, JL 2008-09 Sudbury (ON) GL, JL 2009-05 Mantoulin I (ON) JDR, JDS 2008-09 Timmins (AB) GL, JL 2009-05 Chelmsford (ON) JDS 2009-05 Mantoulin I (ON) JDR, JDS 2008-09 Timmins (AB) GL, JL 2008-09 Timmins (AB) GL, JL 2008-09 Timmins (AB) GL, JL 2008-09 Sudbury (ON) GL, JL 2008-09 Sudbury (ON) GL, JL n 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 ¶ Parasitoid Voucher Placement Syndrome Host taxa 2 Par eCto iDio Hemi 2 Induc • • • 2 Induc • • • 2 Induc • • • 2 Induc • • • 2 Induc • • • 2 Induc • • • 2 Induc • • • 2 Induc • • • 2 Induc • • • 2 Induc • • • 2 Induc • • • 2 Induc • • • 2 Induc • • • 2 Induc • • • 2 Induc • • • 2 Induc • • • 2 Induc • • • 2 Induc • • • 2 Induc • • • 2 Induc • • • 2 Induc • • • 2 Induc • • • 2 Induc • • • 2 Induc • • • 2 Induc • • • 2 Induc • • • 2 Induc • • • 2 Induc • • • 2 Induc • • • 2 Induc • • • 2 Induc • • • 2 Induc • • • 2 Induc • • • 2 Induc • • • 2 Induc • • • 2 Induc • • • 2 Induc • • • 2 Induc • • • 2 Induc • • • 2 Induc • • • 2 Induc • • • 2 Induc • • • 2 Induc • • • 2 Induc • • • 2 Induc • • • 2 Induc • • • 2 Induc • • • 2 Induc • • • 2 Induc • • • # Guild 226 Host stage Nym, Ad • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • ‡ Date Collection Site (Province) Team 2008-09 Timmins (AB) GL, JL 2008-09 Timmins (AB) GL, JL 2008-09 Sudbury (ON) GL, JL 2009-05 Sudbury (ON) JDS 2009-05 Mantoulin I (ON) JDR, JDS 2009-05 Mantoulin I (ON) JDR, JDS 2009-05 Mantoulin I (ON) JDR, JDS 2009-05 Mantoulin I (ON) JDR, JDS 2009-05 Mantoulin I (ON) JDR, JDS 2009-05 Mantoulin I (ON) JDR, JDS 2009-05 Sudbury (ON) JDS 2009-05 Chelmsford (ON) JDS 2009-05 Chelmsford (ON) JDS 2009-05 Chelmsford (ON) JDS 2009-05 Chelmsford (ON) JDS 2009-05 Chelmsford (ON) JL 2009-05 Chelmsford (ON) JL 2009-04 Renfrew (ON) MRS, JDS 2009-05 Sudbury (ON) JDS 2009-05 Sudbury (ON) JDS 2009-05 Sudbury (ON) JDS 2009-05 Sudbury (ON) JDS 2009-05 Sudbury (ON) JDS 2009-05 Sudbury (ON) JDS 2009-05 Peachland (BC) RGL 2009-05 Peachland (BC) RGL 2009-05 Peachland (BC) RGL 2008-09 Sudbury (ON) GL, JL 2009-05 Fort Macleod (AB) JDS 2008-09 Sudbury (ON) GL, JL 2008-09 Sudbury (ON) GL, JL 2008-09 Sudbury (ON) GL, JL 2008-09 Sudbury (ON) GL, JL 2009-05 Fort Macleod (AB) JDS 2008-09 Timmins (AB) GL, JL 2008-09 Timmins (AB) GL, JL 2008-09 Sudbury (ON) GL, JL 2008-09 Sudbury (ON) GL, JL 2008-09 Sudbury (ON) GL, JL 2008-09 Sudbury (ON) GL, JL 2008-09 Sudbury (ON) GL, JL 2009-05 Chelmsford (ON) JDS 2008-09 Timmins (AB) GL, JL 2008-09 Sudbury (ON) GL, JL 2008-09 Sudbury (ON) GL, JL 2008-09 Sudbury (ON) GL, JL 2008-09 Timmins (AB) GL, JL 2009-05 Fort Macleod (AB) JDS 2009-05 Sudbury (ON) JDS 2009-05 Fort Macleod (AB) JDS n 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 ¶ Parasitoid Voucher Placement Syndrome Host taxa 2 Induc • • • 2 Induc • • • 2 Induc • • • 2 Induc • • • 2 Induc • • • 2 Induc • • • 2 Induc • • • 2 Induc • • • 2 Induc • • • 2 Induc • • • 2 Induc • • • 2 Induc • • • 2 Induc • • • 2 Induc • • • 2 Induc • • • 2 Induc • • • 2 Induc • • • 2 InQ • • • 2 InQ • • • 2 InQ • • • 2 InQ • • • 2 InQ • • • 2 InQ • • • 2 InQ • • • 2 InQ • • • 2 InQ • • • 2 InQ • • • 2 InQ • • • 2 InQ • • • 2 InQ • • • 2 InQ • • • 2 InQ • • • 2 InQ • • • 2 InQ • • • 2 InQ • • • 2 InQ • • • 2 InQ • • • 2 InQ • • • 2 InQ • • • 2 InQ • • • 2 InQ • • • 2 InQ • • • 2 InQ • • • 2 InQ • • • 2 InQ • • • 2 InQ • • • 2 InQ • • • 2 InQ • • • 2 InQ • • • 2 InQ • • • # Guild 227 Host stage • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • ‡ Date Collection Site (Province) Team 2009-04 Renfrew (ON) MRS, JDS 2009-05 Waterton L N P (AB) JDS 2009-05 Waterton L N P (AB) JDS 2010-08 Guelph (ON) GL, JL, TE 2010-08 Guelph (ON) GL, JL, TE 2010-08 Guelph (ON) GL, JL, TE 2010-08 Guelph (ON) GL, JL, TE 2010-08 Guelph (ON) GL, JL, TE 2010-08 Guelph (ON) GL, JL, TE 2010-08 Guelph (ON) GL, JL, TE 2010-08 Guelph (ON) GL, JL, TE 2010-08 Guelph (ON) GL, JL, TE 2010-08 Guelph (ON) GL, JL, TE 2010-08 Guelph (ON) GL, JL, TE 2010-08 Guelph (ON) GL, JL, TE 2010-08 Guelph (ON) GL, JL, TE 2010-08 Guelph (ON) GL, JL, TE 2010-08 Guelph (ON) GL, JL, TE 2010-08 Guelph (ON) GL, JL, TE 2010-08 Guelph (ON) GL, JL, TE 2010-08 Guelph (ON) GL, JL, TE 2010-08 Guelph (ON) GL, JL, TE 2010-08 Guelph (ON) GL, JL, TE 2010-08 Guelph (ON) GL, JL, TE 2010-08 Guelph (ON) GL, JL, TE 2010-08 Guelph (ON) GL, JL, TE 2010-08 Guelph (ON) GL, JL, TE 2010-08 Guelph (ON) GL, JL, TE 2010-08 Guelph (ON) GL, JL, TE 2010-08 Guelph (ON) GL, JL, TE 2010-08 Guelph (ON) GL, JL, TE 2010-08 Guelph (ON) GL, JL, TE 2010-08 Guelph (ON) GL, JL, TE 2010-08 Guelph (ON) GL, JL, TE 2010-08 Guelph (ON) GL, JL, TE 2010-08 Guelph (ON) GL, JL, TE 2010-08 Guelph (ON) GL, JL, TE 2010-08 Guelph (ON) GL, JL, TE 2008-08 Guelph (ON) JL 2008-08 Guelph (ON) JL 2009-05 Sudbury (ON) JL 2010-08 Guelph (ON) GL, JL, TE 2010-08 Guelph (ON) GL, JL, TE 2010-08 Guelph (ON) GL, JL, TE 2010-08 Guelph (ON) GL, JL, TE 2010-08 Guelph (ON) GL, JL, TE 2010-08 Guelph (ON) GL, JL, TE 2010-08 Guelph (ON) GL, JL, TE 2010-08 Guelph (ON) GL, JL, TE 2010-08 Guelph (ON) GL, JL, TE