PhD thesis_JLima - The Atrium

Species Richness and Genome Size Diversity in Hymenoptera
with Different Developmental Strategies:
A DNA Barcoding Enabled Study
by
João Lima
A Thesis
presented to
The University of Guelph
In partial fulfilment of requirements
for the degree of
Doctor of Philosophy
in
Integrative Biology
Guelph, Ontario, Canada
© João Lima, May, 2012
ABSTRACT
Species Richness and Genome Size Diversity in Hymenoptera
with Different Developmental Strategies:
A DNA Barcoding Enabled Study
João Lima
University of Guelph, 2012
Advisors:
Professor TR Gregory
Professor RH Hanner
Professor JD Shorthouse
A species threshold was used to assign unidentified Hymenoptera into DNA barcode Operational
Taxa (DbOT) for both an assessment of species richness in rose gall communities and as part of a
broad scale survey of genome size diversity. The species threshold of 2.2% was calculated from
minimum interspecific divergence of DNA barcode (COI, mtDNA) and internal transcribed
spacer region 1 (ITS1, rDNA) sequences from both identified and unidentified Hymenoptera
associated with rose galls induced by Diplolepis (Cynipidae). Analysis of both DNA barcodes
and ITS1 sequences suggested that several described species of Diplolepis (Cynipidae),
Periclistus (Cynipidae), and Torymus (Torymidae) require re-examination to define species
boundaries. It was also determined that the total number of DbOTs is higher than previous
estimates of species richness of Hymenoptera associated with rose galls induced by Diplolepis.
Additionally, genome size estimations were determined for 51 DbOTs from all eight families of
Hymenoptera associated with rose galls induced by Diplolepis, five of which did not have any
previous genome size estimates. A subsequent large-scale survey of Hymenoptera enabled by the
use of the DbOT approach produced genome size estimations for 309 DbOTs from 36 families in
13 superfamilies. It was shown that Hymenoptera do not have smaller genome sizes than other
holometabolous orders, and that a parasitoid lifestyle does not appear to constrain genome size.
The suggested positive relationship between genome size and development time was investigated
by comparing mean genome size of taxa with known or apparent differences in development
rate. It was concluded that statistical comparisons between taxa that are grouped in broad
categories would be unlikely to detect significant differences in mean genome size because the
range of biological features within such categories is highly variable. However, comparisons
between interacting groups with narrowly defined development strategies determined that mean
genome size was statistically smaller in taxa that obtained resources within a narrow window of
opportunity. This result suggests that rapid development in relation to competitors may be
important in species of Hymenoptera with higher mortality risk.
ACKNOWLEDGMENTS
I completed this PhD thesis with the help and support of many people, and I wish to
thank everyone that was involved. With more time, paper, and personal reflection, I would
include the name of everyone that held a door for me when I was trying to get to a meeting,
anyone that shared a piece of paper and pen when I needed to take notes, and every audience
member at each conference I presented a portion of the work from this PhD thesis. However, I
recognize I cannot recall every interaction beginning from September 2007 up to and including
my PhD defence date. I hope I have included names of individuals that I believe were relevant as
either negative and/or positive influences on my thesis work. Please forgive any silly mistake if I
have not included your name. Let me know about my silly omission error(s), and I will buy you a
Coke.
My PhD research program began with the generous support provided by the University of
Guelph, College of Biological Sciences, Faculty Research Assistance Award to Dr. Ryan
Gregory and Dr. Bob Hanner. I am grateful for this opportunity to pursue my doctorate degree,
and this funding provided myself with the experience that I had believed would never be
realized. From this beginning, the following acknowledgments developed.
Thank you to my PhD advisory committee: Dr. Ryan Gregory, Dr. Bob Hanner, Dr. Joe
Shorthouse, and Dr. Teri Crease. I appreciate the access to facilities and supplies required for this
research. Each member of my committee provided guidance and feedback to a variety of issues
during my graduate studies, and I believe I progressed forward despite the challenge of
combining several independent and conflicting viewpoints. I was both delighted and inspired
with repeated discussions with Dr. Ryan Gregory pertaining to Chapter Three and the final draft
of my thesis. In the future, I hope to patiently listen to another person’s jumble of ideas, reflect
wisely upon them, brainstorm possible pathways to improve the ideas, and then offer to listen
again another day. I was also fortunate to have Dr. Teri Crease graciously accept my late
invitation to participate as a committee member. I wish I had interacted with Dr. Teri Crease
early in my post-graduate degree, but the honour and pleasure was postponed until my PhD
candidacy exam. I believe that every following committee meeting, chapter review, and advisorstudent interaction was strengthened by Dr. Teri Crease’s involvement. Thank you.
I am grateful for support provided by Ontario Centres of Excellence, Flowers Canada
(Ontario), the Government of Canada through Genome Canada, and the Ontario Genomics
iv
Institute to the International Barcode of Life Project. This funding enabled the Canadian Centre
for DNA Barcoding (University of Guelph) to carry out the sequence analysis on the specimens.
I also thank the Ontario Ministry of Economic Development and Innovation for funding the
ongoing development of Barcode of Life Data Systems (BOLD). Thank you to all the staff of the
Biodiversity Institute of Ontario that was involved in amplifying the DNA barcode and ITS1
sequences, and I especially appreciate the assistance of Constantine Christopoulos, Liuqiong Lu,
Jayme Sones, Janet Topan, and Rick Turner.
From the Laurentian University, I am grateful to Dr. Joe Shorthouse for access to
specimens from both the reference collection and various collecting trips. Thank you to Anne
Kidd for assistance in entering data on specimen data spreadsheets of identified Diplolepis
(Cynipidae) that had been selected by Dr. Joe Shorthouse. I am grateful for support provided by
an NSERC Discovery Grant and the Laurentian University Research Fund awarded to Dr. Joe
Shorthouse. It was a pleasure working with Brandy Smallwood on various tasks during my
summer at Laurentian University, and it was enjoyable to sort through emergence jars daily to
collect live Hymenoptera exiting rose galls. Thank you to Dr. Mery Martinez for granting me
access to the -80ºC freezer in order to store Hymenoptera specimens during the summer.
I am grateful for support provided by The Northern Research Fund and Northern
Scientific Training Program which allowed me to collect Hymenoptera from Churchill, MB. The
excellent staff and facilities available at The Churchill Northern Study Center were crucial to my
survival and sanity while conducting my research in the subarctic. Better luck next time, Mama
Polar bear!
From the University of Guelph, I am grateful to Eugene Wong and Rachel Breese for
introducing me to my first piston-driven air displacement pipette, well-plate, primer set, and
thermocycler. Heather Braid provided additional technical support with DNA barcoding
protocols whenever time permitted. Dr. Brain Husband and Paul Kron rescued my PhD research
by providing excellent technical assistance, generous allotment of time, and a working flow
cytometer. Working with Paul Kron for a few months was an unexpected soothing experience,
and I benefitted from the opportunity to work in an environment that was both academically and
technically superb and maintained a friendly atmosphere. Nick Jeffery and Tyler Elliot were
helpful in academic and personal matters, and I wish I had not been relocated to a different office
so early during my post-graduate studies. Nick Jeffery was very supportive with technical
v
assistance in understanding the interface programs of the three different models of flow
cytometers that passed through the Gregory laboratory from 2008 to 2011. To my field
collecting team members: Tyler Ellitot, Gláucia Lima, and John Wilson, I enjoyed our trips and I
am greatful for your time and efforts in collecting the WeirdTinyFliers!
Most important to me personally was the support and assistance from Gláucia Lima.
Foram imbatíveis! Without Gláucia Lima’s support I would not have recovered from an
unexpected medical emergency in sufficient time to begin my PhD graduate studies. Gláucia
Lima was able to gather the medical team more rapidly than I would have been able to achieve in
Brasil, and her persistence accelerated the appointment for the medical procedure and following
treatments. Gláucia Lima’s involvement enabled me to arrive in Canada in the third week of
September 2007 instead of forfeiting the position at the University of Guelph. I hope I never
have to experience another medical emergency in a foreign country, but if I suffer such a
misfortune, I would be lucky if Gláucia Lima would assist me again. Gláucia Lima also provided
incredible support during the years of my PhD research. She provided additional security on field
trips north of Cochrane, ON. Better luck next time, black bears! Gláucia Lima repeatedly
collected insects on her own time and brought home bushels of leaf rolls, baskets of oak galls,
and ziploc bags of WTFs. Most of them were Hymenoptera to boot! She is the most insect savvy
civil engineer I personally know. She assisted me with sorting of live insects and complied with
my strange requests to return any unnecessary insect back to the wild unharmed. She happily
photographed hundreds of specimens despite their peculiar and unattractive characteristics.
Thank you for correcting the grammar and spelling of my Portuguese. She also provided me with
financial and personal support that was kind and generous throughout this post-graduate
experience. I am indebted to you Gláucia Lima, and you should be aware that your involvement
with me before and during this doctorate degree foi bom pra caramba! Thank you.
P.S. Gláucia Lima, eu te amo!
vi
DEDICATION
Para todos que nasceram sozinhos.
Terceira ilha,
Terceiro filho,
Terceira vez!
Conversa sobre a minha pesquisa
Anônimo: Quem é seu orientador?
Eu: Na verdade eu tenho três orientadores.
Anônimo: Três? Nossa, parece você tem três esposas!
Eu: Infelizemante, parace mais que eu tenho três sogras.
Oração de São Francisco de Assis
Senhor, fazei-me instrumento de vossa paz
Onde houver ódio, que eu leve o amor
Onde houver ofensa, que eu leve o perdão
Onde houver discórdia, que eu leve a união
Onde houver dúvida, que eu leve a fé
Onde houver erro, que eu leve a verdade
Onde houver desespero, que eu leve a esperança
Onde houver tristeza, que eu leve a alegria
Onde houver trevas, que eu leve a luz
Ó Mestre, fazei que eu procure mais
Consolar, que ser consolado
Compreender, que ser compreendido
Amar, que ser amado
Pois, é dando que se recebe
É perdoando que se é perdoado
E é morrendo que se vive para a vida eterna
vii
TABLE OF CONTENTS
List of Tables ...........................................................................................................................
xii
List of Figures .......................................................................................................................... xiii
List of Appendices ..................................................................................................................
xv
CHAPTER ONE
General introduction to lifestyles of Hymenoptera, DNA barcoding, and genome size ...
1
1.1 Lifestyles of Hymenoptera .....................................................................................
2
1.2 DNA barcoding and Hymenoptera .........................................................................
5
1.3 Identification without species names ......................................................................
7
1.4 Insects: development and genome size ..................................................................
9
1.5 Hymenoptera: genome size estimates .....................................................................
12
1.6 Common genome size estimation methods ............................................................
12
1.7 Thesis objectives .....................................................................................................
15
CHAPTER TWO
Assessing species richness of gall inducers of the genus Diplolepis (Hymenoptera:
Cynipidae), inquilines of the genus Periclistus (Hymenoptera: Cynipidae), and parasitoids
(Hymenoptera, Chalcidoidea and Hymenoptera, Ichneumonoidea) associated with rose gall
communities found in Canada ...............................................................................................
21
ABSTRACT ................................................................................................................
22
INTRODUCTION ......................................................................................................
23
2.1 Cynipid component communities ...............................................................
23
2.2 Cynipid galls ...............................................................................................
24
2.3 Rose gall inducers: Diplolepis ....................................................................
25
viii
2.4 Rose gall inquilines: Periclistus .................................................................
26
2.5 Rose gall parasitoids ...................................................................................
28
2.6 Molecular identification tool: DNA barcoding............................................... 29
2.7 Objectives ...................................................................................................
32
MATERIALS AND METHODS ...............................................................................
33
2.8 Specimen collection and deposition............................................................
33
2.9 DNA extraction and PCR amplification......................................................
35
2.10 Sequence Analyses ...................................................................................
36
RESULTS ....................................................................................................................
37
2.11 Diplolepis: COI and ITS1 .........................................................................
38
2.12 Periclistus: COI and ITS1 .........................................................................
39
2.13 Torymus: COI and ITS1 ............................................................................
41
2.14 Calculated species threshold .....................................................................
42
2.15 Rose gall community species composition ...............................................
45
DISCUSSION ..............................................................................................................
46
2.16 Cynipidae morphology and DNA barcodes ..............................................
48
2.17 Gall morphology and inducer identification ............................................
55
2.18 Parasitoids of rose galls and DNA barcodes ............................................
58
2.19 Cryptic, synonymous, new, and unsampled species ................................
60
CONCLUSION............................................................................................................
63
ix
CHAPTER THREE
Patterns of genome size diversity in Hymenoptera and a test of possible development
constraints: a large-scale study enabled by DNA barcoding ..............................................
84
ABSTRACT ................................................................................................................
85
INTRODUCTION ......................................................................................................
86
3.1 Hymenoptera feeding .................................................................................
86
3.2 Definitions of larval feeding modes ...........................................................
86
3.3 Genome size and Hymenoptera ..................................................................
90
3.4 Objectives ...................................................................................................
92
MATERIALS AND METHODS ..............................................................................
94
3.5 Specimen collection and deposition ...........................................................
94
3.6 DNA extraction, PCR amplification, and sequence analyses ....................
96
3.7 Genome size estimation .............................................................................
96
3.8 Other published data: Genome size estimations .........................................
98
3.9 Data Analysis .............................................................................................
98
RESULTS ....................................................................................................................
98
3.10 Range of Hymenoptera genome sizes ......................................................
98
3.11 Genome size: dichotomous hypothesis .................................................... 101
3.12 Genome size: cleptoparasites and hosts ................................................... 101
3.13 Genome size: inquilines and inducers ...................................................... 102
DISCUSSION .............................................................................................................. 103
3.14 Range of Hymenoptera genome size ........................................................ 103
3.15 Genome size: dichotomous hypothesis .................................................... 106
x
3.16 Genome size: cleptoparasites and hosts .................................................... 109
3.17 Genome size: inducers and inquilines ...................................................... 110
3.18 Genome size and biologically relevant comparisons ............................... 111
CONCLUSION.............................................................................................................. 112
CHAPTER FOUR
General discussion and conclusion ........................................................................................ 122
4.1 Identification challenges within this thesis ................................................. 123
4.2 Conclusions and synthesis .......................................................................... 127
REFERENCES ....................................................................................................................... 134
xi
LIST OF TABLES
CHAPTER ONE
Table 1.1. Families of Hymenoptera known from Canada ...........................................
18
Table 1.2. Species of Hymenoptera available for genome size estimates ....................
19
CHAPTER TWO
Table 2.1. Species of Diplolepis (Cynipidae) worldwide .............................................
64
Table 2.2. Species of Periclistus (Cynipidae) in North America ................................
65
Table 2.3. Species of parasitoid associated with rose galls induced by Diplolepis .....
66
Table 2.4. Species of Torymus (Torymidae) associated with rose galls induced by
Diplolepis .....................................................................................................................
67
Table 2.5. Species of Diplolepis (Cynipidae) selected for DNA barcoding ................
68
Table 2.6. Species of Periclistus (Cynipidae) selected for DNA barcoding ...............
69
Table 2.7. Species of Torymus (Torymidae) selected for DNA barcoding ..................
70
Table 2.8. Unidentified Hymenoptera exiting rose galls selected for DNA barcoding
71
Table 2.9. Periclistus (Cynipidae) associations with rose galls induced by Diplolepis
72
Table 2.10. Torymus (Torymidae) associations with rose galls induced by Diplolepis
73
Table 2.11. Species richness of Hymenoptera associated with rose galls induced by
Diplolepis .....................................................................................................................
74
CHAPTER THREE
Table 3.1. Studies of genome size estimates of Hymenoptera by flow cytometry ....... 113
Table 3.2. Total number of genome size estimates of Hymenoptera ........................... 114
Table 3.3. Egg development time of oak and rose gall wasps .................................... 115
CHAPTER FOUR
Table 4.1. Total number of genome size estimates of Insecta .................................... 132
xii
LIST OF FIGURES
CHAPTER ONE
Figure 1.1. Genome size diversity of superfamilies within Hymenoptera as determined in
previous studies .............................................................................................................
20
CHAPTER TWO
Figure 2.1. Amplification success of DNA barcodes from adults and larvae of Diplolepis
(Cynipidae), Periclistus (Cynipidae), and Torymus (Torymidae) ...............................
75
Figure 2.2. NJ dendrogram of reference vouchers of Diplolepis (Cynipidae) .............
76
Figure 2.3. NJ dendrogram of reference vouchers of Periclistus (Cynipidae) .............
77
Figure 2.4. NJ dendrogram of reference vouchers of Torymus (Torymidae) ...............
78
Figure 2.5. NJ dendrogram of both reference and unidentified adult and larva specimens
of Diplolepis (Cynipidae) .............................................................................................
79
Figure 2.6. NJ dendrogram of both reference and unidentified adult and larva specimens
of Periclistus (Cynipidae) .............................................................................................
80
Figure 2.7. NJ dendrogram of both reference and unidentified adult and larva specimens
of Torymus (Torymidae) ...............................................................................................
81
Figure 2.8. NJ dendrogram of unidentified adult and larva specimens of parasitoids
(except Torymidae) associated with rose galls induced by Diplolepis .........................
82
Figure 2.9. Schematic representation of post-DNA barcoding work protocol for species
identification of DbOTs ..............................................................................................
xiii
83
CHAPTER THREE
Figure 3.1. Genome size diversity of superfamilies within Hymenoptera ................... 116
Figure 3.2. Genome size diversity of subfamilies within Braconidae .......................... 117
Figure 3.3. Genome size diversity of subfamilies within Ichneumonidae ................... 118
Figure 3.4. Genome size diversity of cleptoparasites and reported hosts .................... 119
Figure 3.5. Genome size diversity of inquilines and inducers ..................................... 120
Figure 3.6. Genome size diversity of orders within class Insecta ................................ 121
CHAPTER FOUR
Figure 4.1. New genome size estimates within Hymenoptera ..................................... 133
xiv
LIST OF APPENDICES
Appendix 1. Taxa included in DNA barcoding of rose gall inhabitants, together with
identification and collection information ……………….………................................. 160
Appendix 2. Genome size estimation of Hymenoptera with information on specimen
Identification …………………….………………..……………................................. 195
Appendix 3. Genome size estimation of Hymenoptera with information on specimen
collection and biology…………….…………………..…………................................. 220
Appendix 4. Published studies of genome size estimation of Hymenoptera with
information on biology……………………….…………………................................. 238
xv
CHAPTER ONE
General introduction to lifestyles of Hymenoptera, DNA barcoding, and genome size
1
SUMMARY
The current number of genome size estimates of Hymenoptera is limited in part by the
difficulty in identifying described species and the large number of species that lack formal
names. This is particularly significant in efforts to study genome size diversity in Hymenoptera
with varying life histories, such as among different types of parasitoids. This chapter provides an
overview of Hymenoptera biology as it relates to questions about genome size evolution in the
order, reviews the state of knowledge of genome size diversity in these insects and the major
questions that remain unresolved in this area, and summarizes the potential utility of DNA
barcoding for enabling large-scale studies of Hymnoptera genome size diversity.