n 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 ¶ Parasitoid Voucher Placement Syndrome Host taxa 2 InQ • • • 2 InQ • • • 2 InQ • • • 2 Induc • • • 2 Induc • • • 2 Induc • • • 2 Induc • • • 2 Induc • • • 2 Induc • • • 2 Induc • • • 2 Induc • • • 2 Induc • • • 2 Induc • • • 2 Induc • • • 2 Induc • • • 2 InQ • • • 2 InQ • • • 2 InQ • • • 2 InQ • • • 2 InQ • • • 2 InQ • • • 2 InQ • • • 2 InQ • • • 2 InQ • • • 2 InQ • • • 2 InQ • • • 2 InQ • • • 2 InQ • • • 2 InQ • • • 2 InQ • • • 2 InQ • • • 2 InQ • • • 2 InQ • • • 2 InQ • • • 2 InQ • • • 2 InQ • • • 2 InQ • • • 2 InQ • • • 2 Par Endo Koino Dip 2 Par Endo Koino Dip 2 Par Endo Koino Dip 2 Par Endo Koino Dip 2 Par Endo Koino Dip 2 Par Endo Koino Dip 2 Par Endo Koino Dip 2 Par Endo Koino Dip 2 Par Endo iDio • 2 Par Endo iDio • 2 Par Endo iDio • 2 Par Endo iDio • # Guild 228 Host stage • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • L-P L-P L-P L-P L-P L-P L-P L-P Pupa Pupa Pupa Pupa ‡ Date Collection Site (Province) Team 2010-08 Guelph (ON) GL, JL, TE 2010-08 Guelph (ON) GL, JL, TE 2010-08 Guelph (ON) GL, JL, TE 2010-08 Guelph (ON) GL, JL, TE 2010-08 Guelph (ON) GL, JL, TE 2010-08 Guelph (ON) GL, JL, TE 2010-08 Guelph (ON) GL, JL, TE 2009-08 Guelph (ON) GL, JL, JJW 2010-08 Guelph (ON) GL, JL, TE 2010-08 Guelph (ON) GL, JL, TE 2010-08 Guelph (ON) GL, JL, TE 2010-08 Guelph (ON) GL, JL, TE 2010-08 Guelph (ON) GL, JL, TE 2010-08 Guelph (ON) GL, JL, TE 2009-07 Churchill (MB) JL 2009-07 Churchill (MB) JL 2010-08 Guelph (ON) GL, JL, TE 2009-08 Guelph (ON) GL, JL, JJW 2009-08 Guelph (ON) GL, JL, JJW 2009-08 Guelph (ON) GL, JL, JJW 2009-05 Sudbury (ON) JL 2009-05 Sudbury (ON) JL 2008-06 Leamington (ON) BBCL 2008-06 Leamington (ON) BBCL 2008-06 Leamington (ON) BBCL 2008-06 Leamington (ON) BBCL 2008-06 Leamington (ON) BBCL 2009-07 Churchill (MB) JL 2010-08 Guelph (ON) GL, JL, TE 2010-08 Guelph (ON) GL, JL, TE 2010-08 Guelph (ON) GL, JL, TE 2010-08 Guelph (ON) GL, JL, TE 2009-07 Churchill (MB) JL 2010-08 Guelph (ON) GL, JL, TE 2010-08 Guelph (ON) GL, JL, TE 2010-08 Guelph (ON) GL, JL, TE 2010-08 Guelph (ON) GL, JL, TE 2009-08 Guelph (ON) GL, JL, JJW 2010-08 Guelph (ON) GL, JL, TE 2009-07 Churchill (MB) JL 2009-07 Churchill (MB) JL 2009-07 Churchill (MB) JL 2009-07 Churchill (MB) JL 2009-07 Churchill (MB) JL 2009-08 Guelph (ON) GL, JL, JJW 2009-08 Guelph (ON) GL, JL, JJW 2009-08 Guelph (ON) GL, JL, JJW 2009-08 Guelph (ON) GL, JL, JJW 2009-08 Guelph (ON) GL, JL, JJW 2009-08 Guelph (ON) GL, JL, JJW n 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 ¶ Parasitoid Voucher Placement Syndrome Host taxa 2 Par Endo iDio • 2 Par Endo iDio • 2 Par Endo iDio • 2 Par Endo iDio • 2 Par Endo iDio • 2 Clepto eCto iDio Hym 2 Par Endo Koino Coleo 2 Par Endo Koino Coleo 2 Par Endo Koino Lep 2 Par Endo Koino Lep 2 Par Endo Koino Lep 2 Par Endo Koino Lep 2 Par Endo Koino Lep 2 Par Endo Koino Lep 2 Par Endo iDio Hemi 2 Par Endo iDio Hemi 2 Par Endo Koino Lep 2 Par Endo Koino Lep 2 Par Endo Koino Lep 2 Par Endo Koino Lep 2 Par Endo iDio Hemi 2 Par Endo iDio Hemi 2 Par Endo iDio Hemi 2 Par Endo iDio Hemi 2 Par Endo iDio Hemi 2 Par Endo iDio Hemi 2 Par Endo iDio Hemi 2 Par eCto iDio Lep 2 Par eCto iDio Lep 2 Par eCto iDio Lep 2 Par eCto iDio Lep 2 Par eCto iDio Lep 2 Par eCto iDio Lep 2 Par Endo Koino Lep 2 Par Endo Koino Lep 2 Par Endo Koino Lep 2 Par Endo Koino Lep 2 Par Endo Koino Lep 2 Par Endo Koino Lep 2 Par eCto iDio Lep 2 Par Endo Koino Dip 2 Par Endo Koino Dip 2 Par Endo Koino Dip 2 Par Endo Koino Dip 2 Par Endo Koino Dip 2 Par Endo Koino Dip 2 Par Endo Koino Dip 2 Par Endo Koino Dip 2 Par Endo Koino Dip 2 Par Endo Koino Dip # Guild 229 Host stage Pupa Pupa Pupa Pupa Pupa Egg E-L Larva Larva Larva Larva Larva Larva Larva Nym, Ad Nym, Ad Larva Larva Larva Larva Nym, Ad Nym, Ad Nym, Ad Nym, Ad Nym, Ad Nym, Ad Nym, Ad Larva Larva Larva Larva Larva Larva Larva Larva Larva Larva Larva Larva Larva L-P L-P L-P L-P L-P L-P L-P L-P L-P L-P ‡ Date Collection Site (Province) Team 2009-08 Guelph (ON) 2009-08 2008-06 n 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 # Voucher GL, JL, JJW 2 Guelph (ON) GL, JL, JJW 2 Leamington (ON) BBCL 2 2008-06 Leamington (ON) BBCL 2 2008-06 Leamington (ON) BBCL 2 2009-07 Churchill (MB) JL 2 2009-07 Churchill (MB) JL 2 2009-07 Churchill (MB) JL 2 2010-08 Guelph (ON) GL, JL, TE 2 2010-08 Guelph (ON) GL, JL, TE 2 2010-08 Guelph (ON) GL, JL, TE 2 2010-08 Guelph (ON) GL, JL, TE 2 2010-08 Guelph (ON) GL, JL, TE 2 2010-08 Guelph (ON) GL, JL, TE 2 2010-08 Guelph (ON) GL, JL, TE 2 2010-08 Guelph (ON) GL, JL, TE 2 2009-07 Churchill (MB) JL 2 2009-07 Churchill (MB) JL 2 2009-07 Churchill (MB) JL 2 2009-07 Churchill (MB) JL 2 2009-07 Churchill (MB) JL 2 2009-07 Churchill (MB) JL 2 2009-07 Churchill (MB) JL 2 2009-05 Waterton L N P (AB) JDS 2 2009-05 Waterton L N P (AB) JDS 2 2008-09 Timmins (ON) GL, JL 2 2009-05 Chelmsford (ON) JL 2 2009-05 Chelmsford (ON) JL 2 2009-05 Mantoulin I (ON) JDR, JDS 2 2009-05 Mantoulin I (ON) JDR, JDS 2 2009-04 Picton (ON) JDS 2 2008-09 Sudbury (ON) GL, JL 2 2008-09 Sudbury (ON) GL, JL 2 2008-09 Sudbury (ON) GL, JL 2 2008-09 Sudbury (ON) GL, JL 2 2008-09 Sudbury (ON) GL, JL 2 2008-09 Sudbury (ON) GL, JL 2 2008-09 Sudbury (ON) GL, JL 2 2008-09 Sudbury (ON) GL, JL 2 2008-09 Sudbury (ON) GL, JL 2 2008-09 Sudbury (ON) GL, JL 2 2008-09 Sudbury (ON) GL, JL 2 2008-09 Sudbury (ON) GL, JL 2 2008-09 Sudbury (ON) GL, JL 2 2008-09 Sudbury (ON) GL, JL 2 2008-09 Sudbury (ON) GL, JL 2 2009-05 Coaldale (AB) JDS 2 2009-05 Coaldale (AB) JDS 2 2008-09 Timmins (ON) GL, JL 2 2008-09 Timmins (ON) GL, JL 2 Guild Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par 230 ¶ Parasitoid Placement Syndrome Host taxa Endo Koino Dip Endo Koino Dip Endo Koino Dip Endo Koino Dip Endo Koino Dip Endo Koino Lep Endo Koino Lep Endo Koino Lep Endo Koino Lep Endo Koino Lep Endo Koino Lep Endo Koino Lep Endo Koino Lep Endo Koino Lep Endo Koino Lep Endo Koino Lep Endo Koino Lep Endo Koino Lep Endo Koino Lep Endo Koino Lep Endo Koino Lep Endo Koino Lep Endo Koino Lep Endo Koino Hym Endo Koino Hym Endo Koino Hym Endo Koino Hym Endo Koino Hym Endo Koino Hym Endo Koino Hym Endo Koino Hym Endo Koino Hym Endo Koino Hym Endo Koino Hym Endo Koino Hym Endo Koino Hym Endo Koino Hym Endo Koino Hym Endo Koino Hym Endo Koino Hym Endo Koino Hym Endo Koino Hym Endo Koino Hym Endo Koino Hym Endo Koino Hym Endo Koino Hym Endo Koino Hym Endo Koino Hym Endo Koino Hym Endo Koino Hym Host stage L-P L-P L-P L-P L-P Larva Larva Larva Larva Larva Larva Larva Larva Larva Larva Larva E-L E-L E-L E-L E-L E-L E-L Larva Larva Larva Larva Larva Larva Larva Larva Larva Larva Larva Larva Larva Larva Larva Larva Larva Larva Larva Larva Larva Larva Larva Larva Larva Larva Larva ‡ Date Collection Site (Province) Team 2009-04 Picton (ON) JDS 2 2009-05 Chelmsford (ON) JDS 2 2009-05 Peachland (BC) RGL 2 2008-09 Sudbury (ON) GL, JL 2 2008-09 Sudbury (ON) GL, JL 2 2008-09 Sudbury (ON) GL, JL 2 2008-09 Sudbury (ON) GL, JL 2 2008-09 Timmins (ON) GL, JL 2 2009-07 Churchill (MB) JL 2 2009-07 Churchill (MB) JL 2 2009-08 Guelph (ON) GL, JL, JJW 2 2009-08 Guelph (ON) GL, JL, JJW 2 2009-07 Churchill (MB) JL 2 2010-08 Guelph (ON) GL, JL, TE 2 2009-07 Churchill (MB) JL 2 2009-07 Churchill (MB) JL 2 2009-07 Churchill (MB) JL 2 2009-07 Churchill (MB) JL 2 2009-07 Churchill (MB) JL 2 2009-07 Churchill (MB) JL 2 2009-08 Guelph (ON) GL, JL, JJW 2 2009-08 Guelph (ON) GL, JL, JJW 2 2009-08 Guelph (ON) GL, JL, JJW 2 2009-08 Guelph (ON) GL, JL, JJW 2 2009-07 Churchill (MB) JL 2 2010-08 Guelph (ON) GL, JL, TE 2 2010-08 Guelph (ON) GL, JL, TE 2 2009-08 Guelph (ON) GL, JL, JJW 2 2009-07 Churchill (MB) JL 2 2009-07 Churchill (MB) JL 2 2009-07 Churchill (MB) JL 2 2009-07 Churchill (MB) JL 2 2009-07 Churchill (MB) JL 2 2009-07 Churchill (MB) JL 2 2009-07 Churchill (MB) JL 2 2009-07 Churchill (MB) JL 2 2009-07 Churchill (MB) JL 2 2009-07 Churchill (MB) JL 2 2009-07 Churchill (MB) JL 2 2009-07 Churchill (MB) JL 2 2009-07 Churchill (MB) JL 2 2009-07 Churchill (MB) JL 2 2010-08 Guelph (ON) GL, JL, TE 2 2010-08 Guelph (ON) GL, JL, TE 2 2010-08 Guelph (ON) GL, JL, TE 2 2010-08 Guelph (ON) GL, JL, TE 2 2010-08 Guelph (ON) GL, JL, TE 2 2010-08 Guelph (ON) GL, JL, TE 2 2010-08 Guelph (ON) GL, JL, TE 2 2010-08 Guelph (ON) GL, JL, TE 2 n 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 # Voucher Guild Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par 231 ¶ Parasitoid Placement Syndrome Host taxa Endo Koino Hym Endo Koino Hym Endo Koino Hym Endo Koino Hym Endo Koino Hym Endo Koino Hym Endo Koino Hym Endo Koino Hym • • • • • • Endo iDio Lep Endo iDio Lep eCto iDio Lep eCto iDio Lep Endo iDio Lep Endo iDio Lep Endo iDio Lep eCto iDio Lep eCto iDio Lep eCto iDio Lep Endo Koino Lep Endo Koino Lep Endo Koino Lep Endo Koino Lep Endo Koino Lep Endo Koino Lep Endo Koino Lep Endo Koino Lep Endo Koino Lep Endo Koino Lep Endo Koino Lep Endo Koino Lep Endo Koino Lep Endo Koino Lep Endo Koino Lep Endo Koino Lep Endo Koino Lep Endo Koino Lep Endo Koino Lep Endo Koino Lep Endo Koino Lep Endo Koino Lep Endo Koino Lep • • • • • • • • • • • • • • • • • • • • • Host stage Larva Larva Larva Larva Larva Larva Larva Larva • • Pupa Pupa Pupa Pupa Pupa Pupa Pupa Pupa Pupa Pupa Larva Larva Larva Larva Larva Larva Larva Larva Larva Larva Larva Larva Larva Larva Larva Larva Larva Larva Larva Larva Larva L-P L-P • • • • • • • ‡ Date Collection Site (Province) Team 2010-08 Guelph (ON) GL, JL, TE 2 2010-08 Guelph (ON) GL, JL, TE 2 2010-08 Guelph (ON) GL, JL, TE 2 2009-07 Churchill (MB) JL 2 2009-07 Churchill (MB) JL 2 2010-08 Guelph (ON) GL, JL, TE 2 2010-08 Guelph (ON) GL, JL, TE 2 2010-08 Guelph (ON) GL, JL, TE 2 2010-08 Guelph (ON) GL, JL, TE 2 2010-08 Guelph (ON) GL, JL, TE 2 2010-08 Guelph (ON) GL, JL, TE 2 2009-08 Guelph (ON) GL, JL, JJW 2 2010-08 Guelph (ON) GL, JL, TE 2 2010-08 Guelph (ON) GL, JL, TE 2 2009-07 Churchill (MB) JL 2 2009-07 Churchill (MB) JL 2 2009-07 Churchill (MB) JL 2 2010-08 Guelph (ON) GL, JL, TE 2 2010-08 Guelph (ON) GL, JL, TE 2 2010-08 Guelph (ON) GL, JL, TE 2 2009-07 Churchill (MB) JL 2 2009-07 Churchill (MB) JL 2 2009-07 Churchill (MB) JL 2 2009-07 Churchill (MB) JL 2 2009-07 Churchill (MB) JL 2 2009-07 Churchill (MB) JL 2 2009-07 Churchill (MB) JL 2 2009-07 Churchill (MB) JL 2 2009-07 Churchill (MB) JL 2 2009-07 Churchill (MB) JL 2 2009-07 Churchill (MB) JL 2 2009-07 Churchill (MB) JL 2 2009-05 Sudbury (ON) JL 2 2009-05 Sudbury (ON) JL 2 2009-05 Sudbury (ON) JL 2 2009-08 Guelph (ON) GL, JL, JJW 2 2009-07 Churchill (MB) JL 2 2009-07 Churchill (MB) JL 2 2009-07 Churchill (MB) JL 2 2010-08 Guelph (ON) GL, JL, TE 2 2010-08 Guelph (ON) GL, JL, TE 2 2010-08 Guelph (ON) GL, JL, TE 2 2009-07 Churchill (MB) JL 2 2010-08 Guelph (ON) GL, JL, TE 2 2010-08 Guelph (ON) GL, JL, TE 2 2010-08 Guelph (ON) GL, JL, TE 2 2010-08 Guelph (ON) GL, JL, TE 2 2010-08 Guelph (ON) GL, JL, TE 2 2009-08 Guelph (ON) GL, JL, JJW 2 2009-08 Guelph (ON) GL, JL, JJW 2 n 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 # Voucher Guild Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par 232 ¶ Parasitoid Placement Syndrome Host taxa • • • • • • • • • Endo Koino Dip Endo Koino Dip Endo Koino Hym Endo Koino Hym Endo Koino Hym Endo Koino Hym Endo Koino Hym Endo Koino Hym Endo Koino Hym Endo Koino Hym Endo Koino Hym eCto Koino Hym eCto Koino Hym • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • Endo Koino Dip eCto Koino Hym eCto Koino Hym eCto Koino Hym Endo Koino Dip Endo Koino Dip Endo Koino Dip Endo Koino Dip Endo iDio Lep Endo iDio Lep Endo iDio Lep • iDio Lep eCto iDio Lep eCto iDio Lep eCto iDio Lep eCto iDio Lep eCto iDio Lep Endo iDio Lep Endo iDio Lep Host stage • • • L-P L-P Larva Larva Larva Larva Larva Larva Larva Larva Larva Larva Larva • • • • • • • • • • • • • • • L-P Larva Larva Larva L-P L-P L-P L-P Pupa Pupa Pupa Pupa Pupa Pupa Pupa Pupa Pupa Pupa Pupa ‡ Date Collection Site (Province) Team 2009-07 Churchill (MB) JL 2 2010-08 Guelph (ON) GL, JL, TE 2 2010-08 Guelph (ON) GL, JL, TE 2 2010-08 Guelph (ON) GL, JL, TE 2 2010-08 Guelph (ON) GL, JL, TE 2 2009-08 Guelph (ON) GL, JL, JJW 2 2009-08 Guelph (ON) GL, JL, JJW 2 2010-08 Guelph (ON) GL, JL, TE 2 2010-08 Guelph (ON) GL, JL, TE 2 2010-08 Guelph (ON) GL, JL, TE 2 2010-08 Guelph (ON) GL, JL, TE 2 2009-07 Churchill (MB) JL 2 2009-05 Sudbury (ON) JL 2 2009-05 Sudbury (ON) JL 2 2009-07 Churchill (MB) JL 2 2009-07 Churchill (MB) JL 2 2009-08 Guelph (ON) GL, JL, JJW 2 2010-08 Guelph (ON) GL, JL, TE 2 2010-08 Guelph (ON) GL, JL, TE 2 2009-07 Churchill (MB) JL 2 2009-07 Churchill (MB) JL 2 2009-07 Churchill (MB) JL 2 2009-07 Churchill (MB) JL 2 2009-07 Churchill (MB) JL 2 2009-07 Churchill (MB) JL 2 2009-07 Churchill (MB) JL 2 2009-08 Guelph (ON) GL, JL, JJW 2 2009-07 Churchill (MB) JL 2 2009-07 Churchill (MB) JL 2 2009-07 Churchill (MB) JL 2 2009-07 Churchill (MB) JL 2 2009-07 Churchill (MB) JL 2 2009-07 Churchill (MB) JL 2 2009-07 Churchill (MB) JL 2 2009-07 Churchill (MB) JL 2 2009-07 Churchill (MB) JL 2 2009-07 Churchill (MB) JL 2 2009-08 Guelph (ON) GL, JL, JJW 2 2009-08 Guelph (ON) GL, JL, JJW 2 2009-07 Churchill (MB) JL 2 2009-08 Guelph (ON) GL, JL, JJW 2 2009-07 Churchill (MB) JL 2 2010-08 Guelph (ON) GL, JL, TE 2 2010-08 Guelph (ON) GL, JL, TE 2 2010-08 Guelph (ON) GL, JL, TE 2 2010-08 Guelph (ON) GL, JL, TE 2 2010-08 Guelph (ON) GL, JL, TE 2 2010-08 Guelph (ON) GL, JL, TE 2 2009-07 Churchill (MB) JL 2 2009-07 Churchill (MB) JL 2 n 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 # Voucher Guild Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par Par 233 ¶ Parasitoid Placement Syndrome Host taxa Endo Koino Dip • • • • • • • • • • • • eCto iDio Lep eCto iDio Lep eCto iDio Lep eCto iDio Lep eCto iDio Lep eCto iDio Lep • • • Endo Koino Hym Endo Koino Hym Endo Koino Hym • • • Endo Koino Lep Endo Koino Hym Endo Koino Lep Endo Koino Lep Endo Koino Lep Endo Koino Lep Endo Koino Lep Endo Koino Lep Endo Koino Lep Endo Koino Lep Endo Koino Lep Endo Koino Lep Endo Koino Lep Endo Koino Lep Endo Koino Lep Endo Koino Lep eCto iDio Lep eCto iDio Lep eCto iDio Lep eCto iDio Lep eCto iDio Lep • • • eCto iDio Lep eCto iDio Lep eCto iDio Lep eCto iDio Lep eCto Koino Hym eCto Koino Hym eCto Koino Hym eCto Koino Hym eCto Koino Hym eCto Koino Hym Endo iDio Lep Endo Koino Dip Host stage L-P • • • • Pupa Pupa Pupa Pupa Pupa Pupa • Larva Larva Larva • L-P Larva Larva Larva Larva Larva Larva Larva Larva Larva Larva Larva Larva Larva Larva Larva Pupa Pupa Pupa Pupa Pupa • Pupa Pupa Pupa Pupa Larva Larva Larva Larva Larva Larva Pupa E-L ‡ Date Collection Site (Province) Team 2010-08 Guelph (ON) GL, JL, TE 2010-08 Guelph (ON) GL, JL, TE 2010-08 Guelph (ON) GL, JL, TE 2010-08 Guelph (ON) GL, JL, TE 2010-08 Guelph (ON) GL, JL, TE 2010-08 Guelph (ON) GL, JL, TE 2010-08 Guelph (ON) GL, JL, TE 2010-08 Guelph (ON) GL, JL, TE 2010-08 Guelph (ON) GL, JL, TE 2010-08 Guelph (ON) GL, JL, TE 2010-08 Guelph (ON) GL, JL, TE 2010-08 Guelph (ON) GL, JL, TE 2010-08 Guelph (ON) GL, JL, TE 2010-08 Guelph (ON) GL, JL, TE 2010-08 Guelph (ON) GL, JL, TE 2010-08 Guelph (ON) GL, JL, TE 2010-08 Guelph (ON) GL, JL, TE 