1.1 Lifestyles of Hymenoptera
The order Hymenoptera is the sister lineage of all other holometabolous insects (Ishiwata
et al. 2011) — i.e., insects that develop from an egg, through several larval instars, to a pupa
stage, and finally emerge as an adult (Gauld and Bolton 1988). The order Hymenoptera contains
over 115, 000 described species worldwide, and it is among the four most diverse groups of
insects along with the orders Coleoptera (beetles), Diptera (flies), and Lepidoptera (butterflies
and moths) (Sharkey 2007). The Hymenoptera are major constituents of terrestrial habitats
because of their numerous interactions with other organisms via a diverse array of ecological
lifestyles (Austin and Dowton 2000). They are important as herbivores, parasitoids, pollinators,
predators, and scavengers (Sharkey 2007, Huber 2009). The type of food resource provided to
larvae by the ovipositing female has been an important biological trait throughout the evolution
of Hymenoptera and has resulted in a large variety of life histories (Gauld and Bolton 1988).
Ancestral Hymenoptera fed on plant tissues, and the transition from phytophagy to forms of
2
carnivory (parasitoids and predators) has led to the greatest species diversity of the order
(Sharkey 2007, Heraty et al. 2011) The predominant lifestyle in modern Hymenoptera is that of
parasitoids where larvae directly obtain nourishment from a single host individual to complete
their development, and in which death of the host always results (Gauld and Bolton 1988,
Eggleton and Belshaw 1992, Godfray 1994, Quicke 1997). Approximately half the species of
Hymenoptera are parasitoids (Gauld and Bolton 1988, Eggleton and Belshaw 1992, Godfray
1994, Quicke 1997, Grisssell 1999, Huber 2009).
Although the term parasitoid is generally recognized by ecologists as a single trophic
level, it actually encompasses a number of highly variable behaviours and strategies(Pennacchio
and Strand 2006). In particular, parasitoids are functionally diverse in their interactions with
hosts, and development of parasitoid progeny can be within the host (endoparasitoid) or
externally on the surface of the host (ectoparasitoid). Different species attack a specific host life
stage and their resulting progeny then leave the host at a specific life stage (Mills 1992, Godfray
1994, Quicke 1997). For example, some species of parasitoid will attack insect eggs and their
progeny will exit from this host egg while other species of egg parasitoid have progeny which
delay development until the larva stage of the host. The former parasitoid represents an
“idiobiont” which paralyzes their host at the beginning of the association or prevents the host
from moulting to the next stage whereas the latter parasitoid is a “koinobiont” which allows the
host to continue development after the parasitoid begins feeding (Askew and Shaw 1986). This
dichotomous grouping of parasitoids into idiobionts or koinobionts was initially proposed to
allow comparative tests of host specificity (Askew and Shaw 1986), and it is also believed to
organize differences in several life history traits between the two groups (Blackburn 1991,
Godfray 1994, Quicke 1997, Mayhew and Blackburn 1999).
3
Size and development time are considered two of the most important fitness related life
history traits that are generally in conflict with each other because limitations in aspects such as
metabolism and resources do not allow an organism to grow both rapidly and large (Mackauer
and Sequeira 1993, Harvey and Strand 2002, Harvey 2005). Size has been most often used in
studies of intraspecific fitness because of its ease of measurement and its strong correlation with
other fitness related measures such as fecundity and longevity (Godfray 1994, Quicke 1997).
However, analysis of one of the best datasets of life history traits and ecological variables of
parasitoids, which included 474 species from seven superfamilies and 25 families (Blackburn
1990), determined that body size did not correlate with either fecundity or longevity across
parasitoid taxa (Mayhew and Blackburn 1999). It is possible that higher mortality of early host
stages (young larvae) has selected for small egg size and higher fecundity in parasitoids,
especially koinobionts, that attack these stages (Blackburn 1991), and small hosts generally
produce small parasitoids (Godfray 1994, Quicke 1997). Development time has received less
attention than size in studies of parasitoid fitness related life history traits, but it is important
because of the trade-off between development time and adult size (Mackauer and Sequeira 1993,
Harvey and Strand 2002, Harvey 2005). Rapid development may be advantageous to
Hymenoptera that have high mortality risks; for example, Ichneumonoidea (Braconidae and
Ichneumonidae) that attack exposed hosts (external foliage feeders) favour rapid development
over size as compared to Ichneumonoidea that attack concealed hosts (fruit, seeds, stems)
(Harvey and Strand 2002). Idiobionts generally attack concealed hosts because an exposed
paralysed host, and the parasitoid consuming it, would be susceptible to general predation
(Godfray 1994, Quicke 1997). Therefore, the protected habitat of idiobionts should favour longer
development, but the Blackburn dataset determined that development time was shorter in
4
idiobionts as compared to koinobionts across a wide survey of parasitoids (Mayhew and
Blackburn 1999).
Knowledge about taxonomy and biology of species of Hymenoptera is hampered by the
challenge of their identification because of both intraspecific morphological plasticity and small
body size (Godfray and Shimada 1999, Gariepy et al. 2007, Grissell 1999, Stone et al. 2008,
Huber 2009). Studies of life history traits of Hymenoptera, such as development time, are
generally limited either by biology (parasitoid: Mayhew and Blackburn 1999) and/or taxonomy
(Ichneumonoidea: Braconidae and Ichneumonidae: Harvey and Strand 2002) to facilitate the
search for possible patterns. To support broad scale comparisons of development time between
interacting species of Hymenoptera with different lifestyles and habitats, a simple and efficient
tool is required for rapid species identification.
1.2 DNA barcoding and Hymenoptera
It was proposed that DNA barcodes could be used to confidently link field collected
organisms with a reference sequence of a previously identified species (Hebert et al. 2003). The
selected DNA barcode region corresponds to nucleotide positions 1490-2198 of the Drosophila
yakuba mitochondrial genome sequence, which is ~700 nucleotides of the 5’ end of the
cytochrome c oxidase subunit 1 gene (Clary and Wolstenholme 1985). One of four nucleotides is
located at each position along a single strand of DNA and this provides enormous variation in
which to search for characters to identify species (Hebert et al. 2003). Coupled with a 2% rate of
substitution per million years in mitochondrial DNA (Brown et al. 1979), separate species
potentially acquire enough differences in nucleotides such that sequences are more different
between species as compared to within species (Hebert et al. 2003). A query DNA barcode of an
5
unknown specimen can be compared to DNA barcodes of vouchered specimens on the Barcode
of Life Database website (BoLD, www.barcodinglife.org). Confirmation of species identification
is then assessed by user preference of criteria such as, but not limited to, closest match similarity
or Neighbour-joining tree based methods. An advantage of the BoLD database is that reference
DNA barcodes are accompanied with information on taxonomy and collection details of the
vouchered specimen.
Using DNA barcoding for identification of all metazoan taxa is ambitious (Hebert et al.
2003), and its application is useful in discriminating members of highly diverse taxa, such as
insects, which are challenging to identify and are of ecological, economic and medical
importance (Scudder 2009). The importance of species identification by DNA barcodes has been
suggested for biosurveillance of released biological control agents (Hanner et al. 2009), detection
of arthropod pests in globally traded plant materials (Floyd et al. 2010), and biomonitoring of
pest Lepidoptera (deWaard et al. 2010). In fact, the utility of DNA barcoding as a rapid and
accurate molecular tool for identification of Hymenoptera is accepted and recognized by several
prominent researchers whose work includes both classical and molecular taxonomy (Smith et al.
2008, Sheffield et al. 2009, Ács et al. 2010, Boring et al. 2011, Santos et al. 2011). Additionally,
DNA barcoding has been successfully used to distinguish closely related species of parasitoids
(Monti et al. 2005), to quantify level of parasitism in the field (Gariepy et al. 2007, 2008), to
discover cryptic species of parasitoids (Sha et al. 2006, Lotfalizadeh et al. 2007), and to assess
host-parasitoid associations (Rougerie et al. 2010, Hrcek et al. 2011).
The simplest and least contentious goal of DNA barcoding is to guide a non-specialist to
species determination as would the role of an identification key or published description
(DeSalle et al. 2005, Packer et al. 2009, Teletchea 2010). DNA barcoding has been widely
6
accepted by the scientific community as a valuable molecular identification tool that contributes
data in the support of taxonomy and other biological sciences (i.e. ecology, forensics) (DeSalle et
al. 2005, Waugh 2007, DeWalt 2011). The success of species identification by DNA barcoding
requires an established library of DNA barcoding sequences of species from a reference
collection (Casiraghi et al. 2010, Yassin et al. 2010).Unfortunately, the BoLD website does not
contain a coverage of DNA barcodes that allows a query sequence of an unidentified individual
to be confidently assigned to species or genera for most families of Hymenoptera (Santos et al.
2011). However, a sequence divergence threshold could be used as a surrogate approach for
identification of Hymenoptera without the requirement of species names (Smith et al. 2005a,
Smith et al. 2009, Santos et al. 2011).
1.3 Identification without species names
Collection, sample preparation, and identification of a wide range of insect taxa to
species level requires considerable costs, taxonomic expertise, and time that may be beyond the
resources available for many research projects (Krell 2004, Derraik 2010, DeWalt 2011, Santos
et al. 2011). Grouping specimens into morphological categories, such as Recognizable
Taxonomic Units (RTUs), is a substitute for species identification when the primary objective of
a study is to organize data by biology (i.e. idiobiont) or ecology (i.e. shared hosts) rather than to
formally describe and name taxa (Oliver and Beattie 1993). Unfortunately, it has been repeatedly
stated that morphological surrogate systems of species identification seek to exclude taxonomic
experts or trivialize the importance of species identification (Goldstein 1997, Krell 2004).
Collaboration with taxonomic experts is preferred and actively searched for during rapid
biological assessments (Beattie and Oliver 1999), but expertise is often lacking due to constraints
7
of time or funding (Beattie and Oliver 1994). The usefulness of any morphological surrogate
approach is increased when both taxonomic experts are involved to verify the categorized taxa
and specimen data is made available on an information database (Beattie and Oliver 1994).
However, when morphological characters are absent from specimens, molecular sequences may
be analyzed to group specimens into categories of identification.
Similarly to criticisms of the use of RTUs as morphological surrogate systems of species
identification, DNA barcoding has been repeatedly criticized as a molecular method that
excludes taxonomic experts or trivializes the importance of species identification (Will et al.
2005, Rubinoff 2006, Ebach and de Carvalho 2010). Despite repeated criticism of using a
species threshold in biodiversity inventories, estimates of taxon richness among a species
threshold and morphology were not significantly different for ants in Antsiranana, Madagascar
(Smith et al. 2005a), or for parasitoids in Manitoba, Canada (Smith et al. 2009). The use of a
species threshold does not suggest that alternative methods for species delimitation are not
available and superior, but an integrative taxonomic method requires well sampled populations
for which the morphology, geography, ecology, and behaviour of taxa are well known (DeSalle
et al. 2005, Padial et al. 2010, Yassin et al. 2010). A species threshold has an important role in
providing a rapid and inexpensive method of separating species of Hymenoptera when the
majority collected will be of small sample size (i.e. singletons), be from undescribed species, and
be from a large number of families within a narrow geographic area.
The simplest method to increase the number of broad scale comparisons of development
time between interacting species of Hymenoptera with different lifestyles and habitats would be
to obtain live individuals of described species from cultures. However, the list of approved
parasitoids that are sold within Canada only includes 39 species in two superfamilies from seven
8
families (Table 1.2, CFIA 2011). Additionally, the Hymenoptera listed within the programs of
annual meetings of the Entomological Society of Canada (ESC) from 2007-2011 cover only
eight superfamilies from 16 families (Table 1.2, ESC 2011), all of which are either pinned or
preserved in ethanol. An optimistic estimate of the total number of live and identified
Hymenoptera available for a comparative study of development time is 25 species in 2
superfamilies from 6 families (Table 1.2).
Given the limitations of obtaining live Hymenoptera from a wide range of families with a
variety of lifestyles from available cultures, field collections of Hymenoptera are necessary. The
Canadian Hymenoptera include species from 21 superfamilies and 66 families (Table 1.1), but
several families are rare (n ≤ 5 species) and not represented in each province or territory.
Hymenoptera is estimated to include the greatest number of species of any insect order in
Canada, and is also considered to have the greatest proportion of undescribed species (Masner et
al. 1979). Because field collected Hymenoptera will most likely be both undescribed (Masner et
al. 1979) and not available on the BoLD website (Santos et al. 2011), a species threshold is
required to separate individuals into separate DbOTs when the genetic divergence between them
is greater than a predetermined value. I will explore the use of a species threshold to categorize
collected Hymenoptera into DbOTs to circumvent the limited number of live described species
available for comparative studies of development time.
1.4 Insects: development and genome size
Organismal growth is dependent upon size and division of cells and the amount of
differentiation of cells, tissues, and organs (Hafen and Stocker 2003). Development in insects
can be grossly divided into components of time and complexity where the former is the duration
of components of the life cycle and the latter is the amount of morphological changes in a life
9
cycle (Gregory 2002). The amount of DNA contained in the haploid set of chromosomes of an
organism, defined as C-value or genome size (Greilhuber et al. 2005), positively correlates with
both cell size and cell division time because a large amount of DNA cannot physically fit into a
small cell and a larger genome takes more time to replicate, respectively (Gregory 2002).
Genome size is measured by weight or by number of base pairs, and the two measurements may
be interconverted using the following formula (Doležel et al. 2003):
or,


[i.]
Genome Size (Mbp)† = 0.978  109  mass
[ii.]
Genome Size (pg)‡ =
Mbp
0.978  10 9
where, † Mbp is equal to 106 nucleotide base pairs
‡ mass is measured in picograms (10-12 g)
The direct influence of genome size on the cellular properties of size and division time may
influence organism level traits such as cell size, body part size, development time, developmental
complexity, and ecological interactions (Gregory 2005). Genome size is positively correlated
with sperm dimensions, such as sperm area of leaf beetles (Coleoptera: Chrysomelidae)
(Petitpierre et al.1993) and sperm length of fruit flies (Diptera: Drosophilidae) (Gregory and
Johnston 2008). Positive correlations of genome size and size of specific body parts have been
reported using the wings of mosquitoes (Diptera: Culicidae) (Ferrari and Rai 1989) and fruit flies
(Diptera: Drosophilidae) (Craddock et al. 2000), body length of aphids (Hemiptera: Aphididae)
(Finston et al. 1995), and thorax length of fruit flies (Diptera: Drosophilidae) (Gregory and
Johnston 2008). However, no significant correlation was found between genome size and head
10
width of ants (Hymenoptera: Formicidae) (Tsutsui et al. 2008) and genome size and intertegular
span of bees (Hymenoptera: Apidae) (Tavares et al. 2010a). Size of any phenotypic trait is a
combination of both number and size of cells (Hafen and Stocker 2003), and so positive
correlations with genome size are not universal in all body parts and all insect taxa (Gregory
2005).
Holometabolous insects have a pupa stage during their development which is absent from
ametabolous and hemimetabolous insects, and the developmental complexity has led to the
evolution of rapid life cycles (Truman and Riddiford 1999, 2002). Holometabolous insects have
genome size below 2 pg (Gregory 2002), and it has been suggested that this threshold may be
due to the extent of modifications occurring during the transformation of the pupa to the adult
(Gregory 2002). Moreover, imaginal discs of holometabolous insects differentiate and develop
during larval instars thereby reducing the time required for adult structures to form and support
rapid life cycles (Truman and Riddiford 1999, 2002). Genome size is negatively correlated with
total development time of mosquitoes (Diptera: Culicidae) (Ferrari and Rai 1989) and fruit flies
(Diptera: Drosophilidae) (Gregory and Johnston 2008), and pupa development time of ladybird
beetles (Coleoptera: Coccinellidae) (Gregory et al. 2003). An association of genome size and
development time has not been investigated in previous studies with Hymenoptera (Gadau et al.
2001, Johnston et al. 2004, Honeybee Genome Sequencing Consortium (2006), Barcenas et al.
2008, Tsutsui et al. 2008, Lopes et al. 2009, Ardila-Garcia et al. 2010, Tavares et al. 2010a,
Tavares et al. 2010b, Gokhman et al. 2011, Hanrahan and Johnston 2011).
11
1.5 Hymenoptera: genome size estimates
Genome size has been estimated by several methods in 162 species of Hymenoptera, and
these estimates include six superfamilies and 16 families (Figure 1.1, Gregory 2011). Species
coverage is composed of 39.5 % ants (Formicidae), 24.1 % bees (Apidae), 19.8 % parasitoids
(Aphelinidae, Braconidae, Encyrtidae, Eulophidae, Figitidae, Ichneumonidae, Mutillidae,
Pteromalidae, Scoliidae, and Trichogrammatidae), 0.6 % sawflies (Cephidae), and 16.0 % wasps
(Crabronidae, Sphecidae, and Vespidae) (Appendix 4, Gregory 2011). Since approximately 50 %
of the species of Hymenoptera are parasitoids (Gauld and Bolton 1988, Eggleton and Belshaw
1992, Godfray 1994, Quicke 1997, Grisssell 1999, Huber 2009), this lifestyle is under
represented in the current genome size estimates of Hymenoptera. Average number of genera per
family with genome size estimates by all methods is 5.7 ± 9.02, but the average number of
genera per family drops to 2.9 ± 2.11 when social Hymenoptera, such as ants and bees, are not
included. In terms of coverage by number of families, genera, or species, Hymenoptera currently
has the least number of genome size estimates in comparison to the other diverse holometabolous
orders Coleoptera (beetles), Diptera (flies) and Lepidoptera (butterflies and moths) (Gregory
2011).
1.6 Common genome size estimation methods
Whole genome sequencing is expensive and intensive both in terms of number of people
and time required (Bennett and Leitch 2005, Gregory 2005), so it is not feasible as a routine
method for determining genome size of most species. Currently, most animal genome size
estimations are undertaken either by Feulgen densitometry or flow cytometry, which are
complementary techniques with their own advantages and disadvantages (Bennett and Leitch
2005, Gregory 2005).
12
Feulgen stain reaction is a specific stain that stoichimetrically binds to DNA thus
providing a measurement of the amount of DNA when compared to a standard with known
genome size (Bennett and Leitch 2005, Gregory 2005). Cells are fixed to microscope slides,
treated to the Feulgen stain reaction, and then the amount of light absorbed by the stained nuclei
is calculated (Bennett and Leitch 2005, Gregory 2005). Haemocytes, muscles, and spermatozoa
are preferred cell types of Hymenoptera prepared for the feulgen reaction (Gregory 2011). A
major advantage of using Feulgen densitometry is that once cells are fixed on slides, these
preparations can be re-examined at different times and locations making field work in remote
areas possible and allowing collaboration with researchers in laboratories elsewhere. A major
disadvantage is that the Feulgen stain reaction is time consuming and hinders analysis of a large
number of taxa both intraspecifically and interspecifically (Gregory 2005).
Flow cytometry uses a nucleus-staining fluorochrome that emits light when excited by a
laser, and peak of fluorescence is measured and compared to peak of fluorescence of a standard
with known genome size (Bennett and Leitch 2005, Gregory 2005). Thousands of cells from a
specimen are suspended in a buffer solution and analyzed with a flow cytometer in less than five
minutes. Muscles and neural ganglia are preferred cell types of Hymenoptera prepared for flow
cytometry (Gadau et al. 2001, Johnston et al. 2004, Barcenas et al. 2008, Tsutsui et al. 2008,
Lopes et al. 2009, Ardila-Garcia et al. 2010, Tavares et al. 2010a, Tavares et al. 2010b,
Gokhman et al. 2011, Hanrahan and Johnston 2011). A major advantage to using flow
cytometry is that many samples can be analyzed quickly allowing for larger replication of
intraspecific genome size estimates and interspecific comparisons (Gregory 2005). A major
disadvantage is that live or flash frozen cells are required which hinders analysis and
13
collaboration because the transport of live insects is strongly regulated and specimens may not
arrive in a timely manner to permit analysis.