2010-08 Guelph (ON) GL, JL, TE 2010-08 Guelph (ON) GL, JL, TE 2010-08 Guelph (ON) GL, JL, TE 2010-08 Guelph (ON) GL, JL, TE 2010-08 Guelph (ON) GL, JL, TE 2010-08 Guelph (ON) GL, JL, TE 2010-08 Guelph (ON) GL, JL, TE 2010-08 Guelph (ON) GL, JL, TE 2010-08 Guelph (ON) GL, JL, TE 2010-08 Guelph (ON) GL, JL, TE 2009-08 Guelph (ON) GL, JL, JJW 2009-05 Sudbury (ON) JL 2009-08 Guelph (ON) GL, JL, JJW 2009-07 Churchill (MB) JL 2009-05 Sudbury (ON) JL 2010-08 Guelph (ON) GL, JL, TE 2009-07 Churchill (MB) JL 2009-07 Churchill (MB) JL 2009-07 Churchill (MB) JL 2010-08 Guelph (ON) GL, JL, TE 2010-08 Guelph (ON) GL, JL, TE 2009-07 Churchill (MB) JL 2009-05 Sudbury (ON) JL 2009-05 Sudbury (ON) JL 2009-05 Sudbury (ON) JL 2009-05 Sudbury (ON) JL 2009-07 Churchill (MB) JL 2010-08 Guelph (ON) GL, JL, TE 2010-08 Guelph (ON) GL, JL, TE 2010-08 Guelph (ON) GL, JL, TE 2009-07 Churchill (MB) JL 2009-07 Churchill (MB) JL 2009-07 Churchill (MB) JL n 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 ¶ Parasitoid Voucher Placement Syndrome Host taxa 2 Par Endo Koino Dip 2 Par Endo Koino Dip 2 Par Endo Koino Dip 2 Par Endo Koino Dip 2 Par Endo Koino Dip 2 Par Endo Koino Dip 2 Par Endo iDio Hemi 2 Par Endo iDio Hemi 2 Par Endo iDio Hemi 2 Par Endo iDio Hemi 2 Par Endo iDio Hemi 2 Par Endo iDio Hemi 2 Par Endo iDio Hemi 2 Par Endo iDio Dip 2 Par Endo iDio Dip 2 Par Endo iDio Dip 2 Par Endo iDio Dip 2 Par Endo iDio Lep 2 Par Endo iDio Lep 2 Par Endo iDio Lep 2 Par Endo iDio Lep 2 Par Endo iDio Lep 2 Par Endo iDio Lep 2 Par Endo iDio Lep 2 Par Endo iDio Lep 2 Par Endo iDio Lep 2 Par Endo iDio Lep 2 Par Endo Koino Coleo 2 Phyto • • • 2 Phyto • • • 2 Phyto • • • 2 Phyto • • • 2 Phyto • • • 2 Phyto • • • 2 Phyto • • • 2 Phyto • • • 2 Phyto • • • 2 Phyto • • • 2 Phyto • • • 2 Phyto • • • 2 Phyto • • • 2 Phyto • • • 2 Phyto • • • 2 Phyto • • • 2 Phyto • • • 2 Phyto • • • 2 Phyto • • • 2 Phyto • • • 2 Phyto • • • 2 Phyto • • • # Guild 234 Host stage E-L E-L E-L E-L E-L E-L Egg Egg Egg Egg Egg Egg Egg Egg Egg Egg Egg Egg Egg Egg Egg Egg Egg Egg Egg Egg Egg Larva • • • • • • • • • • • • • • • • • • • • • • ‡ Date Collection Site (Province) Team 2009-07 Churchill (MB) JL 2009-07 Churchill (MB) JL 2009-05 Sudbury (ON) JL 2009-05 Sudbury (ON) JL 2009-05 Sudbury (ON) JL 2009-05 Sudbury (ON) JL 2009-05 Sudbury (ON) JL 2009-05 Sudbury (ON) JL 2009-05 Sudbury (ON) JL 2009-05 Sudbury (ON) JL 2009-07 Churchill (MB) JL 2009-07 Churchill (MB) JL 2009-07 Churchill (MB) JL 2009-08 Guelph (ON) GL, JL, JJW 2009-08 Guelph (ON) GL, JL, JJW 2009-07 Churchill (MB) JL 2009-07 Churchill (MB) JL 2009-07 Churchill (MB) JL 2009-07 Churchill (MB) JL 2009-07 Churchill (MB) JL 2009-07 Churchill (MB) JL 2009-07 Churchill (MB) JL 2009-07 Churchill (MB) JL 2009-07 Churchill (MB) JL 2009-07 Churchill (MB) JL 2009-07 Churchill (MB) JL 2009-07 Churchill (MB) JL 2009-07 Churchill (MB) JL 2009-07 Churchill (MB) JL 2009-07 Churchill (MB) JL 2009-07 Churchill (MB) JL 2009-07 Churchill (MB) JL 2009-07 Churchill (MB) JL 2009-07 Churchill (MB) JL 2009-07 Churchill (MB) JL 2009-07 Churchill (MB) JL 2009-05 Sudbury (ON) JL 2009-07 Churchill (MB) JL 2009-07 Churchill (MB) JL 2009-05 Sudbury (ON) JL 2010-08 Guelph (ON) GL, JL, TE 2010-08 Guelph (ON) GL, JL, TE 2010-08 Guelph (ON) GL, JL, TE 2009-07 Churchill (MB) JL 2009-07 Churchill (MB) JL 2009-07 Churchill (MB) JL 2009-07 Churchill (MB) JL 2009-07 Churchill (MB) JL 2009-08 Guelph (ON) GL, JL, JJW 2009-08 Guelph (ON) GL, JL, JJW n 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 ¶ Parasitoid Voucher Placement Syndrome Host taxa 2 Phyto • • • 2 Phyto • • • 2 Miner • • • 2 Miner • • • 2 Miner • • • 2 Miner • • • 2 Miner • • • 2 Miner • • • 2 Miner • • • 2 Miner • • • 2 Phyto • • • 2 Phyto • • • 2 Phyto • • • 2 Phyto • • • 2 Phyto • • • 2 Phyto • • • 2 Phyto • • • 2 Phyto • • • 2 Phyto • • • 2 Phyto • • • 2 Phyto • • • 2 Phyto • • • 2 Phyto • • • 2 Phyto • • • 2 Phyto • • • 2 Phyto • • • 2 Phyto • • • 2 Phyto • • • 2 Phyto • • • 2 Phyto • • • 2 Phyto • • • 2 Phyto • • • 2 Phyto • • • 2 Phyto • • • 2 Phyto • • • 2 Phyto • • • 2 Phyto • • • 2 • • • • 2 • • • • 2 Induc • • • 2 Induc • • • 2 Induc • • • 2 Phyto • • • 2 Phyto • • • 2 Phyto • • • 2 Phyto • • • 2 Phyto • • • 2 Phyto • • • 2 Pred • • • 2 Pred • • • # Guild 235 Host stage • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • ‡ Date Collection Site (Province) Team 2009-08 Guelph (ON) GL, JL, JJW 2 2009-08 Guelph (ON) GL, JL, JJW 2 2009-08 Guelph (ON) GL, JL, JJW 2 2009-08 Guelph (ON) GL, JL, JJW 2 2009-08 Guelph (ON) GL, JL, JJW 2 2009-07 Churchill (MB) JL 2 2009-07 Churchill (MB) JL 2 2009-07 Churchill (MB) JL 2 2009-07 Churchill (MB) JL 2 2009-07 Churchill (MB) JL 2 2009-07 Churchill (MB) JL 2 2009-07 Churchill (MB) JL 2 2009-07 Churchill (MB) JL 2 2009-08 Guelph (ON) GL, JL, JJW 2 2009-08 Guelph (ON) GL, JL, JJW 2 2009-08 Guelph (ON) GL, JL, JJW 2 2009-08 Guelph (ON) GL, JL, JJW 2 2009-08 Guelph (ON) GL, JL, JJW 2 2009-08 Guelph (ON) GL, JL, JJW 2 2009-08 Guelph (ON) GL, JL, JJW 2 2009-08 Guelph (ON) GL, JL, JJW 2 2009-08 Guelph (ON) GL, JL, JJW 2 2009-07 Churchill (MB) JL 2 2009-07 Churchill (MB) JL 2 2009-07 Churchill (MB) JL 2 2009-08 Guelph (ON) GL, JL, JJW 2 2009-08 Guelph (ON) GL, JL, JJW 2 2009-08 Guelph (ON) GL, JL, JJW 2 2009-08 Guelph (ON) GL, JL, JJW 2 2009-08 Guelph (ON) GL, JL, JJW 2 2009-08 Guelph (ON) GL, JL, JJW 2 2010-08 (BC) NJ 2 2009-08 Guelph (ON) GL, JL, JJW 2 2009-08 Guelph (ON) GL, JL, JJW 2 2009-08 Guelph (ON) GL, JL, JJW 2 2009-08 Guelph (ON) GL, JL, JJW 2 2009-08 Guelph (ON) GL, JL, JJW 2 2009-08 Guelph (ON) GL, JL, JJW 2 2009-08 Guelph (ON) GL, JL, JJW 2 2009-08 Guelph (ON) GL, JL, JJW 2 2009-08 Guelph (ON) GL, JL, JJW 2 2009-08 Guelph (ON) GL, JL, JJW 2 2009-08 Guelph (ON) GL, JL, JJW 2 2009-08 Guelph (ON) GL, JL, JJW 2 2009-08 Guelph (ON) GL, JL, JJW 2 2009-08 Guelph (ON) GL, JL, JJW 2 2009-07 Churchill (MB) JL 2 2009-08 Guelph (ON) GL, JL, JJW 2 2009-08 Guelph (ON) GL, JL, JJW 2 2009-08 Guelph (ON) GL, JL, JJW 2 n 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 # Voucher Guild Pred Pred Pred Pred Pred Pred Pred Pred Pred Pred Pred Pred Pred Pred Pred Pred Pred Pred Pred Pred Pred Pred Pred Pred Pred Pred Pred Pred Pred Pred Pred Pred Pred Pred Pred Pred Pred Pred Pred Pred Pred Pred Pred Pred Pred Pred Pred Pred Pred Pred 236 ¶ Parasitoid Placement Syndrome Host taxa • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • Host stage • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • ‡ Date Collection Site (Province) Team 2009-08 Guelph (ON) GL, JL, JJW 2 2009-08 Guelph (ON) GL, JL, JJW 2 2009-08 Guelph (ON) GL, JL, JJW 2 2009-08 Guelph (ON) GL, JL, JJW 2 n 850 851 852 853 # Voucher Guild Pred Pred Pred Pred ¶ Parasitoid Placement Syndrome Host taxa • • • • • • • • • • • • Host stage • • • • ‡ Collection team: acronyms of names are as follows: BBCL = BioBest Canada Limited, BIC = Beneficial Insectary Canada, TE = Elliott T, NJ = Jeffery N, RGL = Lalonde RG, GL = Lima G, JL = Lima J, ADR = Renelli AD, JDR = Renelli JD, JDS = Shorthouse JD, MRS = Shorthouse MR, JJW = Wilson JJ. Collection voucher: acronym of location is as follows: 2 = JLima collection (University of Guelph). curator = JL. volunteers: TE, NJ, GL and JJW. # Guild: acronyms of guilds are as follows: Clepto = cleptoparasite, Induc = inducer, InQ = inquiline, Miner = leaf miner, Par = parasitoid, Phyto = phytophagous, Pred = predator. ¶ Parasitoid placement: acronyms of placement are as follows: eCto = ectoparasitoid, Endo = endoparasitoid. Parasitoid syndrome: acronyms of syndrome are as follows: iDio = idiobiont, Koino = koinobiont. Parasitoid host taxa: acronyms of taxa are as follows: Coleo = Coleoptera, Dip = Diptera, Hemi = Hemiptera, Hym = Hymenoptera, Lep = Lepidoptera. Parasitoid host stgae: acronyms of host stage are as follows: Ad = Adult, E-L = egg-larva, L-P = larva-pupa, Nym = nymph. 237 238 Appendix 4. Published studies of genome size estimation of Hymenoptera with information on biology. Identification Genome † (pg) size Family Subfamily Species Study Superfamily Apidae Andreninae Andrena dunningi 6 Apoidea 0.50 Apidae Apinae Apis mellifera JL, 6, 11 Apoidea 0.25 Apidae Apinae Bombus bimaculatus 6 Apoidea 0.34 Apidae Apinae Bombus impatiens JL, 6, 10 Apoidea 0.50 Apidae Apinae Bombus occidentalis 10 Apoidea 0.46 Apidae Apinae Bombus terrestris 1 Apoidea 0.53 Apoidea Apidae Apinae Lestrimelitta sp 8 0.46 Apidae Apinae Melipona asilvai 7 Apoidea 0.29 Apidae Apinae Melipona bicolor 7 Apoidea 0.28 Apidae Apinae Melipona capixaba 7 Apoidea 1.38 Apidae Apinae Melipona compressipes 7 Apoidea 0.78 Apidae Apinae Melipona crinita 7 Apoidea 0.73 Apidae Apinae Melipona eburnea 7 Apoidea 1.11 Apidae Apinae Melipona fuscopilosa 7 Apoidea 1.10 Apidae Apinae Melipona grandis 7 Apoidea 0.95 Apidae Apinae Melipona mandacaia 7 Apoidea 0.35 Apidae Apinae Melipona marginata 7 Apoidea 0.28 Apidae Apinae Melipona mondury 5, 7 Apoidea 0.95 Apidae Apinae Melipona quadrifasciata 7 Apoidea 0.27 Apidae Apinae Melipona quinquefasciata 7 Apoidea 0.70 Apidae Apinae Melipona rufiventris 5, 7 Apoidea 0.93 Apidae Apinae Melipona scutellaris 7 Apoidea 1.08 Apidae Apinae Melipona seminigra 7 Apoidea 0.85 Apoidea Apidae Apinae Melipona subnitida 7 0.27 Apidae Apinae Scaptotrigona xantotricha 5 Apoidea 0.43 Apidae Apinae Melissodes desponsa JL, 6 Apoidea 0.52 Apidae Apinae Melissodes illata 6 Apoidea 0.37 Apidae Apinae Ceratina calcarata 6 Apoidea 0.68 Apidae Apinae Ceratina dupla dupla 6 Apoidea 0.59 Apidae Colletinae Hylaeus affinis JL, 6 Apoidea 0.64 Apidae Halictinae Augochloropsis metallica 6 Apoidea 0.90 Apidae Halictinae Halictus ligatus 6 Apoidea 0.60 Apidae Megachilinae Megachile rotundata 6 Apoidea 0.83 Crabronidae Bembicinae Gorytes atricornis 6 Apoidea 0.48 Crabronidae Crabroninae Ectemnius continuus 6 Apoidea 0.38 Crabronidae Crabroninae Larra bicolor 6 Apoidea 0.19 Sphecidae Sceliphrinae Chalybion californicus JL, 6 Apoidea 0.54 Parasitoid¶ Placement Syndrome Host taxa Phyto • • • Phyto • • • Phyto • • • Phyto • • • Phyto • • • Phyto • • • Phyto • • • Phyto • • • Phyto • • • Phyto • • • Phyto • • • Phyto • • • Phyto • • • Phyto • • • Phyto • • • Phyto • • • Phyto • • • Phyto • • • Phyto • • • Phyto • • • Phyto • • • Phyto • • • Phyto • • • Phyto • • • Phyto • • • Phyto • • • Phyto • • • Phyto • • • Phyto • • • Phyto • • • Phyto • • • Phyto • • • Phyto • • • Pred • • • Pred • • • Pred • • • Pred • • • Guild# Host stage • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 239 Study† Superfamily JL, 6 Apoidea 10 Cephoidea 6 Chalcidoidea JL, 6 Chalcidoidea JL, 6 Chalcidoidea 6 Chalcidoidea JL, 6 Chalcidoidea JL, 6 Chalcidoidea 3 Chalcidoidea JL, 2, 6 Chalcidoidea JL, 6 Chalcidoidea 6 Chalcidoidea 9 Cynipoidea 9 Cynipoidea 9 Cynipoidea 9 Cynipoidea JL, 6 Ichneumonoidea JL, 6 Ichneumonoidea JL, 6, 10 Ichneumonoidea 10 Ichneumonoidea 6, 4 Vespoidea 4 Vespoidea 6 Vespoidea 6 Vespoidea 4 Vespoidea 4 Vespoidea 4 Vespoidea 4, 6 Vespoidea 4 Vespoidea 4 Vespoidea 4 Vespoidea 4 Vespoidea 4 Vespoidea 4 Vespoidea 4 Vespoidea 4 Vespoidea 6 Vespoidea 6 Vespoidea Subfamily Sceliphrinae • Aphelininae Coccophaginae Eretmocerinae Eretmocerinae Tetracneminae Eulophinae Pteromalinae Trichogrammatinae Trichogrammatinae Trichogrammatinae • • • • Alysiinae Aphidiinae Aphidiinae Microgastrinae Amblyoponinae Cerapachyinae Dolichoderinae Dolichoderinae Dolichoderinae Dolichoderinae Dolichoderinae Dolichoderinae Dolichoderinae Ecitoninae Ecitoninae Ectatomminae Formicinae Formicinae Formicinae Formicinae Formicinae Formicinae Family Sphecidae Cephidae Aphelinidae Aphelinidae Aphelinidae Aphelinidae Encyrtidae Eulophidae Pteromalidae Trichogrammatidae Trichogrammatidae Trichogrammatidae Figitidae Figitidae Figitidae Figitidae Braconidae Braconidae Braconidae Braconidae Formicidae Formicidae Formicidae Formicidae Formicidae Formicidae Formicidae Formicidae Formicidae Formicidae Formicidae Formicidae Formicidae Formicidae Formicidae Formicidae Formicidae Formicidae Identification Species Lasius minutus Lasius latipes Lasius alienus Formica pallidifulva Camponotus pennsylvanicus Camponotus castaneus Ectatomma tuberculatum Labidus coecus Eciton burchelli Tapinoma sessile B Tapinoma sessile A Liometopum occidentale Linepithema humile Dormyrmex bicolor Dolichoderus taschenbergi Dolichoderus mariae Cerapachys edentata Amblyopone pallipes Cotesia flavipes Aphidius ervi Aphidius colemani Dacnusa sibirica Leptopilina victoriae Leptopilina heterotoma Leptopilina boulardi Ganaspis xanthopoda Trichogramma pretiosum Trichogramma platneri Trichogramma brassicae Catolaccus grandis Diglyphus isaea Leptomastix dactylopii Eretmocerus mundus Eretmocerus eremicus Encarsia formosa Aphelinus abdominalis Cephus cinctus Sceliphron caementarium Genome Guild# size (pg) Placement 1.15 Pred • 0.21 Phyto • 0.65 Par Endo 0.42 Par Endo 0.55 Par Endo 0.75 Par Endo 0.56 Par • 0.23 Par eCto 0.47 Par • 0.24 Par Endo 0.18 Par Endo 0.19 Par Endo 0.99 Par Endo 0.37 Par Endo 0.47 Par Endo 0.53 Par Endo 0.16 Par Endo 0.10 Par Endo 0.15 Par Endo 0.18 Par Endo 0.36 Pred • 0.22 Pred • 0.18 Pred • 0.23 Pred • 0.25 Pred • 0.26 Pred • 0.29 Pred • 0.38 Pred • 0.61 Pred • 0.27 Pred • 0.37 Pred • 0.71 Pred • 0.31 Pred • 0.33 Pred • 0.39 Pred • 0.31 Pred • 0.27 Pred • 0.23 Pred • ¶ Parasitoid Syndrome Host taxa • • • • iDio Hemi iDio Hemi iDio Hemi iDio Hemi • • iDio Dip • • iDio • iDio • iDio • Koino Dip Koino Dip Koino Dip Koino Dip Koino Dip iDio Hemi iDio Hemi Koino Lep • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • Host stage • • Nym, Ad Nym, Ad Nym, Ad Nym, Ad • Larva • Egg Egg Egg L-P L-P L-P L-P L-P Nym, Ad Nym, Ad Larva • • • • • • • • • • • • • • • • • • 240 Study† Superfamily 4 Vespoidea 4 Vespoidea 4 Vespoidea 4 Vespoidea 6 Vespoidea 4 Vespoidea 4 Vespoidea 4 Vespoidea 4 Vespoidea 6 Vespoidea 6 Vespoidea 4 Vespoidea 4 Vespoidea 4 Vespoidea 4 Vespoidea 4 Vespoidea 4 Vespoidea 6 Vespoidea 6 Vespoidea 6 Vespoidea 6 Vespoidea 6 Vespoidea 4 Vespoidea 4 Vespoidea 2 Vespoidea 6 Vespoidea 4 Vespoidea 6, 4 Vespoidea 4 Vespoidea 4 Vespoidea 4 Vespoidea 4 Vespoidea 4 Vespoidea 4 Vespoidea 4 Vespoidea 6, 4 Vespoidea 6, 4 Vespoidea 10 Vespoidea Subfamily Formicinae Myrmicinae Myrmicinae Myrmicinae Myrmicinae Myrmicinae Myrmicinae Myrmicinae Myrmicinae Myrmicinae Myrmicinae Myrmicinae Myrmicinae Myrmicinae Myrmicinae Myrmicinae Myrmicinae Myrmicinae Myrmicinae Myrmicinae Myrmicinae Myrmicinae Myrmicinae Myrmicinae Myrmicinae Myrmicinae Myrmicinae Myrmicinae Ponerinae Ponerinae Ponerinae Ponerinae Ponerinae Ponerinae Ponerinae Ponerinae Pseudomyrmecinae • Family Formicidae Formicidae Formicidae Formicidae Formicidae Formicidae Formicidae Formicidae Formicidae Formicidae Formicidae Formicidae Formicidae Formicidae Formicidae Formicidae Formicidae Formicidae Formicidae Formicidae Formicidae Formicidae Formicidae Formicidae Formicidae Formicidae Formicidae Formicidae Formicidae Formicidae Formicidae Formicidae Formicidae Formicidae Formicidae Formicidae Formicidae Mutillidae Identification Species Dasymutilla occidentalis Pseudomyrmex gracilis Ponera