Parasitoid and social Hymenoptera predominantly have female biased sex ratios (Godfray
1994, Quicke 1997), and so the probability of collecting live males from the field is low. Hence,
obtaining spermatozoa from a wide range of families from many superfamilies for genome size
estimation by Feulgen densitometry would not be practical. In contrast, muscles and neural
ganglia required for flow cytometry would permit genome size estimation regardless of sex of
the sample. It is necessary that the head or entire body of recently euthanized specimen is
removed and damaged during genome size estimation in the flow cytometer, and so the specimen
cannot be identified after processing for flow cytometry. The likelihood that field collected
Hymenoptera can be identified to species while alive and then transported to the laboratory for
processing for genome size estimation while still alive is low. Though female biased sex ratios
are the norm for most species of Hymenoptera (Godfray 1994, Quicke 1997), males will be
encountered periodically, and another complicating factor of identification is linking male and
female specimens of the same species. For example, males of Ichneumonidae are generally
smaller than females and their small size coupled with character-reduction and intraspecific
variation makes them difficult to study (Aguiar and Santos 2010). This diverse order of insects
contains identification characteristics that are peculiar to specific taxonomic levels (family,
genus, species) and particular identification challenges are not equally shared among all taxa, but
the challenge of species identification is nearly impossible if the specimen must remain alive or
the entire head or body is missing. To successfully process species of Hymenoptera for genome
size estimation, data independent of morphology is required for grouping individuals as species
14
without limitations of gender, lifestage (egg, larva, pupa, adult), or taxonomically relevant
characters (antennae, head, thorax).
1.7 Thesis objectives
The research theme of this thesis is to compare genome size of interacting species of
Hymenoptera with different development strategies. To achieve this, it was necessary to collect
live Hymenoptera from the field, and subsequently remove the legs and head from these
unidentified individuals for DNA barcoding and flow cytomety protocols, respectively. In order
to organize these unidentified individuals into species groups, molecular sequences of COI and
ITS1 amplified from vouchered museum specimens were used to calculate a species threshold.
Though Chapter Two and Chapter Three can be read as distinct independent studies, all sampled
genera within the families of Hymenoptera involved the use of both DNA barcoding and flow
cytometry. In order to limit redundancy in this thesis, the resultant molecular sequence and
genome size data generated from these Hymenoptera were partitioned into either Chapter Two or
Chapter Three, respectively. Thus, the chapters were written so as to emphasize distinct results
during the development of a species threshold and the comparative analysis of genome size
estimates, respectively. Each chapter examines a distinct aspect of the overall theme, but they
both contribute to the same theme. The primary objectives of the thesis are divided as follows:
Chapter Two
A species threshold is calculated by using the test case of Hymenoptera associated with
rose galls induced by Diplolepis (Cynipidae). The calculated species threshold will be critical to
group unidentified Hymenoptera into species groups (DbOTs) in both Chapter Two and Chapter
15
Three. Using this species threshold, specimens are enumerated to examine whether or not the
number of recognized species of Hymenoptera associated with rose galls induced by Diplolepis
(Cynipidae) would increase, reduce or remain the same. This system was selected because it
includes Hymenoptera of three superfamilies from eight families, and many of the species of
Canadian Diplolepis (Cynipidae), Periclistus (Cynipidae), and Torymus (Torymidae) have been
morphologically identified to species by JD Shorthouse and his graduate students. In order to
calculate a species threshold, vouchered museum specimens from the JD Shorthouse reference
collection at Laurentian University were selected for DNA barcoding, and in select cases ITS1
sequences were also amplified. In addition, genome size estimations were gathered from several
species in each family for use in Chapter Three.
Chapter Three
Live Hymenoptera from 36 families were collected in order to analyse genome size
diversity across a larger sample of superfamilies, families, and species than is currently available
in the genome size dataset. Identification of field collected Hymenoptera into DbOTs was based
on the species threshold calculated from the test case in Chapter Two. Coincidently, several
DbOTs from all families within Chapter Two had genome size estimated. There is currently
insufficient representation of different lifestyles, superfamilies and families among genome size
estimates of Hymenoptera. Moreover, parasitoids are underrepresented in the data, which does
not allow for a test of differences in mean genome size between the important dichotomy of
parasitoid lifestyles, idiobionts and koinobionts. The idea that parasitoid lifestyles constrain
genome size is put to the test by comparing genome size of lineages without a parasitoid ancestor
to lineages that are derived from a parasitoid ancestor. Differences in mean genome size between
16
groups of Hymenoptera with different lifestyles are examined. Specific comparisons are made
between idiobiont and koinobiont species within both Braconidae and Ichneumonidae, and
between interacting species with suspected differences in development time and mortality risk.
17
Table 1.1
Superfamily
Apoidea:
Apoidea:
Apoidea:
Apoidea:
Cephoidea:
Ceraphronoidea:
Ceraphronoidea:
Chalcidoidea:
Chalcidoidea:
Chalcidoidea:
Chalcidoidea:
Chalcidoidea:
Chalcidoidea:
Chalcidoidea:
Chalcidoidea:
Chalcidoidea:
Chalcidoidea:
Chalcidoidea:
Chalcidoidea:
Chalcidoidea:
Chalcidoidea:
Chalcidoidea:
Chalcidoidea:
Chrysidoidea:
Chrysidoidea:
Chrysidoidea:
Chrysidoidea:
Cynipoidea:
Cynipoidea:
Cynipoidea:
Diaprioidea:
Evanioidea:
Evanioidea:
Evanioidea:
Familiesδ of Hymenoptera known from Canada†.
Family
Ampulicidae‡
Apidae§
Crabronidae‡
Sphecidae
Cephidae
Ceraphronidae
Megaspilidae
Aphelinidae
Chalcididae
Encyrtidae
Eucharitidae
Eulophidae
Eupelmidae
Eurytomidae*
Leucospidae
Mymaridae
Ormyridae
Perilampidae
Pteromalidae
Signiphoridae
Tetracampidae
Torymidae
Trichogrammatidae
Bethylidae
Chrysididae
Dryinidae
Embolemidae
Cynipidae
Figitidae¶
Ibaliidae
Diapriidae
Aulacidae
Evaniidae
Gasteruptiidae
no. species†
no. species†
known
+
estimated
known
+
estimated
977
403
18
135
135
50
37
130
25
317
54
1
65
45
21
410
8
5
82
41
42
34
60
3
310
136
4
300
20
4
12
Superfamily
Ichneumonoidea:
Ichneumonoidea:
Mymarommatoidea:
Orussoidea:
Pamphilioidea:
Platygastroidea:
Proctotrupoidea:
Proctotrupoidea:
Proctotrupoidea:
Proctotrupoidea:
Proctotrupoidea:
Siricoidea:
Siricoidea:
Stephanoidea:
Tenthredinoidea:
Tenthredinoidea:
Tenthredinoidea:
Tenthredinoidea:
Tenthredinoidea:
Trigonaloidea:
Vespoidea:
Vespoidea:
Vespoidea:
Vespoidea:
Vespoidea:
Vespoidea:
Vespoidea:
Vespoidea:
Vespoidea:
Vespoidea:
Xiphydrioidea
Xyeloidea
Family
Braconidae
Ichneumonidae
Mymarommatidae
Orussidae
Pamphiliidae
Platygastridae∆
Heloridae
Pelecinidae
Proctotrupidae
Roproniidae
Vanhorniidae
Anaxyelidae#
Siricidae
Stephanidae
Argidae
Cimbicidae
Diprionidae
Pergidae
Tenthredinidae
Trigonalidae
Bradynobaenidae#
Formicidae
Mutillidae
Pompilidae
Rhopalosomatidae
Sapygidae
Scoliidae
Sierolomorphidae
Tiphiidae
Vespidae
Xiphydriidae
Xyelidae
4030
7000
1
4
53
550
2
1
66
2
1
14
2
17
4
30
10
400
5
186
36
165
2
6
2
1
29
125
8
16
δ The order Hymenoptera includes 83 families divided among22 superfamilies worldwide
according to the website “Hymenoptera – Assembling the Tree of Life Website
(http://www.hymatol.org/)” and sources listed below‡§¶∆.
† Masner et al. (1979).
‡ Not listed as a family in Masner et al. (1979) because formerly considered part of Sphecidae
(Pulawski 2011).
§ Melo and Gonçalves (2005) consider the following former families of Apoidea as subfamilies
of Apidae: Andrenidae, Colletidae, Halictidae, Megachilidae, and Melittidae.
* Family is not listed in Masner et al. (1979), but species in this family are found in Canada.
¶ Liu et al. (2007) consider the following former families of Cynipoidea as a tribe or subfamily
of Figitidae: Alloxystidae and Eucoilidae.
∆ Platygastridae includes the former family Scelionidae (Sharkey 2007).
# Family is not listed in Masner et al. (1979), and is rare in Canada (Goulet and Hubert 1993).
18
Table 1.2
Species of Hymenoptera available for genome size (GS) estimates.
Number of species with GS estimates
Superfamily:
Apoidea:
Apoidea:
Apoidea:
Cephoidea:
Chalcidoidea:
Chalcidoidea:
Chalcidoidea:
Chalcidoidea:
Chalcidoidea:
Chalcidoidea:
Chalcidoidea:
Chalcidoidea:
Chalcidoidea:
Chalcidoidea:
Cynipoidea:
Cynipoidea:
Diaprioidea:
Ichneumonoidea:
Ichneumonoidea:
Platygastroidea:
Siricoidea:
Vespoidea:
Vespoidea:
Vespoidea:
Vespoidea:
Family
Apidae
Crabronidae
Sphecidae
Cephidae
Aphelinidae
Chalcididae
Encyrtidae
Eucharitidae
Eulophidae
Eupelmidae
Eurytomidae
Mymaridae
Pteromalidae
Trichogrammatidae
Cynipidae
Figitidae
Diapriidae
Braconidae
Ichneumonidae
Platygastridae
Siricidae
Formicidae
Mutillidae
Scoliidae
Vespidae
previous studies
39
5
5
1
4
0
2
0
1
0
0
0
2
3
0
4
0
10
1
0
0
64
4
1
16
162
†
CFIA‡
0
0
0
0
6 (4)
0
4 (1)
0
2 (1)
0
0
2
9 (1)
6 (3)
0
0
0
10 (4)
0
0
0
0
0
0
0
39 (14)
§
ESC
0
0
0
0
0
0
0
0
0
† Species listed in Appendix 2, Appendix 3, Appendix 4, and www.genomesize.com.
‡ Number in parentheses provide the number of species whose genome size was estimated in
previous studies. CFIA = Canadian Food Inspection Agency,
www.inspection.gc.ca/english/plaveg/protect/dir/biocontrole.shtml.
§ Species names are not listed in all abstracts of programs of the Entomological Society of
Canada (ESC) from 2007-2011, so instead families are indicated, www.esc-sec.ca/
annmeet.html.
The number of species is not explicitly mentioned in several abstracts within the programs of
annual meetings of the Entomological Society of Canada; therfore, an exact number of
species cannot be tallied. Many of the insects are pinned or preserved in ethanol and cannot
have their genome size estimated by flow cytometry.
19
Idiobiont
Koinobiont
Equivocal (Idio/Koino)
Hymenoptera
Superfamily
2.00
1.50
0.00
Genome size (pg)
1.00
Ectoparasitoid
Endoparasitoid
Equivocal (Ecto/Endo)
0.50
Herbivore
Xyleoidea
Pamphiliodea
Tenthredinoidea
Cephoidea
n=
1
Siricoidea
Xiphydrioidea
Orussoidea
Stephanoidea
Ceraphronoidea
Megalyroidea
Trigonalyoidea
paraphyletic
Evanoidea
Chrysidoidea
Vespoidea‡
n = 85
Apoidea‡
n = 49
Ichneumonoidea† n = 11
Platygastroidea
Cynipoidea†
n=
4
Proctotrupoidea
Diaprioidea
Chalcidoidea†
n = 12
Mymarommatoidea
Figure 1.1. Genome size diversity of superfamilies of Hymenoptera as determined in previous
studies (n = 162 species, Appendix 4). Development syndrome of parasitoids is mapped onto the
tree from Sharkey et al. (2011). Some superfamilies include several larval feeding modes: †
Inducers or inquilines, ‡ cleptoparasite, § predator. Height of genome size bar represents number
of species.
20
CHAPTER TWO
Using DNA barcoding to estimate species richness of gall inducers of the genus Diplolepis
(Hymenoptera: Cynipidae), inquilines of the genus Periclistus (Hymenoptera: Cynipidae),
and
parasitoids (Hymenoptera, Chalcidoidea and Hymenoptera, Ichneumonoidea)
associated with rose gall communities found in Canada
21
ABSTRACT
Based on the combined results of sequencing both the DNA barcode region of
cytochrome c oxidase I (COI) and the internal transcribed spacer region 1 (ITS1), a species
threshold was calculated to estimate species richness of inducers, inquilines, and parasitoids
associated with rose galls induced by cynipids of the genus Diplolepis. Both identified and
unidentified individuals were assigned to a DNA barcode Operational Taxon (DbOT) using
pairwise genetic distance and Neighbour-joining tree based methods. Specimens were
categorized into separate DbOTs when a group of DNA barcodes had a mean intercluster
sequence divergence from its nearest neighbour of 2.2%. A total of 18 species of Diplolepis, 7
species of Periclistus, and 6 species of Torymus were identified using morphological features of
the adults, but DNA barcodes grouped specimens of Diplolepis, Periclistus, and Torymus into
24, 12, and 12 DbOTs, respectively. Representatives from six other families of Hymenoptera
associated with rose galls induced by Diplolepis were also DNA barcoded, and the total number
of DbOTs increased the previous estimate of species richness. Sequencing of two molecular
markers, mtDNA and rDNA, revealed the need for taxonomic revision of several taxa, and the
categorization of these DbOTs can guide future taxonomic investigations.
22
INTRODUCTION
2.1 Cynipid component communities
The majority of the 1300 described species of gall wasps (Hymenoptera: Cynipidae)
induce galls on leaves, stems, or roots of oaks (Quercus) and roses (Rosa) (Rokas et al. 2003,
Ronquist and Liljeblad 2001, Harper et al. 2004). Galls are highly visible structures which attract
several species of Hymenoptera with different feeding ecologies. For example, some species are
phytophagous and feed only on gall tissues while other species are parasitoids and feed on larvae
within the gall (Askew et al. 2006). Parasitoids are important members of component
communities because they contribute to most of the species richness and inflict high levels of
mortality (Hayward and Stone 2005). The assemblage of all inhabitants associated with a
population of galls induced by the same gall wasp species is referred to as a component
community, and populations of galls induced by each species of gall wasp is thought to support a
unique gall community (Shorthouse 1993, Shorthouse 2010). Interactions among and between
cynipid species and parasitoid species are complex (Hayward and Stone 2005), and construction
of qualitative or quantitative food webs to understand these interactions are challenging
(Kaartinen et al. 2010).
Many gall component communities are known to contain a few morphologically
indistinguishable species of both cynipids and parasitoids (Abrahamson et al. 1998, PujadeVillar and Plantard 2002, Hayward and Stone 2005, Lotfalizadeh et al. 2007, Güçlü et al. 2008,
Liljeblad et al. 2009, Pénzes et al. 2009, Ács et al. 2010, Kaartinen et al. 2010). Addition of
molecular identification tools to aid in both the species determination and the discovery of new
species has recently been viewed as necessary to increase resolution in food web studies
23
associated with cynipid galls (Kaartinen et al. 2010) and external foliar feeding lepidoptera
(Hrcek et al. 2011, Smith et al. 2011).
The major aim of this study was to assess species richness in the communities associated
with rose galls induced by Diplolepis by using a species threshold. Morphologically identified
species of Cynipidae (Genera: Diplolepis and Periclistus) and Torymidae (Genera: Torymus) had
both COI and ITS1 sequences amplified in order to calculate a species threshold. Afterwards,
unidentified adult and larval specimens of Diplolepis, Periclistus, Torymus, and parasitoids from
six families were either matched to DNA barcodes of morphologically identified species or were
were assigned to unknown species based on the calculated species threshold. This approach was
then adapted for use in the broader study of Hymenoptera genome size diversity reported in
Chapter Three.
2.2 Cynipid galls
Plant galls are structures induced by another organism by which shelter, nourishment, and
protection is provided to the gall inducer (Stone and Schönrogge 2003). Inducers manipulate
undifferentiated plant cells to develop into structures which include the formation of novel plant
cells that do not exist elsewhere in the plant (Weis et al. 1988, Harper et al. 2004, Shorthouse et
al. 2005). Gall induction is a form of herbivory because the gall wasp larvae continually
stimulate the production of new plant cells to supply nutrients directly to themselves until they
pupate (Shorthouse 1993). Host plant selection by inducers is critical to guarantee proper
initiation, growth and maturation of the gall. Most genera of gall inducers are typically restricted
to closely related congeneric plant species, usually within the same plant genus (Abrahamson et
al. 1998, Ronquist and Liljeblad 2001). Gall development is influenced by both the species of
24
inducer and the plant, but overall gall morphology is controlled by the inducer (Shorthouse 1993,
Ronquist and Liljeblad 2001, Stone and Schönrogge 2003). Gall morphology is treated as an
extended phenotype of each species of inducer (Stone and Cook 1998) and because the number
of host plant associations are limited, several genera of cynipid wasps have been described based
on gall-associated characters rather than on the phenotype of the inducer themselves (Melika and
Abrahamson 2000, Melika and Bechtold 2001, Liljeblad et al. 2008).
2.3 Rose gall inducers: Diplolepis
Gall wasps in the genus Diplolepis are restricted to inducing galls on Rosa with each
species of plant hosting at least one species of Diplolepis (Shorthouse 1993, Shorthouse 2010).
Worldwide, the estimated number of described species of Diplolepis is 43 (Table 2.1), but most
of their diversity is found within North America and over one third of species of Diplolepis are
found within Canada (Shorthouse 1993, Shorthouse 2010). Examination of adults from museum
vouchers, species descriptions and gall descriptions from the literature have identified 16 species
of Diplolepis within Canada (Brooks and Shorthouse 1998, Shorthouse 2010). Additional
undescribed species of Diplolepis have been collected within Canada (Ritchie 1984, Shorthouse
and Ritchie 1984, Shorthouse 1988), but little is known about the identification, biology, or gall
morphology of these rarer species (Table 2.1).
Species identification based on adult morphology is challenging throughout Cynipidae,
and current identification morphological features for the delineation and separation of species
and genera require revision (Melika and Abrahamson 2000, Ács et al. 2007). Some species of
Diplolepis are difficult to distinguish because few have been described in sufficient detail and an
identification key is lacking (Shorthouse 1993, Shorthouse 2010). Phylogenetic relationships of
25
several species of Diplolepis have been investigated using characters from adult morphology,
gall morphology, and molecular sequences from two mitochondrial gene regions, cytochrome b
and 12S rRNA (Plantard et al. 1998). The results of that study could not reject the hypothesis
that several species might be synonyms, such as between D. nebulosa, D. ignota, and D.
variabilis, and between D. centifoliae and D. nervosa (Plantard et al. 1998). Gall inducer
identification within some genera has been complicated by reliance on gall morphology (Melika
and Abrahamson 2000, Melika and Bechtold 2001, Liljeblad et al. 2008). Galls induced by
different species can be very similar such as the stem galls of D. inconspicuis and D. nodulosa
(Brooks and Shorthouse 1997). In addition, gall morphology can be variable within an inducer
species, such as the single-chambered or multi-chambered galls of D. verna, the shiny or smooth
galls of D. dichlocera, and the three gall forms of D. triforma (Shorthouse and Ritchie 1984).
Investigating species boundaries of Diplolepis independent of morphology is warranted because
adult identification is challenging.
2.4 Rose gall inquilines: Periclistus
Inquilines have lost the ability to induce their own galls (Ronquist 1994), and are
obligatorily dependent on completing their development within galls of inducers (Brooks and
Shorthouse 1998, Shorthouse 1998). Inquilines do not feed on the bodies of the inducers and thus
are not considered as either parasitoids or predators, yet the inducer is killed directly by the
ovipositor of the female adult (Shorthouse 1998). The genus Periclistus (Hymenoptera:
Cynipidae) includes 17 described species worldwide, and all members of the genus are restricted
to galls induced by Diplolepis to complete their larval development (Ritchie 1984, Ronquist and
Liljeblad 2001, Shorthouse 1973, 1998). Galls induced by Diplolepis are host to at least one
26
species of inquiline (Ritchie 1984, Table 2.2), but it is difficult to identify several species of
Periclistus and several host records are probably invalid (Ritchie 1984). For example, P. pirata
was considered to be associated with galls induced by D. polita in Alberta (Shorthouse 1973,
Shorthouse 1980), but it was later determined that the inquiline in question was an undescribed
species (Ritchie 1984). Furthermore, after morphological examination of Periclistus from galls
induced by species of Diplolepis within Canada and from several reference collections of North
America, it was concluded that the species of Periclistus designations were valid (Shorthouse
1975). However, a revision of Nearctic Periclistus demonstrated that three of the seven species
of Periclsitus were invalid based on morphological evidence, and a total of six new species were
recognized increasing the current number of North American species of Periclistus to 12
(Ritchie 1984, Table 2.2). New species descriptions of Periclistus by Ritchie (1984) were not
published and so those specific names are considered nomina nuda (nom. nud.). However, for
ease of comparison, the same species names that appeared in the PhD dissertation of Ritchie
(1984) will be used in this study, but those species names are written within quotation marks
followed by (nom. nud.). One of the newly identified species, “P. weldi (nom. nud.)” has been
frequently identified as P. pirata, and the highly variable morphology of “P. weldi (nom. nud.)”
suggests the presence of even more cryptic species (Ritchie 1984). By definition, cryptic species
are two or more species that cannot be distinguished using morphological characters, and thus
individuals are all classified under one species name (Bickford et al. 2007). The genus
Periclistus is another example within Cynipidae that would benefit from a re-examination of
species boundaries independent of morphology.
27
2.5 Rose gall parasitoids
Parasitoids are an important source of mortality for Diplolepis, Periclistus, and other
Hymenoptera inhabiting rose galls (Shorthouse et al. 2005, Shorthouse 2010). Parasitoid
diversity is intermediate within gall communities as compared to communities of hosts feeding
externally on leaves or which bore into plant tissue, and this is potentially due to the visibility of
galls and the relatively immobile hosts contained within (Hawkins 1994). Considering cynipid
communities only, parasitoid diversity of galls induced by Diplolepis appears to be intermediate
relative to the cynipid tribes Cynipini and Aylacini of the Palearctic (Askew et al. 2006).
Parasitoids from seven families and 18 genera exit from a population of galls induced by the
same species of Diplolepis (Table 2.3). The majority of parasitoids associated with rose galls are
from the superfamily Chalcidoidea, and most are ectoparasitic idiobionts which prevent further
host development as they feed on the host from outside its body (Stone et al. 2002). The few
species of Eulophidae (Chalcidoidea) and Ichneumonidae (Ichneumonoidea) associated with rose
galls are endoparasitic koinobionts which allow the host to continue development as they
consume the host from inside its body. Studies of cynipid gall communities and food webs
require accurate identifications, which is done by rearing insects within galls to adulthood and/or
dissecting galls to search for eggs and larvae. Identification of adult parasitoids of gall
communities is generally more challenging compared to cynipids, and identification of immature
stages to species-level is nearly impossible (Kaartinen et al. 2010). A preliminary examination of
species richness of Hymenoptera exiting galls induced by species of Diplolepis is possible if
specimens could be grouped independent of morphology.
Members of the family Torymidae are proportionally the most abundant parasitoid family
to exit galls induced by Diplolepis in the Palearctic region (Askew et al. 2006), and Torymidae
28
has the second largest number of described species associated with galls induced by Diplolepis
(Table 2.3). The genus Torymus includes 323 species worldwide (Grissell 1995), with 11 species
associated with galls induced by Diplolepis in North America (Table 2.4). Identification of
Torymidae based on adult morphology is challenging, and the genus Torymus is especially
difficult due to morphological uniformity of several species (Gómez et al. 2008). For example,
identification keys to the species of Torymus are predominantly restricted to adult females, and
two species associated with galls induced by Diplolepis, T. bedeguaris and T. solitarius, are
difficult to distinguish and are only separated in the last couplet of an identification key based on
number of setae and trichomal sensillae in females (Grissell 1995, Rempel 2002). Identification
of species of Torymus, especially males, appears to be challenging; for example, undescribed
Canadian species collected in a previous study (Shorthouse and Brooks 1998) were not included
in the most recent list of species of Torymus associated with galls induced by Diplolepis (Rempel
2002). The genus Torymus is an example of a well-recognized parasitoid glineage within rose
gall communities that would benefit from a re-examination of species boundaries independent of
morphology.
2.6 Molecular identification tool: DNA barcoding
Studies utilizing a 658 base pair region of the mitochondrial gene cytochrome c oxidase
subunit I (COI) have demonstrated the ability of that marker to confidently link field collected
organisms with a reference sequence of a previously identified species (Hebert et al. 2003). The
barcode region of COI corresponds to nucleotide positions 1490-2198 of the Drosophila yakuba
mitochondrial genome (Clary and Wolstenholme 1985). Immature life stages (egg, larva, pupa)
or fragmentary insect parts (host remains) can also be confidently associated using a DNA
29
barcode reference sequence (Miller et al. 2005, Caterino et al. 2006). Some advantages of
sequencing loci within mitochondrial DNA (mtDNA) for Hymenoptera specimens are that
mtDNA lacks introns, rarely recombines, has few indels, and there are several robust primers
available to allow amplification across several taxa (Hebert et al. 2003). These advantages have
allowed for wide scale adoption of DNA barcoding as an identification tool for a variety of
animals around the world (www.barcodinglife.org).
Species and lifestages which are challenging to separate morphologically should include
additional data independent of both morphology and mitochondrial DNA to support species
identification by DNA barcodes (DeSalle et al. 2005). To supplement grouping of specimens via
DNA barcodes, nuclear loci such as the internal transcribed spacer regions (ITS1 and ITS2)
between the 5.8S, 18S, and 28S rRNA genes in ribosomal DNA (rDNA) can also be sequenced.
The rapid rate of evolution of ITS1 and ITS2 facilitates the hypothesized separation of closely
related taxa (Rokas et al. 2002, Ji et al. 2003). However, some hypervariable regions of ITS1 and
ITS2 make accurate alignment difficult, and manual assembly of sequences is quite challenging
unless limited to conserved regions.
Molecular Operational Taxonomic Units (MOTU) can be defined for specimens with
molecular sequences amplified in order to aid identification (Floyd et al. 2002). Sequences
generated from nuclear or mitochondrial genomes are selected based on researcher preference
and so MOTUs are not readily comparable between laboratories. However, the DNA barcode is
defined as a specific number of basepairs in a particular region of COI in the mitochondrial
genome (Clary and Wolstenholme 1985, Hebert et al. 2003), such that specimens with DNA
barcodes amplified are considered as unique from other molecular studies. Therefore, using the
simple nucleotide sequence analysis of Neighbor-joining (NJ) tree building with Kimura two-
30
parameter (K2P) genetic distances, DNA barcodes of specimens that cluster together below a
selected species threshold can be defined as DNA barcode Operational Taxa (DbOT). Such
clusters may not actually represent different species, but unique DbOTs can be submitted to
further taxonomic hypothesis testing using additional data obtained from morphological, genetic
(i.e. nuclear genes, genome size), and/or behavioural studies of well-sampled populations
collected from locations throughout their geographic distributions.
A species threshold based approach has been used for initial estimates of richness in
bioinventory studies of ants (Formicidae) (Smith et al. 2005a) and parasitoids (Braconidae,
Cynipidae, Diapriidae, Ichneumonidae) (Smith et al. 2009, Santos et al. 2011). Those studies
either applied the species threshold of 3% proposed by Hebert et al. (2003) based on Lepidoptera
species or applied more than one species threshold (1.6% and 2%) loosely based on the ant
species threshold of 1.9% (Smith et al. 2005b). Thus far, a species threshold for Hymenoptera
has not been calculated using species of parasitoid or Cynipidae.
Species boundaries of Diplolepis, Periclistus, and Torymus associated with rose galls
induced by Diplolepis have been based exclusively on morphological evidence, but species
identification is challenging in these genera (Ritchie 1984, Shorthouse 1993, Rempel 2002,
Gómez et al. 2008, Shorthouse 2010) and some species are suspected to be synonyms (Ritchie
1984, Plantard et al. 1998). By initially accepting the priori morphological identifications, both
DNA barcodes and ITS1 sequences can be used to calculate a species threshold which would
provide initial evidence to corroborate the splitting or lumping of described species. Afterwards,
the species threshold could be used to provide an inital estimate of richness of other
Hymenoptera associated with rose galls induced by Diplolepis.
31
2.7 Objectives
The uncertainty of species designation based only on adult morphology of Hymenoptera
hampers the study of diversity of Hymenoptera associated with rose galls induced by cynipids of
the genus Diplolepis. The ability to perform detailed investigations into the biology, ecology, or
systematics of any species is impeded without accurate identifications. Hymenoptera include
some of the most difficult insects to identify (Godfray and Shimada 1999, Gariepy et al. 2007,
Stone et al. 2008), and thus gall inducers, inquilines, and parasitoids would benefit from DNA
barcoding to assist species identification and estimation of species richness.
Objective 2.A.: To determine whether or not morphology and DNA barcoding identify the
same species of Diplolepis, Periclistus, and Torymus.
Average sequence divergence will be calculated among well-supported sister clusters to
calculate a species threshold in order to count the number of DbOTs using DNA barcodes of both
identified and unidentified specimens. Both COI and ITS1 regions will be sequenced from
morphologically identified reference species of Diplolepis, Periclistus, and Torymus to assess the
number of DbOTs. It is expected that DNA barcodes will corroborate the identity of reference
species of Diplolepis, Periclistus, and Torymus, and DNA barcodes will match specimens that
have not been morphologically examined to the reference species.
Objective 2.B.: To employ a species threshold to catalogue richness of Hymenoptera
associated with rose galls induced by Diplolepis
Using the species threshold caluclated in Objective 2.A., richness will be estimated for
eight families of Hymenoptera associated with rose galls induced by Diplolepis. It is expected
32
that total richness of Hymenoptera associated with rose galls induced by Diplolepis within
Canada would be lower than richness of Hymenoptera associated with galls induced by
Diplolepis collected across the continent of North America, north of Mexico. The threshold
developed as part of this study also played an integral role in enabling the genome size survey of
other Hymenoptera presented in Chapter Three.
Materials and Methods
2.8 Specimen collection and deposition
The JD Shorthouse reference collection at Laurentian University in Sudbury, ON,
includes rose gall inhabitants collected over the past 42 years. The accumulation of specimens
within this reference collection was due to the efforts of JD Shorthouse and his students. They
removed mature rose galls induced by species of Diplolepis from Rosa (leaves, stems, or roots)
and collectively placed within Whirl-Pak® bags according to structural distinctiveness of each
rose gall type. Each group collection of a rose gall type from a sampling site was assigned a
collection number, and relevant field data such as collection date and geographic site were
recorded. Hence, each unique collection contained from one to hundreds of rose galls induced by
a species of Diplolepis. If mature galls had been collected in the fall, then they were subjected to
cold temperature (4°C) for four months to break diapause of gall inhabitants. If mature galls had
remained outside during the winter until the following spring, then they were subjected to room
temperature (~ 20°C) to break diapause of gall inhabitants. This reference collection covers a
wide geographical area across Canada, and contains specimens from locations in the United
States and outside North America (Appendix 1).
33
Curators, contributors and volunteers of this reference collection obtained adult insects as
they exited galls and initially preserved them in 70% ethanol. At a later time, specimens of
Diplolepis, Periclistus, and Torymus were mounted and morphologically identified to species by
JD Shorthouse, AJ Ritchie (1984), and SJ Rempel (2002), respectively. Morphologically
identified species of Diplolepis (n = 532, Table 2.5), Periclistus (n = 131, Table 2.6), and
Torymus (n = 99, Table 2.7) were selected for DNA barcoding. All morphologically identified
species of Diplolepis, Periclistus, and Torymus are deposited in the JD Shorthouse reference
collection.
Unidentified adult specimens of Diplolepis (n = 32) (n = 80), Periclistus (n = 444),
Torymus (n = 252), and adult parasitoids (n = 45), other than Torymidae, associated with rose
galls induced by Diplolepis were also selected for DNA barcoding. In addition, mature galls
were collected and brought to the nearest laboratory (University of Guelph, Laurentian
University) to break diapause, as described above. As adult insects exited galls, they were
individually placed alive into microcentrifuge tubes and stored at -80°C at the University of
Guelph until processed for DNA barcoding (Appendix 1).
Unidentified specimens from the reference collection (n = 853) and collected from the
field (n = 468) were identified to family (Table 2.8) using morphological keys of Gauld and
Bolton (1988) and Gibson et al. (1997). Further information about specimens and collection
details are available on the Barcode of Life Data Systems (www.barcodinglife.org) under the
projects DIPNA (Diplolepis exiting rose galls of North America), PERNA (Periclistus exiting
Diplolepis galls of North America), ROSE (Community members exiting Diplolepis galls of
North America), and TORNA (Torymus exiting Diplolepis galls of North America).
34
2.9 DNA extraction and PCR amplification
One or two legs were removed from each adult and transferred to an ethanol-filled well
of a 96-well microtitre plate and shipped to the Biodiversity Institute of Ontario in Guelph,
Ontario, Canada. Ethanol was allowed to evaporate before 50 μL of a mixture of 5 mL of Insect
Lysis buffer (Ivanova et al. 2006) and 500 μL of Proteinase K (20mg/L) was added to each well.
Afterwards, the 96-well plate was incubated overnight at 55°C. Total genomic DNA was
extracted using the Standard Glass-fibre Protocol and a liquid-handling robot. DNA extracts
were resuspended in 30 μL of ddH2O before carrying out the PCR reactions (Ivanova et al.
2006).
The DNA barcode region of COI gene was amplified using a pair of the following
primers (www.barcodinglife.org):
Lep-F1,
5'-ATTCAACCAATCATAAAGATATTGG-3'
Lep-R1,
5'-TAAACTTCTGGATGTCCAAAAAATCA-3'
MLep-F1,
5'-GCTTTCCCACGAATAAATAATA-3'
MLep-R1,
5'-CCTGTTCCAGCTCCATTTTC-3'
or
PCR reactions were carried out in 96-well plates in 12.5 μL volumes containing: 2.5 mM MgCl2,
5 pmol of each primer, 20 mM dNTPs, 10 mM Tris-HCL (pH 8.3), 50 mM of KCl, 10-20 ng (1
to 2 µL) of genomic DNA and 1 unit Taq DNA polymerase (Platinum® Taq DNA polymerase,
Invitrogen). PCR thermocycling profile was: 1 cycle of 60 seconds at 94°C, 5 cycles of 40
seconds at 94°C, 40 seconds at 45°C and 60 seconds at 72°C, followed by 35 cycles of 40
seconds at 94°C, at 51°C and 60 seconds at 72°C, with final extension of 5 minutes at 72°C.
35
PCR products were visualized on a 2% agarose E-gel (Invitrogen), and positive single bands
were selected for bi-directional sequencing with the BigDye Terminator Cycle Sequencing Kit
on an ABI3730xl DNA Analyzer (Applied Biosystems) at the Biodiversity Institute of Ontario.
The primers Lep-F1 and Lep-R1 amplified a DNA barcode of > 500 bp for most Diplolepis and
Periclistus specimens < 10 years old. However, the primers MLep-F1 and MLep-R1 amplified
mini DNA barcodes of < 500 bp for Diplolepis and Periclistus specimens > 10 years old and for
most Chalcidoidea regardless of age (Appendix 1).
The ribosomal ITS1 region between 18S and 5.8S genes (position 1843-2805, Ji et al.
2003) was amplified using the following primers (www.barcodinglife.org):
CAS18sF1,
5'-TACACACCGCCCGTCGCTACTA-3'
CAS5p8sB1d,
5'-ATGTGCGTTCRAAATGTCGATGTTCA-3'
PCR reactions and visualization of PCR products were carried out as described above. The ITS1
thermocycling profile was as follows: 1 cycle of 2 minutes at 94°C, 40 cycles of 20 seconds at
94°C, 40 seconds at 57°C and 2 minutes at 72°C, with final extension of 5 minutes at 72°C.
Combination of specimen age and their preliminary storage within 70% ethanol did not allow
amplification of the entire ITS1 region (Appendix 1).
2.10 Sequence Analyses
Contigs of COI and ITS1 sequences were assembled using Sequencher v4.5 (Gene
Codes) and aligned using CLUSTALX in MEGA v5.0 (Tamura et al. 2011) and manual
adjustments by eye to improve the alignment. All DNA barcode sequences were inspected for
indels, stop codons, or length variation to limit inclusion of non-target gene regions. Separate
36
analyses were performed on mtDNA and ITS1 sequences. Intraspecific and interspecific pairwise
sequence divergence for mtDNA was calculated using the Kimura-2-parameter (K2P) distance
model with pairwise deletion in MEGA v5.0 and visualized as a Neighbour-Joining (NJ)
dendrogram with bootstrap analysis of 500 replicates. Intraspecific and interspecific pairwise
sequence divergence for conserved regions of ITS1 was calculated using the number of
differences method with pairwise deletion in MEGA v5.0 and visualized as a Neighbour-Joining
(NJ) dendrogram with bootstrap analysis of 500 replicates.
To estimate the number of potentially undescribed and cryptic species, a threshold value
of species separation was calculated based among sequence divergences found among the
morphologically identified species of Diplolepis, Periclistus, and Torymus. Average interspecific
sequence divergence was calculated among species of the three genera from the reference
collection. The minimum average sequence divergence between nearest neighbour species was
then used as a threshold value for species separation for both identified and unidentified
individuals of Hymenoptera associated with rose galls induced by Diplolepis.