pennsylvanica Odontomachus haematodus Odontomachus clarus Odontomachus chelifer Odontomachus cephalotes Odontomachus brunneus Odontomachus bauri Dinoponera australis Tetramorium caespitum Solenopsis xyloni Solenopsis molesta Solenopsis invicta Pheidole hyatti Messor andrei Aphaenogaster treatae Aphaenogaster rudis-texana, N22b Aphaenogaster rudis-texana, N17 Aphaenogaster rudis-texana, N16 Aphaenogaster fulva Pogonomyrmex coarctatus Pogonomyrmex californicus Pogonomyrmex badius Myrmecina americana B Myrmecina americana A Myrmecia varians Temnothorax texanus Temnothorax ambiguus Strumigenys rostrata Basiceros procera Crematogaster hespera Sericomyrmex amabilis Atta texana Atta columbica Atta cephalotes Apterostigma dentigerum Prenolepis imparis Genome Guild# size (pg) Placement 0.30 Pred • 0.62 Pred • 0.31 Phyto • 0.31 Phyto • 0.27 Phyto • 0.45 Phyto • 0.28 Pred • 0.39 Pred • 0.28 Pred • 0.31 Pred • 0.32 Pred • 0.28 Pred • 0.26 Pred • 0.31 Pred • 0.27 Pred • 0.25 Pred • 0.29 Pred • 0.42 Pred • 0.43 Pred • 0.46 Pred • 0.44 Pred • 0.50 Pred • 0.26 Pred • 0.33 Pred • 0.77 Pred • 0.38 Pred • 0.48 Pred • 0.27 Pred • 0.57 Pred • 0.49 Pred • 0.44 Pred • 0.43 Pred • 0.54 Pred • 0.42 Pred • 0.51 Pred • 0.58 Pred • 0.38 Pred • 0.67 Par eCto ¶ Parasitoid Syndrome Host taxa • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • iDio Hym Host stage • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • Pupa 241 Subfamily • Eumeninae Polistinae Polistinae Polistinae Polistinae Vespinae Vespinae Vespinae Vespinae Vespinae Family Mutillidae Vespidae Vespidae Vespidae Vespidae Vespidae Vespidae Vespidae Vespidae Vespidae Vespidae Species Vespula vulgaris Vespula squamosa Vespula maculifrons Vespula germanica Dolichovespula arenaria Polistes fuscatus Polistes exclamans Polistes dominulus Polistes carolina Symmorphus canadensis Spherophthalma pennsylvanica Genome size (pg) 0.54 0.23 0.38 0.29 0.55 0.41 0.32 0.23 0.22 0.24 0.20 Par Pred Pred Pred Pred Pred Pred Pred Pred Pred Pred Guild# Parasitoid¶ Placement Syndrome Host taxa eCto iDio Hym • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • Host stage Pupa • • • • • • • • • • ¶ Parasitoid placement: acronym of placement is as follows: eCto = ectoparasitoid, Endo = endoparasitoid. Parasitoid syndrome: acronym of syndrome is as follows: iDio = idiobiont, Koino = koinobiont. Parasitoid host taxa: acronym of taxa is as follows: Coleo = Coleoptera, Dip = Diptera, Hemi = Hemiptera, Hym = Hymenoptera, Lep = Lepidoptera. Parasitoid host stgae: acronym of host stage is as follows: Ad = Adult, E-L = egg-larva, L-P = larva-pupa, Nym = nymph. # Guild: acronym of guilds is as follows: Par = parasitoid, Phyto = phytophagous, Pred = predator. Study† Superfamily 10 Vespoidea 6 Vespoidea 10 Vespoidea 2, 6 Vespoidea 10 Vespoidea 6 Vespoidea 6 Vespoidea 6, 10 Vespoidea 6 Vespoidea 6, 10 Vespoidea 6, 10 Vespoidea Identification 242 JL = Unpublished genome size estimate also in Appendix 2 by Lima J. 11 = Honeybee Genome Sequencing Consortium (2006) Insights into social insects from the genome of the honeybee Apis mellifera . Nature 443: 931-949. 10 = Hanrahan SJ, Johnston JS (2011) New genome size estimates of 134 species of arthropods. Chromosome Research 19: 809-823. 9 = Gokhman VE, Johnston JS, Small C,Rajwani R, Hanrahan SJ, Govind S (2011) Genomic and karyotypic variation in Drosophila parasitoids (Hymenoptera, Cynipoidea, Figitidae). Comparative Cytogenenetics 5: 211-221. 8 = Tavares MG, Carvalho CR, Soares FAF, Fernandes A (2010) Detection of diploid males in a natural colony of the cleptobiotic bee Lestrimelitta sp ( Hymenoptera , Apidae ). Genetics and Molecular Biology 33: 491-493. 7 = Tavares MG, Carvalho CR, Soares FAF (2010) Genome size variation in Melipona species (Hymenoptera: Apidae) and sub-grouping by their DNA content. Apidologie 41: 636 - 642. 6 = Ardila-Garcia AM, Umphrey GJ and Gregory TR (2010) An expansion of the genome size dataset for the insect order Hymenoptera, with a first test of parasitism and eusociality as possible constraints. Insect Molecular Biology 19: 337-346. 5 = Lopes DM, de Carvalho CR, Clarindo WR, Praça MW, Tavares MG (2009) Genome size estimation of three stingless bee species (Hymenoptera, Meliponinae) by flow cytometry. Apidologie 40: 517-523. 4 =Tsutsui ND, Suarez AV, Spagna JC, Johnston JS (2008) The evolution of genome size in ants. BMC Evolutionary Biology 8: 64. 3 = Barcenas NM, Thompson NJ, Gomez-Tovar V, Morales-Ramos JA, Johnston JS (2008) Sex determination and genome size in Catolaccus grandis (Burks, 1954) (Hymenoptera: Pteromalidae). Journal of Hymenoptera Research 17: 201-209. 2 = Johnston JS, Ross LD, Beani L, Hughes DP, Kathirithamby (2004) Tiny genomes and endoreduplication in Strepsiptera. Insect Molecular Biology 13: 581-585. References: 1 = Gadau J, Gerloffs CU, Krugers N, Chan H, Schmid-Hempel P, Wille A, Page Jr RE (2001) A linkage analysis of sex determination in Bombus terrestris (L.) (Hymenoptera: Apidae). Heredity 87: 234-242.
© Copyright 2026 Paperzz