RESULTS
The barcode region was successfully sequenced for 1168 individuals representing both
identified and unidentified individuals of Diplolepis, Periclistus, Torymus, and other parasitoids
associated with rose galls induced by Diplolepis (Figure 2.1). This represents a cumulative
success of 56.1 % in amplification of DNA barcodes of specimens collected from the year 1915
to 2010 (n = 2083). Amplification success of DNA barcodes increased from 15.5 % for species
of Diplolepis collected before the year 1998 (n = 277) to 77.4 % for specimens collected
afterwards (n = 464, Figure 2.1). There was also an increase in amplification success of DNA
37
barcodes for species of Periclistus from 19.8 % (n = 131) to 55.1 % (n = 499) for specimens
collected before the year 1998 and afterwards, respectively (Figure 2.1). Increase in
amplification success of DNA barcodes for species of Torymus was from 66.7 % (n = 48) to 69.2
% (n = 354) for specimens collected before the year 1998 and afterwards, respectively (Figure
2.1).
2.11 Diplolepis: COI and ITS1
A DNA barcode was amplified from 255 of 532 morphologically identified individuals of
Diplolepis, and coverage included 13 common Canadian species, two exotic species found
within Canada (D. eglanteriae, D. rosae), and two species found outside of Canada (D.
californica, D. fructuum). Eleven described species of Diplolepis had one unique cluster of
sequences each allowing for their identification by DNA barcodes (Figure 2.2). Four described
species of Diplolepis had more than one cluster (Figure 2.2), and three leaf gall inducers shared
DNA barcodes (Figure 2.2). One example of misidentification was detected when a specimen of
D. nebulosa (DNE-AB1, Rose 432) appeared to share a DNA barcode with D. gracilis.
However, re-examination of the mesopleuron determined that the specimen was actually D.
gracilis.
An ITS1 sequence between 385–394 bp was amplified from specimens of D. bicolor (n
= 3), D. eglanteriae (n = 1), D. fructuum (n = 1), D. ignota (n = 3), D. nebulosa (n = 2), D.
rosaefolii (n = 2), and an unidentified individual whose DNA barcode grouped within the D.
ignota/D. nebulosa/D. variabilis cluster (n = 1) (Figure 2.2, Appendix 1). Sequencing results
suggest the separation of D. bicolor into two species and also the separation of D. rosaefolii into
two species. Mean number of differences of ITS1 sequences between individuals of D. bicolor
38
and between individuals of D. rosaefolii was four and six, respectively (Figure 2.2). However,
mean number of differences of ITS1 sequences between individuals of D. ignota/D. nebulosa/D.
variabilis/D. sp. was one. This low number of differences along with the identical DNA barcodes
suggests a taxonomic synonymy of D. ignota, D. nebulosa, and D. variabilis (Figure 2.2).
Considering morphologically identified species of Diplolepis with both DNA barcodes
and ITS1 sequences, maximum intraspecific divergences were as follows: D. bicolor (3.1%), D.
eglanteriae (0.0%), D. fructuum (0.0%), D. rosaefolii (4.1%), and the D. ignota/D. nebulosa/D.
variabilis group (1.3%) (Figure 2.2). Because of the challenges of morphological identification
of Diplolepis, average interspecific sequence divergence was calculated between sister clusters
supported by both DNA barcodes and ITS1 sequences instead of among morphologically
identified species. Average interspecific sequence divergence between sister clusters of D.
bicolor and sister clusters of D. rosaefolii was 3.0% and 4.1%, respectively (Figure 2.2).
2.12 Periclistus: COI and ITS1
A DNA barcode was amplified from 26 of 131 morphologically identified individuals of
Periclistus, and coverage included 7 of 9 species associated with rose galls induced by
Diplolepis. Unfortunately, no DNA barcode was amplified from reference specimens of “P.
gracilicolus (nom. nud.)” and of “P. vancouverensis (nom. nud)”. Four described species of
Periclistus had one unique cluster of sequences each allowing for their identification by DNA
barcodes (Figure 2.4). One described species of Periclistus had more than one cluster (Figure
2.4), and two species shared DNA barcodes (Figure 2.3).
An ITS1 sequence could not be amplified from the identified specimens of Periclistus
from the reference collection (Figure 2.3). Instead, recently collected specimens of Periclistus (n
39
= 28) which were not identified to species by morphology but were identified by matching their
DNA barcodes to reference specimens of Periclistus were sampled for ITS1 amplification
(Figure 2.3). An ITS1 sequence between 698–706 bp was amplified for the following groups: “P.
ashmeadi (nom. nud.)”/“P. cataractans (nom. nud.)”/P. sp. (n = 7), “P. fusicolus (nom. nud.)”/P.
sp. (n = 3), P. pirata/P. sp. (n = 6), “P. weldi (nom. nud.)”/P. sp. (n = 5), and seven unidentitified
individuals (P. sp.) (Appendix 1, Figure 2.3). Sequencing results support the separation of “P.
fusicolus (nom. nud.)”/P. sp. into two species and also the separation of P. pirata/P. sp. into two
species (Figure 2.3). Mean number of differences of ITS1 sequences between individuals of “P.
fusicolus (nom. nud.)”/P. sp. and between individuals of P. pirata/P. sp. were 12 and three,
respectively (Figure 2.3). However, mean number of differences of ITS1 sequences between
individuals of “P. ashmeadi (nom. nud.)”/“P. cataractans (nom. nud.)”/P. sp. was zero. This low
number of differences along with the identical DNA barcodes supports a taxonomic synonymy
of “P. ashmeadi (nom. nud.)” and “P. cataractans (nom. nud.)” (Figure 2.3).
Considering unidentified individuals of Periclistus which had both DNA barcodes and
ITS1 sequences amplified and grouped with morphologically identified species of Periclistus,
maximum intraspecific divergences were as follows: “P. ashmeadi (nom. nud.)”/“P. cataractans
(nom. nud.)”/P. sp. (1.1%), “P. fusicolus (nom. nud.)”/P. sp. (3.4%), P. pirata/P. sp. (2.8%), and
“P. weldi (nom. nud.)”/P. sp. (0.0%). Because of the challenges of morphological identification
of Periclistus, average interspecific sequence divergence was calculated between sister clusters
supported by both DNA barcodes and ITS1 sequences instead of among morphologically
identified species. Average interspecific sequence divergence between sister clusters of P.
pirata/P. sp. and sister clusters of “P. fusicolus (nom. nud.)”/P. sp. was 3.1% and 2.9%,
respectively (Figure 2.3). The smallest average interspecific sequence divergence was 2.3%
40
between sister clusters of “P. ashmeadi (nom. nud.)”/“P. cataractans (nom. nud.)”/P. sp. and “P.
fusicolus (nom. nud.)” /P. sp. (Figure 2.3).
2.13 Torymus: COI and ITS1
A DNA barcode was amplified from 63 of 99 morphologically identified individuals of
Torymus, and coverage included all 6 species associated with induced by Diplolepis in Canada.
Three described species of Torymus had one unique cluster of sequences each allowing for their
identification by DNA barcodes (Figure 2.4).Two described species of Torymus had more than
one cluster (Figure 2.4), and two species shared DNA barcodes (Figure 2.4).
An ITS1 sequence could not be amplified from the identified specimens of Torymus from
the reference collection (Figure 2.4). Instead, recently collected specimens of Torymus (n = 8)
which were not identified to species by morphology but were identified by matching their DNA
barcodes to reference specimens of Torymus were sampled for ITS1 amplification (Figure 2.4).
An ITS1 sequence between 377–450 bp was amplified for the following groups: T. bedeguaris/T.
sp. (n = 1), T. bedeguaris/T. solitarius/T. sp. (n = 3), T. chrysochlorus/T. sp. (n = 2), and two
unidentitified individuals (T. sp.) (Appendix 1, Figure 2.4). Sequencing results support the
separation of T. chrysochlorus/T. sp. into two species and also the separation of T. bedeguaris/T.
sp. into two species (Figure 2.4). Mean number of differences of ITS1 sequences between
individuals of T. chrysochlorus/T. sp. and between individuals of T. bedeguaris/T. sp. were 5 and
14, respectively (Figure 2.4). However, mean number of differences of ITS1 sequences between
individuals of T. bedeguaris/T. solitarius/T. sp. was zero. This low number of differences along
with the identical DNA barcodes supports a taxonomic synonymy of T. bedeguaris and T.
solitarius (Figure 2.3). Unfortunately, ITS1 sequences were not generated for individuals within
41
several COI clusters of T. bedeguaris, T. bicoloratus, T. chrysochlorus, and T. solitarius, and so
there is no additional support from molecular sequences of taxonomic splitting of these species.
Considering unidentified individuals of Torymus which had both DNA barcodes and
ITS1 sequences amplified and grouped with morphologically identified species of Torymus,
maximum intraspecific divergences were as follows: T. bedeguaris/T. sp. (13.8%), T.
chrysochlorus/T. sp. (13.3%), and T. bedeguaris/T. solitarius/T. sp. (3.2%). Because of the
challenges of morphological identification of Torymus, average interspecific sequence
divergence was calculated between sister clusters supported by both DNA barcodes and ITS1
sequences instead of among morphologically identified species. Average interspecific sequence
divergence between sister clusters of T. chrysochlorus/T. sp. and of T. bedeguaris/T. sp. was
10.3% (Figure 2.4).
2.14 Calculated species threshold
Based on average interspecific sequence divergence between sister clusters of Diplolepis,
Periclistus, and Torymus, the minimum species threshold calculated was 2.3% (Figure 2.2, 2.3,
2.4). Based on this result, the total number of morphologically identified species of Diplolepis,
Periclistus, and Torymus was counted by separating clusters of DNA barcodes of into DbOTs
when their genetic divergence from a nearest neighbour was ≥ 2.2%. Assignment of DbOTs with
the species threshold was not influenced by any prior morphological identification. For example,
all morphologically identified individuals of D. fusiformans (n = 9), three morphologically
identified individuals of D. nebulosa, and four unidentified individuals of Diplolepis were
combined into DbOT14 (Figure 2.5, Appendix 1). In addition, assignment of DbOTs with the
species threshold was not influenced by maximum value of intraspecific genetic variation. For
42
example, DbOT20 of D. spinosa has a maximum genetic divergence of 3.3%, and the DNA
barcodes of DbOT20 (n = 39) were not subdivided because there were no distinct groups with a
genetic divergence of 2.2% between them. Application of the species threshold of 2.2% did not
lead to further splitting of any morphologically identified species group which had both DNA
barcodes and ITS1 sequences to support their synonymy (Figure 2.2, 2.3, 2.4). For example, the
species groups of D. ignota/D. nebulosa/D. variabilis/D. sp., “P. ashmeadi (nom. nud.)”/“P.
cataractans (nom. nud.)”/P. sp., and T. bedeguaris/T. solitarius/T. sp. remained as one DbOT
each (Figure 2.2, 2.3, 2.4).
Using the species threshold, total species richness of both identified and unidentified
individuals of Diplolepis, Periclistus, and Torymus was evaluated by separating all clusters of
DNA barcodes into DbOTs when their genetic divergence from a nearest neighbour was 2.2%
(Figure 2.5, 2.6, 2.7). A DNA barcode was amplified from 153 of 209 unidentified adult and
larval specimens of Diplolepis, and most specimens grouped with the reference species allowing
for their identification (Figure 2.5, Appendix 1). In total, 143 unidentified adult and larval
specimens of Diplolepis were tentatively identified to species based on external gall morphology
by JD Shorthouse while 10 unidentified adults of Diplolepis which were examined
morphologically by JD Shorthouse were not identified to species (Appendix 1). Unidentified
specimens possibly included another exotic species found within Canada (“D. mayri” = DbOT10)
and a second DbOT for “D. triforma” (Figure 2.5). However, adults of DbOT10 and adults and
larvae of DbOT19 were not morphologically examined, and their tentative identity is based on
matching DNA barcodes and external gall morphology and not based on adult morphology.
Seven described species of Diplolepis (D. bassetti, D. bicolor, D.polita, D. radicum, D.
rosaefolii, D. spinosa, D. triforma) were split into two DbOTs each while morphologically
43
identified D. nebulosa shared DNA barcodes with D. fusiformans, D. gracilis, and the D.
ignota/D.variabilis group (Figure 2.5). The total number of DbOTs of Diplolepis delimited with
both identified and unidentified specimens was 24 (Figure 2.5).
A DNA barcode was amplified from 275 of 499 unidentified adult and larval specimens
of Periclistus, and most specimens grouped with described species allowing for their
identification (Figure 2.6, Appendix 1). Two described species of Periclistus (“P. fusicolus (nom.
nud.)”, P. pirata) were split into two DbOTs while two described species of Periclistus
(“P.ashmeadi (nom. nud.)”, “P. cataractans (nom. nud.)”) were clumped into one DbOT (Figure
2.6). The total number of DbOTs of Periclistus delimited with both identified and unidentified
specimens was 12 (Figure 2.6).
Species of Periclistus have a mean association of 3.2 ± 1.72 galls of Diplolepis, and the
mean number of species of Periclistus per species of Diplolepis is 2.7 ± 0.95 (Table 2.9).
Species of Periclistus do not appear to be gall specific by species of Diplolepis or gall location,
and species of Periclistus are able to attack and successfully develop from either leaf or stem
galls (Table 2.9). The apparent gall specificity of DbOT 28, DbOT29, and DbOT31 may be
explained by having sequenced less than six specimens from one collection site (Figure 2.6,
Appendix 1).
A DNA barcode was amplified from 214 of 303 unidentified adult and larval specimens
of Torymus, and most specimens grouped with described species allowing for their identification
(Figure 2.7, Appendix 1). Torymus chrysochlorus and T. bicoloratus were split into four and two
DbOTs, respectively (Figure 2.7). Many individuals identified as T. bedeguaris and T. solitarius
were clumped together into one DbOT (Figure 2.7). The total number of DbOTs of Torymus
delimited with both identified and unidentified specimens was 12 (Figure 2.7).
44
Species of Torymus had a mean association of 2.7 ± 1.50 galls of Diplolepis, and the
mean number of species of Torymus per species of Diplolepis is 2.7 ± 2.81 (Table 2.10). Species
of Torymus do not appear to be gall specific by species of Diplolepis or gall location, and species
of Torymus are able to attack inhabitants from either leaf or stem galls. The apparent gall
specificity of DbOT37, DbOT38, DbOT39, DbOT42, DbOT46, DbOT47, and DbOT48 may be
explained by having sequenced less than six specimens each (Figure 2.7, Appendix 1). However,
Torymus DbOT41 appear to specifically attack inhabitants of stem galls (Table 2.10), and
Torymus DbOT43 appears to specifically attack inhabitants of leaf galls (Table 2.10).
2.15 Rose gall community species composition
Species identifications of several Hymenoptera associated with rose galls induced by
Diplolepis were not available from the reference collection so richness was counted by
separating clusters of DNA barcodes of adult and larval stages from unidentified parasitoids into
DbOTs when their genetic divergence from a nearest neighbour was 2.2%. A DNA barcode was
amplified from 188 of 310 individuals from the families Eulophidae, Eupelmidae, Eurytomidae,
Ichneumonidae, Ormyridae, and Pteromalidae associated with rose galls induced by Diplolepis.
The number of DbOTs of parasitoids counted using the species threshold was 24 (Figure 2.8).
Based on morphological identifications from several studies (Barron 1977, Ritchie 1984, Rempel
2002, Universal Chalcidoid Database), the total number of species of inquiline and parasitoid
potentially exiting from rose galls induced by Diplolepis was 41 (Table 2.11). Using DNA
barcoding, the total number of inquiline and parasitoid DbOTs was 46 (Table 2.11). The total
number of species of Periclistus and Torymus increased by 22%, and 50%, respectively (Table
2.11). Noteworthy is that the morphology-based tally of species of inquiline and parasitoid
45
encompasses more than 100 years of collections spanning the continent of North America, north
of Mexico (Table 2.11), while the DNA barcoding based tally is mostly restricted to collections
within Canada within the last 10 years (Table 2.11). The molecular results represent the
minimum number of DNA barcodes that could be generated due to readily available primer pairs
and limits of specimen age, so the total number of species of inquiline and parasitoid is probably
much larger. In fact, the total number of species within each family associated with rose galls
induced by Diplolepis was usually equal or larger for the molecular based tally, with the
exception of Eurytomidae (Table 2.11). Fewer specimens of Eurytomidae were selected in this
study because a separate graduate study focussing on DNA barcoding of Eurytomidae was
recently undertaken (Shorthouse pers. comm.). Since the molecular based tally usually increased
the total number of species of inquiline and parasitoid (Table 2.11), then it is likely that the total
number of species of inducer is probably higher than previously expected (Figure 2.5, Table 2.5).
DISCUSSION
DNA barcoding is a molecular identification tool that can assist in grouping similar
specimens of any life stage or gender based on the premise that each species has a unique cluster
of COI sequences that are distinguishable from COI sequences of other species (Hebert et al.
2003, Miller et al. 2005, Caterino et al. 2006). Any criteria assigned to assign clusters of COI
sequences to DbOTs is open to debate, and the applicability of a species threshold in one specific
study system does not imply that all studies require the same criteria. In other words, the
delimitation of DbOTs within this study was suitable for these Hymenoptera specimens
associated with rose galls induced by Diplolepis because the species threshold was supported by
both COI and ITS1 sequences (Figure 2.2, 2.3, 2.4). Previous studies of biodiversity inventories
of unidentified Hymenoptera have suggested using a species threshold ranging from 1.6-3%
46
(Smith et al. 2005a, 2005b, 2009, Santos et al. 2011). Including data of this study, a species
threshold between 1.6-3% for Hymenoptera collected within a narrow geographic area has the
support of both molecular and morphological data from three families in three superfamilies
(Chalcidoidea: Torymidae, Cynipoidea: Cynipidae, Vespoidea: Formicidae). This suggests that
the species threshold of 2.2% used in this study is appropriate as a preliminary estimate of
richness within a narrow geographic area.
At this time, it is not possible to definitively compare the accuracy of species
identifications of Diplolepis, Periclistus, and Torymus between morphology and DNA barcodes
because the membership of several species is unstable (Ritchie 1984, Plantard et al. 1998, Schick
et al. 2010) or researchers stated that identification of individuals was questionable (Ritchie
1984, Rempel 2002). An important perspective of the findings of this study is that some
morphologically identified species of Diplolepis sharing DNA barcodes (D. ignota, D. nebulosa,
and D. variabilis) (Figure 2.2) were hypothesized to be one species in other studies
(Beutenmüller 1908, Kinsey 1922, Olson 1964, Shorthouse 1975, Plantard et al. 1998), and the
splitting of morphologically identified D. polita (Figure 2.2) was also previously hypothesized
(Schick et al. 2010). However, several morphologically identified individuals, such as D.
nebulosa (Figure 2.2, 2.5), that shared DNA barcodes with many different species may indicate
misidentification rather than synonymy. Without solid taxonomic support to evaluate species
identifications a posteriori, the differences in species identification between morphology and
molecules in this study merely highlight taxa that require reassessment.
The species coverage of Diplolepis, Periclistus, and Torymus that were DNA barcoded in
this study was fundamental to calculate a species threshold that is typical among closely related
species with restricted sampling. Despite that the entire collection of Hymenoptera associated
47
with rose galls induced by Diplolepis were sampled over a wide geographic area (Appendix 1),
most morphologically identified species and unidentified specimens were either collected from a
narrow geographic area or had a small sample size (Figure 2.5, 2.6, 2.7, 2.8, Appendix 1).
Interspecific sequence divergence is expected to decrease with thorough sampling of a taxon
over its geographic range (Meyer and Paulay 2005), but the restricted collection in this study
means that it would be unlikely that specimens sampled would significantly reduce interspecific
divergences. Most importantly, the purpose of the species threshold applied in this study is to
count species richness by separating the small samples of regionally collected Hymenoptera
associated with rose galls induced by Diplolepis into DbOTs. This threshold should not be
applied universally to any community of Diplolepis throughout the world as a means of species
discovery without a test based on identified species collected in the same areas. Therefore, any
application of this species threshold to systems involving expanded sampling of Hymenoptera or
different higher taxa, such as Coleoptera, Diptera, and Lepidoptera, is not recommended without
review and potential adjustment.
2.16 Cynipidae morphology and DNA barcodes
Hymenoptera are among the most difficult insects to identify (Godfray and Shimada
1999, Gariepy et al. 2007), and specimens from the families examined in this study are
recognized as challenging. Gallwasp (Hymenoptera: Cynipidae) identification has been impeded
by substantial intraspecific variation in morphological characters, and the well studied oak
gallwasps (Cynipini) highlight some of the difficulties encountered with cynipid identification
(Melika and Abrahamson 2000, Melika and Abrahamson 2007). Several keys of cynipids lack
adequate species descriptions, confuse the identity of several species, and do not contain
48
adequate diagnostic characters (Shorthouse 1993, Rokas et al. 2003, Ács et al. 2007, Melika and
Abrahamson 2000, 2007). Prior to the 1960s, morphological terminology was inconsistent;
hence, several species descriptions require re-examination and need to be updated with current
terminology (Melika and Abrahamson 2000). In addition, completeness of notauli, number of
antennal flagellomeres, pubescence of thorax and terga, and the shape of scutellar foveae and
terga are morphological characters that are currently recognized to vary intraspecifically and thus
insufficient to separate many cynipid taxa (Melika and Abrahamson 2000). Oak gallwasps are
cyclically parthenogenetic and the two generations differ in gall location and the morphological
traits of both the adult insect and the gall are different (Rokas et al. 2003, Liljeblad et al. 2008).
The boundaries of species of Cynipidae based solely on host plant choice, gall morphology, or
adult morphology has caused extensive taxonomic difficulties, but it is most severe in species in
the Nearctic (Rokas et al. 2003).
Identification of species of Diplolepis and Periclistus has been difficult due to the
selected distinguishing morphological characters between taxa and the unexpected intraspecific
morphological variation found. The type species for the genus, Diplolepis rosae, was originally
placed within Cynips (Rohwer and Fagan 1917), and confusion between Diplolepis specimens
and several other genera has been considerable. At least four species of Diplolepis have been
originally described as type-species for other genera within Cynipidae (Dalla Torre and Kieffer
1910, Weld 1952), and several other species of Diplolepis have been described as new species
within the genera Andricus, Antron, Atrusca, Aylax, Ceroptres, Disholcaspis, Dros, Dryocosmus,
Periclistus, Plagiotrochus, and Sphaeroteras (Dalla Torre and Kieffer 1910, Weld 1952, Burks
1979, Ritchie 1984, Alonso-Zarazaga and Pujade-Villar 2006). Transfers between genera have
49
also occurred with described species of Periclistus within the genera Aylax, Ceroptres, Cynips,
Diplolepis, and Eumayria (Dalla Torre and Kieffer 1910, Weld 1952, Burks 1979, Ritchie 1984).
Variation related to both morphology and body colouration has been reported within
Cynipidae, and the absence of data independent of morphology has led to potentially several
cryptic species being lumped together during a formal description of one species (Ritchie 1984,
Nieves-Aldrey and Medianero 2011). Morphological variation within Diplolepis has been
reported for the thoracic sutures of both D. rosae (Ritchie and Peters 1981) and D. radicum
(Kinsey 1922, Shorthouse 1988), and the flanged hind femur of D. radicum (Shorthouse and
Ritchie 1984, Shorthouse 1988). Similarly, morphological variation within Periclistus has been
reported for the median line of the mesoscutum of “P. fusicolus (nom. nud.)” and the sculpturing
of the pronotal bridge of “P. weldi (nom. nud.)” (Ritchie 1984). In addition, distinct abdominal
and leg colour variants of several species of Diplolepis from various populations have been
reported. For example, D. polita from the United States are entirely black (Dalla Torre and
Kieffer 1910), but those from Alberta to Ontario, Canada have reddish-brown abdomen and legs
(Shorthouse 1973). Similar abdominal and leg colour variants have also been reported for
specimens of D. radicum collected from different regions within Canada (Shorthouse 1988). The
pigmented radial wing area (cloud) of D. variabilis is only present sometimes (Bassett 1890). It
is important to emphasize that cynipid identification by morphology is difficult due to either few
diagnostic morphological characters or high variability in available characters. Recently,
molecular identification tools, such as DNA barcoding, have been accepted by several cynipid
taxonomists as a useful tool in species identification of inducers and inquilines (Stone et al.
2008, Liljeblad et al. 2008, Pénzes et al. 2009, Ács et al. 2010, Kaartinen et al. 2010, Nieves-
50
Aldrey and Medianero 2011). By including molecular data in species identification, intraspecific
variation of morphological charaters can be more easily recognized.
Of the 17 morphologically identified species of Diplolepis used in this study, only eight
species were composed of one DbOT (Figure 2.5). Three species of Diplolepis (D. ignota, D.
nebulosa, and D. variabilis) had identical DNA barcodes, and this was not surprising given they
were previously suspected to be conspecific based on adult morphology (Beutenmüller 1908,
Kinsey 1922, Olson 1964), gall morphology (Shorthouse 1975), and sequences from two
mitochondrial genes (cytochrome B, 12S) (Plantard et al. 1998). Possible synonymy between D.
centifoliae and D. nervosa, and between D. nebulosa, D. ignota, and D. variabilis had been
suggested in an earlier study with mtDNA sequences (Plantard et al. 1998). More recent
molecular and morphological data supported the hypothesis that D. centifoliae, D. kiefferi and D.
rosarum are junior synonyms of D. nervosa (Pujade-Villar and Plantard 2002). Unfortunately,
additional molecular and morphological data has not been collected for D. nebulosa, D. ignota,
and D. variabilis so definitive nomenclatural decisions will have to await a generic revision.
After DNA barcoding unidentified specimens of Diplolepis, the number of DbOTs increased to
24 which suggests there are more Canadian species of Diplolepis to discover (Figure 2.5).
Of the seven morphologically identified species of Periclistus used in this study, only
three species had one DbOT (Figure 2.6). Two species of Periclistus (“P. ashmeadi (nom. nud.)”
and “P. cataractans (nom. nud.)”) had identical DNA barcodes, and this was unexpected since
they were considered to be distinct species (Ritchie 1984). Possible synonymy of species of
Periclistus had only been suggested between “P. cataractans (nom. nud.)” and “P. gracilicolus
(nom. nud.)” (Ritchie 1984), but this study could not amplify DNA barcodes from reference
specimens of “P. gracilicolus (nom. nud.)” so it is not known whether they would group as one
51
DbOT (Figure 2.6). Few specimens of “P. gracilicolus (nom. nud.)” were examined
morphologically by Ritchie (1984) due to their rarity, and this limited examination of
morphological variation from several populations to determine if the specimens exiting from D.
gracilis galls were the same species (Ritchie 1984). The limited number of specimens of “P.
gracilicolus (nom. nud.)” examined, their small size, and the fact that they were collected in
1972, did not support successful amplification with the primer pairs used in this study. Based on
DNA barcodes from this study, it has been determined that two species of Periclistus attack galls
induced by D. gracilis (Table 2.9) as opposed to the previous determination that only one species
of Periclistus exits from these galls (Ritchie 1984). However, it is unknown if either DbOT33 or
DbOT36 is “P. gracilicolus (nom. nud.)”, and these unidentified DNA barcoded specimens
would have to be morphologically compared to the species in the revision of Periclistus (Ritchie
1984).
The morphologically variable “P. fusicolus (nom. nud.)” and P. pirata both had two
DbOTs each while the morphologically variable “P. weldi (nom. nud.)” had only one DbOT
(Figure 2.6, Table 2.9). Ritchie (1984) preferred to lump together specimens such as “P.
fusicolus (nom. nud.)” so as to limit further inflation of the number of species names within
Periclistus. The current study found that DbOT34 of “P. fusicolus (nom. nud.)” is associated with
galls of D. bassetti, D. bicolor, D. nodulosa, and D. triforma (Table 2.9) while DbOT35 is
associated with D. bassetti and D. fusiformans (Table 2.9). The first species description of D.
triforma stated that inquilines from this gall are rare (Shorthouse and Ritchie 1984), but since
then, several studies have reported that inquilines do not attack any D. triforma galls (WiebesRijks and Shorthouse 1992, Lalonde and Shorthouse 2000, Shorthouse et al. 2005, Leggo and
Shorthouse 2006a, 2006b). Despite the limits imposed by specimen age and the primers used in
52
this study, it has been determined that both Periclistus DbOT26 and DbOT34 do attack galls of D.
triforma (Table 2.9). The two DbOTs of P. pirata (DbOT26 and DbOT27, Figure 2.6, Table 2.9)
were expected because identification of this species is difficult (Ritchie 1984). Though “P. weldi
(nom. nud.)” was stated as being morphologically variable, it was nonetheless considered one
species (Ritchie 1984), and this decision is supported by the presence of one DbOT. This study
determined that “P. weldi (nom. nud.)” attacks the leaf galls induced by D. bassetti, D. bicolor,
and D. polita, and also stem galls induced by D. spinosa (Table 2.9). The mean diameter of the
single-chambered galls of D. bassetti, D. bicolor, and D. polita is approximately 4.5 mm, 9 mm,
and 4 mm, respectively, and the multi-chambered gall of D. spinosa is approximately 23 mm
total with an average of 16.5 chambers per gall (Shorthouse 2010). It is likely that range of
chamber size and host gall location affects the variability of morphology of Periclistus.
Seven species of North American Periclistus have been described and each was known to
attack galls of only one species of Diplolepis (Shorthouse 1975). According to Ritchie (1984),
only four of these species are valid, with one species placed in synonymy with P. pirata, two
species transferred to other genera (Diplolepis and Eumayria), and six new species recognized.
Accordingly, a total of ten species of Periclistus are known from North America. In this study,
seven species of Periclistus were DNA barcoded (Figure 2.6), and data suggests that three
species are valid, two species are potential synonyms, and two species should be split into more
than one species. In addition, DNA barcoding of unidentified specimens of Periclistus increased
the number of DbOTs from 7 to 12, suggesting that more species of Periclsitus are likely to occur
within Canada (Figure 2.3, Figure 2.6). None of the DNA barcoded species of Periclistus were
determined to be monophagous when organized by species of Diplolepis or gall location (Table
2.9). Species of Periclistus are associated with 2.7 ± 0.95 species of Diplolepis, and each species
53
of Diplolepis has an average of 3.2 ± 1.72 species of Periclistus associated with their galls. All
these results are similar to other studies that focussed on inquilines of oak galls such that
recognized species have been suggested to require splitting apart or lumping together, and new
species were discovered despite the large accumulation of expert knowledge of cynipid
taxonomy in those gall systems (Stone et al. 2008, Liljeblad et al. 2009, Pénzes et al. 2009, Ács
et al. 2010, Kaartinen et al. 2010).
A further complication with accurate cynipid identification is the unofficial
synonymization of species without a published revision of the genus. Weld (1952) described D.
lens as a new species that produces lens-shaped galls on Rosa leaves throughout western USA.
The most recent catalogue of Diplolepis species in America north of Mexico also considered D.
lens to be distinct from D. rosaefolii which induces similar galls but is distributed in the eastern
USA and throughout Canada (Burks 1979). However, based only on adult morphology, it had
been suggested that D. lens is a junior synonym of D. rosaefolii rather than a separate species
(Shorthouse and Brooks 1998). Considering morphologically identified D. rosaefolii of this
study, they had a maximum intraspecific divergence of 4.1 % (Figure 2.2). Thus, the two DbOTs
of D. rosaefolii either support the previous taxonomic view that D. lens and D. rosaefolii are
separate species with western and eastern distributions, respectively (Weld 1952, Burks 1979), or
another lens-shaped gall inducer is present in Canada. Unofficial synonymy has also been
suggested between, but not limited to, the root gall inducers D. radicum and D. ostensackeni, the
root gall inducers D. semipiceus and D. fulgens, and between the stem gall inducers D. spinosa
and D. tuberculatrix (Shorthouse 1988). Noteworthy is that both morphologically identified D.
radicum and D. spinosa of this study had maximum intraspecific divergence > 3% (Figure 2.2),
and each species was separated into two DbOTs (Figure 2.5). Once again, it is undetermined if
54
the separate DbOTs support the traditional taxonomic view that D. ostensackeni and D.
tuberculatrix are separate species from D. radicum and D. spinosa, respectively (Weld 1952,
Burks 1979), or if another root gall inducer and stem gall inducer, respectively, are present
within Canada. Unfortunately, the root gall inducers D. semipiceus and D. fulgens were not
examined in this study, and thus tests of species boundaries for them remain open to future
examination.
2.17 Gall morphology and inducer identification
It has been unequivocally demonstrated that gall development is controlled by the inducer
(Shorthouse 1993, Ronquist and Liljeblad 2001, Stone and Schönrogge 2003), and the diversity
of gall morphology found on the same plant has attracted the attention of ecologists for hundreds
of years. Consequently, the hypothesis that each inducer produces a species specific and unique
gall has been reported in several cynipid reviews and studies (Shorthouse 1993, Ronquist and
Liljeblad 2001, Schönrogge et al. 2002, Stone and Schönrogge 2003, Harper et al. 2004,
Shorthouse et al. 2005). However, within a cynipid species that has both asexual and sexual
generations, induced galls differ in morphology, plant organ attacked, and plant species attacked
(Stone and Cook 1998, Stone and Schönrogge 2003, Stone et al. 2008). Gall morphology of an
asexual generation within cynipid species is structurally more complex than the sexual
generation, and as a result, galls from sexual generations lack many distinguishing characters
that allow distinction between inducer species (Schönrogge et al. 2002, Stone et al. 2008).
Interestingly, species of Diplolepis are univoltine and do not exhibit alternation of generations,
hence, gall morphology is the result of a sexual generation although parthenogenesis is
widespread due to Wolbachia infection (Plantard et al. 1998, Plantard and Solignac 1998).
55
Within a specific generation, gall morphology is more variable between species than within
species (Stone and Schönrogge 2003), but speciation within a genus of Cynipidae does not
automatically result in distinct gall morphology (Stone and Cook 1998).
Like any biological character, gall morphology can be variable within an inducer species
(Shorthouse and Ritchie 1984, Plantard et al. 1998, Shorthouse 2003), such as the singlechambered or multi-chambered galls of D. verna, the shiny or smooth galls of D. dichlocera, the
spiny or spineless galls of D. nervosa, D. mayri and D. spinosa, and the three gall forms of D.
triforma. In a few cases, gall morphology is indistinguishable between species (Dailey and
Campbell 1973, Brooks and Shorthouse 1997, Shorthouse 2003), such as comparing galls of D.
inconspicuis with those of D. nodulosa, galls of D. eglanteriae with those of D. nervosa, and
galls of D. bassetti with the rare hairy gall forms of D. polita (Shorthouse pers. comm). Several
species of Diplolepis reported to have indistinguishable galls between species or variable gall
forms within species also had multiple DbOTs, such as D. bassetti, D. polita, D. spinosa, and D.
triforma (Figure 2.5). Furthermore, if gall morphology is a reliable proxy for inducer
identification, then gall characters would have distinguished D. mayri from D. fructuum (Güçlü
et al. 2008) and would have suggested the synonymy of D. centifoliae, D. kiefferi, and D.
rosarum with the valid species, D. nervosa (Pujade-Villar and Plantard 2002). As opposed to
using external gall morphology as a surrogate for inducer identification, studies of internal gall
morphology may offer a new set of characters. For example, histological examination of galls of
D. lens (Shorthouse 1975) and galls of D. rosaefolii (LeBlanc and Lacroix 2001) have shown
that the galls differ in number of sclerenchymal layers and location of vascular tissue. This
example also suggests that D. lens is a distinct species from D. rosaefolii, and it also highlights
the potential of internal gall morphology characters to complement data from adult morphology
56
and molecular sequences in order to identify species. Perhaps examination of gall morphology
via histological techniques instead of examination of external gall characters would aid with
inducer identification, but no studies have developed a key based on histological gall characters.
Galls can be readily collected in large quantities during a single collection period, and
such mass collections can easily overlook the necessary separation of different galls unless
sufficient care is taken to individually inspect every gall (Kinsey 1920). Considering D. nebulosa
in this study, DNA barcoding identified one specimen as a leaf gall inducer (D. gracilis) and
three specimens as an undescribed species. These four specimens were re-examined
morphologically post-DNA barcoding, and it was confirmed that they were not D. nebulosa. It is
plausible that galls from different species of inducer were accidentally included in a collection
sample of leaf galls of D. nebulosa, thereby confusing the identity of these specimens. Therefore,
adult specimens must be examined morphologically or molecularly to identify a specimen to
species because collective samples of galls thought to be of one species may be contaminated
with other galls.
Gall morphology can be affected by factors independent of species of inducer such as
plant species (Weis et al. 1988, Stone and Schönrogge 2003, Shorthouse 1988, Shorthouse
2010), stage of plant tissue development (Shorthouse and Ritchie 1984), and other gall
inhabitants (Brooks and Shorthouse 1998, Shorthouse 1998, Leggo and Shorthouse 2006b). Stem
galls of D. spinosa are weakly spined to smooth when R. woodsii is attacked, but the stem galls
have many thick spines when R. blanda is attacked (Shorthouse 1988, Shorthouse 2010).
Depending on the amount of leaf unfolding near a stem bud, one of three alternate gall types will
be induced by D. triforma (Shorthouse and Ritchie 1984). Morevoer, both inquilines
(Periclistus) and parasitoids within the families Eurytomidae and Torymidae are able to modify
57
gall morphology (Brooks and Shorthouse 1998, Shorthouse 1998, Leggo and Shorthouse 2006b).
Though identification of inducers is narrowed by using external gall morphology, especially
when species are not closely related, the practice of identifying inducers based on gall
morphology has been repeatedly criticized (Shorthouse 1993, Abrahamson et al. 1998, Drown
and Brown 1998, Liljeblad et al. 2008).
2.18 Parasitoids of rose galls and DNA barcodes
In addition to inducers and inquilines (Hymenoptera: Cynipidae), inhabitants of rose galls
induced by Diplolepis include Hymenoptera from six families within Chalcidoidea (Eulophidae,
Eupelmidae, Eurytomidae, Ormyridae, Pteromalidae, Torymidae,) and one family within
Ichneumonoidea (Ichneumonidae) (Table 2.3). The proportion of each family depends on the gall
system under consideration (Askew et al. 2006). Currently, identification of most parasitoids of
rose gall communities is less resolved than for species of Diplolepis and Periclistus, and this
study used a species threshold to provide an estimate of species richness. The total number of
DbOTs of parasitoid was larger than total number of species of parasitoid reported from literature
in four of seven families despite limited sampling (Figure 2.8, Table 2.3, Table 2.11).
Synonymous and cryptic species of parasitoids have been found in other molecular studies of oak
gall (Abrahamson et al. 1998, Hayward and Stone 2005, Liljeblad et al. 2008, Pénzes et al. 2009,
Ács et al. 2010, Kaartinen et al. 2010) and rose gall communities (Pujade-Villar and Plantard
2002, Lotfalizadeh et al. 2007, Güçlü et al. 2008), and the larger number of DbOTs found in this
study is not unexpected. Further molecular and morphological studies of parasitoids associated
with rose galls induced by Diplolepis are required to determine the validity of DbOTs as species
and to begin formal taxonomic descriptions.
58
Of the six morphologically identified species of Torymus analyzed in this study, four
have species-specific DNA barcodes, but only two species had one DbOT (Figure 2.7). Initially,
it would appear that since T. flavicoxa and T. magnificus have one DbOT each, their identity by
morphology and DNA barcoding are congruent. However, the sample size of these two species
of Torymus was small (Figure 2.7, Table 2.7), and it is likely that further sampling will reveal
additional DbOTs. By DNA barcoding unidentified specimens of Torymus, the number of DbOTs
increased from 7 to 12 suggesting that additional species of Torymus will be discovered within
Canada (Figure 2.4, Figure 2.7). Rempel (2002) reported that many specimens of T. bedeguaris
are difficult to distinguish from those of T. solitarius using available taxonomic keys. This was
clearly reflected by the DNA barcoding results of those specimens (Figure 2.4). In addition, T.
bedeguaris exiting from galls induced by exotic Diplolepis sampled from Canada (D. mayri, D.
rosae) were reported to be morphologically distinct from T. bedeguaris exiting from galls
induced by native Diplolepis (Rempel 2002). Morphologically identified T. bedeguaris exiting
from exotic Diplolepis galls were not available for DNA barcoding, so this study cannot add
molecular data to support that observation.
Eleven species of Torymus associated with rose galls induced by Diplolepis are
considered valid (Table 2.4), yet only six species were identified from 30 years of rose gall
collections within Canada (Rempel 2002). This is unusual because unidentified species of
Torymus have been recorded exiting Canadian D. rosaefolii galls during the same time period
(Brooks and Shorthouse 1998). Adult identification of species within Torymidae is difficult
because of morphological uniformity, the incompleteness of identification keys, and
nomenclatural problems (Graham et al. 1998, Grissell 2004, Gómez et al. 2008). Molecular
studies of described species of Torymidae associated with cynipid galls have found evidence of
59
cryptic species in Torymus (Kaartinen et al. 2010) and Megastigmus (Aebi et al. 2007). One of
the species of Torymus species suggested to be composed of two cryptic species, T. flavipes, is a
parasitoid of oak cynipids and also associated with galls of D. eglanteriae, D. mayri, D. rosae,
and D. spinosa (Table 2.4, Kaartinen et al. 2010). The DNA barcoding results for Diplolepis and
Periclistus in this study and similar findings in other studies of Cynipidae and/or Torymidae
(Aebi et al. 2007, Kaartinen et al. 2010) indicate that future taxonomic studies of Torymus
associated with Canadian rose galls induced by Diplolepis will undoubetedly result in the
discovery of new species.
2.19 Cryptic, synonymous, new, and unsampled species
Any identification key (molecular or morphological) is a preliminary guide to a species
name, but the final determination of species identity may require additional evidence that is
beyond the scope of the key. Generation of DNA barcodes for reference specimens cannot
confirm species identification if the species status of the reference specimen is unstable. The
utility of any identification key (morphological or molecular) is dependent upon correct species
delimitation. At the moment, post-inspection of adult morphology or external gall morphology
will not unambiguously identify several specimens because of inconsistent morphological
terminology and use of inadequate diagnostic characters for species descriptions (Shorthouse
1993, Melika and Abrahamson 2000, Rokas et al. 2003, Ács et al. 2007, Melika and
Abrahamson 2007).
Cryptic species are two or more species that cannot be distinguished using currently
defined morphological characters defined, and thus individuals are all classified under one
species name (Bickford et al. 2007). If more than one DbOT is generated from one
60
morphologically identified species (Figure 2.9a), then it still must be determined which DbOT
belongs to the type specimen of the described species and which DbOT is the new species.
Synonymous species are actually different species names incorrectly applied to individuals that
are actually one species. If one DbOT is generated from more than one morphologically
identified species (Figure 2.9b), it is considered preliminary evidence of synonymy. The next
step is to re-examine individuals with new morphological characters, new molecular regions, or
new biological data (i.e. behaviour, ecology, etc.). When a new DNA barcode is not found within
the current reference database, it cannot be immediately confirmed whether the new DbOT is a
new species or an unsampled species (Figure 2.9c). These two species categories are similar in
that individuals from a new DbOT have not had their DNA barcode previously uploaded to the
database, but the species categories are distinct in that the one of the unsampled species is named
while the new species has never been named. As a solution, congeneric specimens that have not
been included in the DNA barcode database should be examined morphologically and also have
their DNA barcodes amplified and added to the reference database. A DNA barcoding library
could be created for all described species of Diplolepis, and this is feasible because the estimated
number of described species is 43 (Table 2.1). Even though many vouchers of species would be
> 10 years old, the extra cost of developing internal primer pairs for a small number of degraded
specimens would be low. While awaiting the collection of DNA samples from holotypes, other
priority species can be sampled within Canada such as D. arefacta, D. fulgens, and D. semipiceus
because they are suspected to be synonyms of other species or because they induce very similar
galls to other Diplolepis species (Ritchie and Shorthouse 1984, Shorthouse 1988). A more
comprehensive DNA barcoding library could be similarly constructed for all described species of
Periclistus and Torymus associated with rose galls. Increasing the DNA barcode reference
61
database of inducers, inquilines, and parasitoid specimens from regions outside of Canada is
necessary to determine which exotic species have entered Canada. In the 1950s, D. rosae was
introduced into North America along with several exotic parasitoid species of Orthopelma
(Ichneumonidae), Pteromalus (Pteromalidae), and Torymus (Torymidae) (Csóka et al. 2004).
Since that time, both D. eglanteriae and D. mayri have also been introduced into North America
(Table 2.1), but it is not known which exotic inquilines and parasitoids have also been introduced
(Table 2.2, Table 2.4).
Though there are no standard criteria to identify all insects with molecular data (Cognato
2006), there are also no standard criteria to identify all insects with morphological data.
Molecular keys allow researchers the freedom to select preferred DbOT thresholds to group taxa
(Cognato and Sun 2007), and the selected thresholds are easily understood and open to review by
the scientific community. However, the use of morphological keys does not allow the scientific
community the ability to track the decisions made at every couplet by the user. A simple species
threshold was calculated to identify taxa within this study, and it is concluded that several
morphologically identified taxa require re-examination. Possible misidentification of a few
individuals of D. nebulosa, T. bedeguaris, and T. solitarius suggest that larger sample sizes
should be collected from the same areas and examined with additional morphological and
molecular data. It cannot be definitively concluded at this time whether or not any of the
recognized species of Diplolepis, Periclistus, and Torymus are synonyms or require splitting into
two or more species. The individuals within each DbOT (Appendix 1) require expert examination
to distinguish misidentifications and mislabeling, and to possibly match individuals with
reference specimens. Species descriptions should be updated with current terminology and
appropriate characters, and include images from scanning electron microscopy, and include
62
molecular sequence data, such as a DNA barcode. Future studies that include DNA barcoding as
an identification tool can foster interest in future taxonomic study and revision of challenging
genera such as the Hymenoptera associated with rose galls induced by Diplolepis.
CONCLUSION
The necessity of a molecular identification tool, such as DNA barcoding, is supported by
several researchers that require identification of a wide variety of species of Hymenoptera. The
identification of Cynipidae, which is often based on early species descriptions, morphological
keys, or gall morphology, is recognized as an area in which additional methods could be of
signficiant benefit. The challenge of identification is even greater for parasitoids associated with
cynipid galls. Identification based on morphological characters of adult insects or galls is not
rejected by the results of this study, but the organization of new character sets requires guidance
from molecular identification tools, such as DNA barcoding. This study shows that a molecular
identification tool, such as DNA barcoding, is quick and effective for grouping taxa as DbOTs
that may require new data to confirm species identification. This current study counted 72
DbOTs of morphologically identified species of Diplolepis, Periclistus, Torymus, and several
unidentified Hymenoiptera. Using DNA barcoding, species richness of all rose gall communities
of Diplolepis could be examined with unprecedented resolution. In addition, the use of DNA
data provided a threshold for the operational assignment of unidentified (or, indeed, unnamed)
species that enables large-scale surveys of other traits, such as genome size (Chapter Three).
63
Table 2.1.
Species of Diplolepis (Cynipidae) worldwide.
Species of Diplolepis†
D. arefacta
D. ashmeadi
D. bassetti
D. bicolor
D. brunneipes
D. californica
D. dichlocera
D. eglanteriae
D. fructuum
D. fulgens
D. fusiformans
D. gracilis
D. ignota
D. inconspicuis
D. japonica
D. lens
D. mayri
D. nebulosa
D. neglecta
D. nervosa
D. nigriceps
D. nitidus
D. nodulosa
D. oregonensis
D. ostensackeni
D. polita
D. pustulatoides
D. radicum
D. radoszkowskii
D. rosae
D. rosaefolii
D. semipiceus
D. similis
D. spinosa
D. spinosissimae
D. terrigena
D. triforma
D. tuberculatrix
D. tumida
D. variabilis
D. variegatus
D. verna
D. weldi
Gall location
stem
stem
leaf
leaf
n/a
stem
stem
leaf
fruit
root
stem
leaf
leaf
stem
leaf
leaf
leaf
leaf
stem
leaf
n/a
n/a
stem
stem
root
leaf
leaf
root
n/a
leaf
leaf
root
stem
stem
leaf
root
stem
stem
stem
leaf
n/a
stem
leaf
Gall collected within Canada
(rare)
(exotic)
(rare)
(rare)
(exotic)
(exotic)
(rare)
† As listed by Dailey and Campbell (1973), Burks (1979), Ritchie (1984), Shorthouse and
Ritchie (1984), and Askew et al. (2006).
64
Table 2.2.
Species of Periclistus (Cynipidae) in North America.
Periclistus species†
Rose gall associations‡
P. arefactus
D. inconspicuis
D. neglecta
“P. ashmeadi (nom. nud.)”
D. ignota
D. nebulosa
P. brandtii
D. mayri (exotic)
D. rosae (exotic)
P. californicus
D. californica
D. neglecta
P. caninae
D. eglanteriae (exotic)
“P. cataractans (nom. nud.)”
D. lens
D. rosaefolii
“P. fusicolus (nom. nud.)”
D. fusiformans
D. nodulosa
D. triforma
“P. gracilicolus (nom. nud.)”
D. gracilis
P. piceus
D. polita
P. pirata
D. bassetti
D. bicolor
D. dichlocera
D. ignota
D. nebulosa
D. neglecta
D. nodulosa
D. polita
D. radicum
D. rosae
D. spinosa
D. triforma
D. tuberculatrix
D. tumida
“P. vancouverensis (nom. nud.)” D. inconspicuis
D. neglecta
“P. weldi (nom. nud.)”
D. nebulosa
D. nodulosa
D. bassetti
D. bicolor
D. ignota
D. variabilis
D. polita
D. polita
D. spinosa
† Identified by Ritchie (1984). Species descriptions of Periclistus by Ritchie (1984) were not
published and so those specific names are considered nomina nuda. However, for ease of
comparison, the same species names that appeared in his PhD dissertation (Ritchie 1984) will
be used in this study, but those species names are written within quotation marks and include
(nom. nud.).
‡ As listed by Ritchie (1984).
65
Table 2.3.
Species of parasitoid associated with rose galls induced by Diplolepis.
Superfamily
Family
species†
Chalcidoidea
Eulophidae
Aprostocetus hesperius
A. rosae
A. zosimus
Eupelmidae
Eupelmus dryorhizoxeni
E. urozonus
E. vesicularis
Eurytomidae
Eurytoma acuta
E. calcarea
E. discordans
E. flavicrurensa
E. hebes
E. hecale
E. imminuta
E. incerta
E. iniquus
E. longavena
E. obtusilobae
E. spongiosa
E. terrea
Ormyridae
Ormyrus nitidulus
O. rosae
Pteromalidae
Cyrtogaster vulgaris
Torymidae
Glyphomerus stigma
Ichneumonoidea
Ichneumonidae
Exeristes roborator
Baryscapus evonymellae
Chrysocharis pentheus Minotetrastichus frontalis
Sycophila wiltzae
Tenuipetiolus ruber
Mesopolobus fasciiventris Pteromalus bedeguaris Spaniopus dissimilis
P. rosae
Monodontomerus aereus
Torymus bedeguaris
T. bicoloratus
T. chrysochlorus
T. flavicoxa
T. flavipes
T. magnificus
T. osborni
T. rhoditidis
T. solitarius
T. tubicola
T. varians
Orthopelma califomicum
O. occidentale
O. mediator
† As listed by Barron (1977), Rempel (2002), and the Universal Chalcidoid Database
(www.nhm.ac.uk/researchcuration/research/projects/chalcidoids/).
66
Table 2.4. Species of Torymus (Torymidae) associated with rose galls induced by Diplolepis.
Torymus species†
Rose gall associations‡
T. bedeguaris†
D. bicolor
D. nebulosa
D. rosaefolii
D. eglanteriae (exotic)
D. nodulosa
D. spinosa
D. gracilis
D. polita
D. triforma
D. ignota
D. radicum
D. variabilis
D. mayri (exotic)
D. rosae (exotic)
T. bicoloratus†
D. bicolor
D. gracilis
D. nebulosa
D. nodulosa
D. polita
D. spinosa
D. triforma
D. variabilis
T. chrysochlorus†
D. arefacta
D. bassetti
D. bicolor
D. californica
D. dichlocera
D. fusiformans
D. gracilis
D. ignota
D. lens
D. nebulosa
D. polita
D. radicum
D. rosae (exotic)
D. rosaefolii
D. spinosa
D. triforma
D. variabilis
T. flavicoxa†
D. radicum
D. spinosa
D. terrigena
T. flavipes
D. eglanteriae (exotic)
D. mayri (exotic)
D. rosae (exotic)
D. spinosa
T. magnificus†
D. radicum
T. osborni
D. sp.
T. rhoditidis
D. sp.
T. solitarius†
D. bicolor
D. nebulosa
D. nodulosa
D. polita
D. radicum
D. spinosa
D. triforma
D. variabilis
T. tubicola
D. polita
T. varians
D. sp.
† Identified by Rempel (2002).
‡ As listed by Rempel (2002) and the Universal Chalcidoid Database
(www.nhm.ac.uk/researchcuration/research/projects/chalcidoids/).
67
Table 2.5.
Species of Diplolepis (Cynipidae) selected for DNA barcoding.
Diplolepis species†
individuals processed for DNA barcoding (n)
D. bassetti
27
D. bicolor
20
D. californica
24
D. eglanteriae
6
D. fructuum
20
D. fusiformans
33
D. gracilis
20
D. ignota
20
D. lens
1
D. mayri
10
D. multispinosa
2
D. nebulosa
30
D. nodulosa
23
D. oregonensis
2
D. ostensakeni
2
D. polita
45
D. radicum
40
D. rosae
15
D. rosaefolii
60
D. spinosa
70
D. triforma
40
D. tubercularis
1
D. variabilis
21
Total
† Identified by JD Shorthouse.
68
532
Table 2.6.
Species of Periclistus (Cynipidae) selected for DNA barcoding.
Periclistus species†
individuals processed for DNA barcoding (n)
P. arefactus
12
“P. ashmeadi (nom. nud.)”
17
“P. cataractans (nom. nud.)”
9
“P. fusicolus (nom. nud.)”
17
“P. gracilicolus (nom. nud.)”
12
P. piceus
12
P. pirata
20
“P. vancouverensis (nom. nud.)”
12
“P. weldi (nom. nud.)”
20
Total
131
† Identified by Ritchie (1984). New species descriptions of Periclistus by Ritchie (1984) were
not published and so those specific names are considered nomina nuda. However, for ease of
comparison, the same species names that appeared in his PhD dissertation (Ritchie 1984) will
be used in this study, but those species names are written within quotation marks and include
(nom. nud.).
69
Table 2.7.
Species of Torymus (Torymidae) selected for DNA barcoding.
Torymus species†
individuals processed for DNA barcoding (n)
T. bedeguaris
44
T. bicoloratus
7
T. chrysochlorus
23
T. flavicoxa
7
T. magnificus
4
T. solitarius
14
Total
† Identified by Rempel (2002).
70
99
Table 2.8.
Unidentified Hymenoptera exiting rose galls selected for DNA barcoding.
individuals processed for DNA barcoding (n)
Unidentified† taxa
Adult
Larva
Diplolepis (Cynipidae)
199
10
Periclistus (Cynipidae)
496
3
Torymus (Torymidae)
302
1
Parasitoids (excluding Torymidae)
290
20
1287
34
Total
† Specimens were not identified to species.
71
Table 2.9.
Periclistus (Cynipidae) associations with rose galls induced by Diplolepis.
D. polita
leaf
D. radicum
root
D. rosaefolii
leaf
D. spinosa
stem
D. triforma
stem
D. variabilis
leaf
“P. fusicolus (nom. nud.)”
P. sp.
DbOT36
stem
DbOT35
D. nodulosa
DbOT34
leaf
P. sp.
D. nebulosa
DbOT33
leaf
“P. ashmeadi /cataractans (nom. nud.)”
D. ignota
DbOT32
leaf
P. sp.
D. gracilis
DbOT31
stem
“P. weldi (nom. nud.)”
D. fusiformans
DbOT30
leaf
P. piceus
D. bicolor
DbOT29
leaf
P. sp.
D. bassetti
DbOT28
Gall
location
DbOT27
Diplolepis
species†
DbOT26
P. pirata
Species of Periclistus‡ or DbOT§
† Identified by JD Shorthouse. Most identifications were based on adults, but some were based
on external gall morphology.
‡ Identified by Ritchie (1984).
§ Figure 2.3 and Figure 2.6. Richness of species of Periclistus based on intercluster threshold of
2.2%.
72
Table 2.10.
Torymus (Torymidae) associations with rose galls induced by Diplolepis.
DbOT48
T. sp.
DbOT46
T. bicoloratus
T. bedeguaris/solitarius
DbOT45
DbOT47
T. bedeguaris
DbOT44
DbOT43
T. chrysochlorus
DbOT42
leaf
DbOT41
D. ignota
DbOT40
leaf
T. magnificus
D. gracilis
DbOT39
leaf
T. sp.
D. bicolor
DbOT38
Gall
location
T. flavicoxa
Diplolepis
species†
DbOT37
Species of Torymus‡ or DbOT§
D. mayri (exotic) leaf
D. nebulosa
leaf
D. nodulosa
stem
D. polita
leaf
D. radicum
root
D. rosaefolii
leaf
D. spinosa
stem
D. triforma
stem
D. variabilis
leaf
† Identified by JD Shorthouse. Most identifications were based on adults, but some were based
on external gall morphology.
‡ Identified by Rempel (2002).
§ Figure 2.4 and Figure 2.7. Richness of species of Torymus based on intercluster threshold of
2.2%.
73
Table 2.11. Species richness of Hymenoptera associated with rose galls induced by Diplolepis.
D. polita
4
4
D. radicum
1
2
D. rosaefolii
1
1
D. spinosa
1
1
D. triforma
1
D. variabilis
1
5
2
1
1
2
1
2 12
2
4
7
2
1
3
9
2
5 13
4
1
5
9
2
2
2
7
4
6 10
4
2
1
1
1
1
1
2
4
3
4
2
1
3
1
1
1
1
1
2
1
1
1
1
1
1
4
1
2
1
5
2
1
1
2
4 12
2
1
1
1
1
3
7
1
6
2
4
1
4
2 12
4
1
2
9
4
8
2
2 12
2
6 16
1
4 13
3
Total unique
9 4 2 13 3 1 1 8
11 7 1 5 3 2 5 12
species (n)
Total species
41
46
richness (n)
† Identified by JD Shorthouse. Most identifications were based on adults, but some were based
on external gall morphology.
‡ As listed by Barron (1977), Ritchie (1984), Rempel (2002), and the Universal Chalcidoid
Database (www.nhm.ac.uk/researchcuration/research/projects/chalcidoids/).
§ Figure 2.6, Figure 2.7, and Figure 2.8. Species richness is based on intercluster threshold of
2.2%.
74
Species richness
3
3
1
Torymidae (Torymus)
D. nodulosa
1
Pteromalidae
3
1
Ormyridae
D. nebulosa
2
Ichneumonidae
3
6
1
Eurytomidae
D. ignota
1
2
Eupelmidae
1
3
Eulophidae
D. gracilis
Cynipidae (Periclistus)
1
Species richness
1
8
Torymidae (Torymus)
D. fusiformans
4
Pteromalidae
2
4
Ormyridae
2
1
Ichneumonidae
D. bicolor
Eurytomidae
1
Eupelmidae
D. bassetti
Eulophidae
Diplolepis
species†
Cynipidae (Periclistus)
Number of species identified within Family (n)
Morphological identification‡
Molecular identification (DbOT)§
7
failure
success
Number of Diplolepis
specimens
200
150
100
50
0
Number of Periclistus
specimens
200
150
100
50
0
150
100
2010
2000
1990
1980
1970
1960
1950
1940
1930
0
1920
50
1910
Number of Torymus
specimens
200
Year
Figure 2.1. Amplification success of DNA barcodes from adults and larvae of Diplolepis
(Cynipidae), Periclistus (Cynipidae), and Torymus (Torymidae). The DNA barcodes were
amplified with either a standard LEP primer set or a mini-barcode LEP primer set. A failure was
considered as either no amplification of a DNA barcode sequence or amplification of
contaminant DNA.
75
DNA barcode mtDNA
2%
100
100
100
97
(n = 5)
Identification†
ITS1 rDNA‡
2
D. eglanteriae
(n = 19)
D. bicolor
(n = 24)
D. bassetti
(n = 17)
D. polita
(n = 20)
D. fructuum
(n = 15)
D. rosae
(n = 18)
D. rosaefolii
(n = 2)
99
(n = 1)
100
100
(n = 1)
100
100
100
(n = 1)
(n = 1)
91
100
100
(n = 9)
D. fusiformans
(n = 3)
D. nebulosa
(n = 18)
(n = 26)
(n = 9)
(n = 1)
D. ignota
D. nebulosa
D. variabilis
(n = 3)
(n = 2)
D. sp.‡
(n = 1)
(n = 8)
(n = 1)
D. gracilis
D. nebulosa
(n = 1)
D. nodulosa
(n = 5)
D. triforma
(n = 43)
D. spinosa
99
100
100
99
99
100
95
100
99
99
100
100
(n = 8)
D. californica
(n = 5)
(n = 1)
D. radicum
Figure 2.2. NJ dendrogram of reference vouchers of Diplolepis (Cynipidae). Clusters of DNA
barcodes were generated using Kimura-2-parameter distance while clusters of ITS1 sequences
were generated using number of differences. Bootstrap values ≥ 90% are given below branch and
were calculated in MEGA v5.0. Red branches indicate species of Diplolepis with more than one
ITS1 cluster within a species or shared DNA barcodes and ITS1 sequences between species. †
Identified by JD Shorthouse (see Table 2.5). ‡ With the exception of one unidentified individual
(D. sp.), all ITS1 sequences were amplified from morphologically identified individuals who
were also DNA barcoded.
76
DNA barcode mtDNA
Identification†
ITS1 rDNA‡
2
2%
100
100
(n = 2)
P. arefactus
(n = 3)
(n = 6)
P. pirata
P. sp.‡
(n = 2)
91
(n = 4)
97
91
(n = 6)
P. sp.‡
(n = 5)
P. piceus
(n = 4)
(n = 5)
“P. weldi (nom. nud.)”
P. sp.‡
(n = 5)
(n = 2)
(n = 1)
(n = 7)
“P. ashmeadi (nom. nud.)”
“P. cataractans (nom. nud.)”
P. sp.‡
(n = 7)
(n = 6)
100
100
100
100
100
100
(n = 1)
(n = 9)
(n = 3)
100
“P. fusicolus (nom. nud.)”
P. sp.‡
(n = 2)
100
(n = 1)
P. sp.‡
(n = 1)
Figure 2.3. NJ dendrogram of reference vouchers of Periclistus (Cynipidae). Clusters of DNA
barcodes were generated using Kimura-2-parameter distance while clusters of ITS1 sequences
were generated using number of differences. Bootstrap values ≥ 90% are given below branch and
were calculated in MEGA v5.0. Red branches indicate species of Periclistus with more than one
ITS1 cluster within a species or shared DNA barcodes and ITS1 sequences between species. †
Identified by Ritchie (1984) (see Table 2.6). ). ‡ All ITS1 sequences were amplified from
unidentified individuals who were DNA barcoded and matched to reference specimens. Species
descriptions of Periclistus by Ritchie (1984) were not published and so those specific names are
considered nomina nuda.
77
DNA barcode mtDNA
Identification†
ITS1 rDNA‡
2
2%
100
100
100
(n = 2)
T. flavicoxa
(n = 2)
T. sp.‡
(n = 2)
T. magnificus
(n = 2)
99
(n = 1)
(n = 18)
(n = 2)
T. chrysochlorus
T. sp.‡
(n = 1)
100
100
100
100
(n = 25)
(n = 1)
T. bedeguaris
T. sp.‡
(n = 1)
(n = 5)
(n = 6)
(n = 3)
T. bedeguaris
T. solitarius
T. sp.‡
(n = 3)
(n = 5)
T. bicoloratus
Figure 2.4. NJ dendrogram of reference vouchers of Torymus (Torymidae). Clusters of DNA
barcodes were generated using Kimura-2-parameter distance while clusters of ITS1 sequences
were generated using number of differences.. Bootstrap values ≥ 90% are given below branch
and were calculated in MEGA v5.0. Red branches indicate species of Torymus with more than
one ITS1 cluster within a species or shared DNA barcodes and ITS1 sequences between species.
† Identified by Rempel (2002) (see Table 2.7). ‡ All ITS1 sequences were amplified from
unidentified individuals who were DNA barcoded and matched to reference specimens.
78
DNA barcode mtDNA
2%
(n = 9)
DbOT02
DbOT03
DbOT04
(n = 2)
(n = 14)
(n = 6)
D. bassetti
DbOT05
DbOT06
(n = 13)
(n = 12)
D. polita
DbOT07
DbOT08
(n = 12)
(n = 7)
D. fructuum
DbOT09
(n = 20)
99
D. sp.
DbOT10
(n = 2)
98
D. rosae
DbOT11
(n = 21)
D. rosaefolii
DbOT12
DbOT13
(n = 13)
(n = 17)
D. fusiformans
D. nebulosa
DbOT14
(n = 16)
D. ignota
D. nebulosa
D. variabilis
DbOT15
(n = 104)
D. gracilis
D. nebulosa
DbOT16
(n = 10)
99
D. nodulosa
DbOT17
(n = 11)
97
D. triforma
DbOT18
DbOT19
(n = 27)
(n = 4)
DbOT20
(n = 39)
DbOT21
(n = 16)
D. californica
DbOT22
(n = 8)
D. radicum
DbOT23
DbOT24
(n = 12)
(n = 7)
99
99
D. bicolor
99
99
99
99
D. eglanteriae
D. sp.
Interspecific threshold ≥ 2.2% ‡
DbOT01
99
99
99
97
99
99
99
Identification†
99
98
99
99
99
99
98
99
94
95
D. spinosa
99
99
99
99
99
99
Figure 2.5. NJ dendrogram of both reference and unidentified adult and larva specimens of
Diplolepis (Cynipidae) based on species threshold of 2.2%.Clusters of DNA barcodes were
generated using Kimura-2-parameter distance. Bootstrap values ≥ 90% are given below branch
and were calculated in MEGA v5.0. † Morphologically identified by JD Shorthouse (see Table
2.5 and Table 2.8). ‡ Species threshold calculated from minimum intercluster divergence
supported by DNA barcodes and ITS1 sequences (Figure 2.2, 2.3, 2.4).
79
DNA barcode mtDNA
2%
Identification†
P. arefactus
100
Interspecific threshold ≥ 2.2% ‡
DbOT25
(n = 2)
DbOT26
(n = 29)
DbOT27
(n = 48)
P. sp.
DbOT28
(n = 3)
P. piceus
DbOT29
(n = 5)
P. weldi (nom. nud.)
DbOT30
(n = 80)
P. sp.
DbOT31
(n = 3)
“P. ashmeadi (nom. nud.)”
“P. cataractans (nom. nud.)”
DbOT32
(n = 64)
P. sp.
DbOT33
(n = 14)
DbOT34
(n = 14)
DbOT35
(n = 14)
DbOT36
(n = 25)
95
100
P. pirata
99
98
96
99
100
99
99
100
“P. fusicolus (nom. nud.)”
99
100
P. sp.
Figure 2.6. NJ dendrogram of both reference and unidentified adult and larva specimens of
Periclistus (Cynipidae) based on species threshold of 2.2%. Clusters of DNA barcodes were
generated using Kimura-2-parameter distance. Bootstrap values ≥ 90% are given below branch
and were calculated in MEGA v5.0. † Morphologically identified by Ritchie (1984) (see Table
2.6 and Table 2.8). Species descriptions of Periclistus by Ritchie (1984) were not published and
so those specific names are considered nomina nuda. ‡ Species threshold calculated from
minimum intercluster divergence supported by DNA barcodes and ITS1 sequences (Figure 2.2,
2.3, 2.4).
80
Identification†
DNA barcode mtDNA
2%
100
100
100
Interspecific threshold ≥ 2.2% ‡
T. flavicoxa
DbOT37
(n = 2)
T. sp.
DbOT38
(n = 6)
T. magnificus
DbOT39
(n = 2)
DbOT40
(n = 24)
DbOT41
(n = 12)
DbOT42
(n = 4)
DbOT43
(n = 15)
T. bedeguaris
DbOT44
(n = 161)
T. bedeguaris
T. solitarius
DbOT45
(n = 41)
T. sp.
DbOT46
(n = 5)
T. bicoloratus
DbOT47
DbOT48
(n = 3)
(n = 2)
99
T. chrysochlorus
100
100
100
100
100
100
100
100
100
Figure 2.7. NJ dendrogram of both reference and unidentified adult and larva specimens of
Torymus (Torymidae) based on species threshold of 2.2%. Clusters of DNA barcodes were
generated using Kimura-2-parameter distance. Bootstrap values ≥ 90% are given below branch
and were calculated in MEGA v5.0. † Morphologically identified by Rempel (2002) (see Table
2.7 and Table 2.8). Species threshold calculated from minimum intercluster divergence
supported by DNA barcodes and ITS1 sequences (Figure 2.2, 2.3, 2.4).
81
Identification†
DNA barcode mtDNA
2%
Interspecific threshold ≥ 2.2% ‡
DbOT49
(n = 3)
DbOT50
(n = 41)
DbOT51
(n = 16)
DbOT52
(n = 9)
DbOT53
(n = 1)
DbOT54
(n = 4)
DbOT55
DbOT56
DbOT57
DbOT58
DbOT59
DbOT60
(n = 1)
(n = 1)
(n = 2)
(n = 2)
(n = 1)
(n = 3)
DbOT61
(n = 13)
DbOT62
(n = 1)
DbOT63
(n = 1)
DbOT64
(n = 1)
DbOT65
(n = 5)
DbOT66
(n = 9)
DbOT67
(n = 3)
DbOT68
(n = 18)
100
DbOT69
(n = 10)
100
DbOT70
(n = 2)
DbOT71
(n = 3)
DbOT72
(n = 38)
Eupelmidae
100
100
91
Eurytomidae
99
100
100
100
100
98
Eulophidae
100
100
100
96
100
91
100
Pteromalidae
100
100
100
Ormyridae
100
100
100
100
100
Ichneumonidae
100
100
Figure 2.8. NJ dendrogram of unidentified adult and larva specimens of parasitoids (except
Torymidae) associated with rose galls induced by Diplolepis. Clusters of DNA barcodes were
generated using Kimura-2-parameter distance. Bootstrap values ≥ 90% are given below branch
and were calculated in MEGA v5.0. † Individuals morphologically identified to family level. ‡
Species threshold calculated from minimum intercluster divergence supported by DNA barcodes
and ITS1 sequences (Figure 2.2, 2.3, 2.4).
82
a)
Cryptic species
Two species
Define types, original & cryptic.
Redescribe both species.
Indistinguishable by currently
defined morphological characters.
preliminary
evidence:
two DbOTs
b) Synonymous species
Distinguishable by currently
defined morphological characters.
One species
Define type, remove synonymy.
Redescribe species.
preliminary
evidence:
one DbOT
c)
New
species
Unnamed.
Not described.
or
Unsampled
species
One species
Determine status:
Named.
Described.
Neither have been DNA barcoded.
preliminary
evidence:
If unnamed, then define new species.
If named, then unsampled species.
new DbOT
Distinguishable by currently
defined morphological characters.
Add to DNA barcode database
Figure 2.9. Schematic representation of post-DNA barcoding work protocol for species
identification of DbOTs. Species identification of a) cryptic species, b) synonymous species, c)
new species or unsampled species requires a preliminary comparison of morphology and DNA
barcodes to congenerics. After DNA barcodes are generated, new data of behaviour, ecology,
new morphological characters, or sequences from other gene regions need to be analyzed
between congenerics and DbOTs in order to support species status.
83
CHAPTER THREE
Patterns of genome size diversity in Hymenoptera
and a test of possible development constraints:
a large-scale study enabled by DNA barcoding
84
ABSTRACT
New genome size estimates are reported for 309 species of Hymenoptera from 20
families in 7 superfamilies (identified operationally using the DNA barcoding threshold
established in Chapter Two), bringing the total number of available genome size estimates for
this order to 471 species divided among 36 families and 13 superfamilies. Across this combined
dataset, genome size estimates ranged 20-fold, from 0.10 pg to 1.97 pg. Contrary to some earlier
hypotheses, the order Hymenoptera possess similar genome sizes to other holometabolous
orders, and a parasitic or parasitoid lifestyle does not appear to constrain genome size to a
smaller genome size than non-parasitic and non-parasitoid taxa. Examination of idiobiont and
koinobiont species within both Braconidae and Ichneumonidae did not reveal significant
difference in mean genome size. However, mean genome size of cleptoparasites and inquilines
was significantly smaller than their hosts and gall inducers, respectively. Though development
time was not measured, the present results support the hypothesis that rapid development time
relative to competitors is important in species of Hymenoptera that obtain resources within a
narrow window of opportunity.
85
INTRODUCTION
3.1 Hymenoptera feeding
The rich taxonomic diversity of Hymenoptera encompasses a wide variety of larval
feeding modes including herbivory, predation, and parasitism (Gauld and Bolton 1988). It is
hypothesized that ancestral Hymenoptera fed externally on plant tissues, and from these lineages
emerged the ability to feed within plant tissues (borers, miners, gall inducers) in some derived
lineages (Gauld and Bolton 1988). Another important transition in Hymenoptera evolution may
have occurred when an egg was placed in close proximity to another immature Hymenoptera
feeding within woody tissue, and consequently, a newly hatched larva would feed on another
hymenopteran instead of on plant tissue (Gauld and Bolton 1988). This transition from
phytophagy to carnivory occurred once in an early lineage of Hymenoptera, and approximately
half of the extant families of Hymenoptera are carnivorous (Godfray 1994, Quicke 1997,
Sharkey 2007, Heraty et al. 2011, Sharkey et al. 2011). From the carnivorous state, there have
been some reversals to phytophagy, such as the leaf, nectar, and pollen collecting members of the
superfamilies Apoidea (bees) and Vespoidea (wasps and ants), the mutualistic fig pollinators (fig
wasps) and seed predators of the superfamily Chalcidoidea, and the gall inducers of the
superfamilies Chalcidoidea, Cynipoidea, and Ichneumonoidea (Sharkey 2007). However, the
predominant feeding mode of Hymenoptera remains that of specialised carnivores known as
parasitoids (Godfray 1994, Quicke 1997, Sharkey 2007, Heraty et al. 2011, Sharkey et al. 2011).
3.2 Definitions of larval feeding modes
The partitioning of insect biology into discrete categories is, in many cases, illustrative of
pragmatic grouping together of functionally similar individuals. Many definitions are restricted
86
by taxonomic boundaries and researcher preference rather than strictly by biology; for example,
the term “parasitoid” is usually restricted to Hymenoptera and Diptera although a few members
of other insect orders, crustaceans, nematodes, fungi, and other invertebrate taxa adequately fit
the parasitoid lifestyle based on their biology (Eggleton and Gaston 1990). Recognizing the
limitation of defining the continuum of biological traits into discrete units is not necessarily
problematic because definitions serve the practical purpose of organizing distinguishable groups
for study. However, it does necessitate a clear exposition of how specific terms are being used in
a given context. The following definitions used in this study are based primarily on the biology
of larval stages within the order Hymenoptera. For clarification, the action of the ovipositing
female has been included in some definitions.
Parasitoid: Larvae obtain nourishment directly from one host in order to complete their
development, resulting in death of the host (Gauld and Bolton 1988, Eggleton and Belshaw
1992, Godfray 1994, Quicke 1997). Species of parasitoids either oviposit on or near the external
surface of the host (ectoparasitoid), or they oviposit within the host (endoparasitoid) (Eggleton
and Belshaw 1992, Godfray 1994, Quicke 1997). Parasitoids usually attack a specific host life
stage, such as the egg, larva, pupa, or adult, and their resulting progeny then leave the host at a
specific host life stage (Eggleton and Belshaw 1992, Godfray 1994, Quicke 1997).
Approximately half of all hymenopteran are parasitoids, and it has been estimated that 10-20 %
of all insects are parasitoids (LaSalle and Gauld 1991, Godfray 1994, Quicke 1997, Sharkey
2007, Heraty et al. 2011, Sharkey et al. 2011).
If the host cannot moult after an attack, the parasitoid is defined as an idiobiont, but if the
host continues to develop and moults beyond the stage attacked, the parasitoid is defined as a
koinobiont (Askew and Shaw 1986). This dichotomous grouping of parasitoids into idiobionts
87
or koinobionts was initially proposed to allow comparative tests of host specificity (Askew and
Shaw 1986). Idiobionts tend to have a larger host range than koinobionts because there is
minimal interaction with the immune response of a paralyzed or dead host (Askew and Shaw
1986, Pennacchio and Strand 2006). Prolonged association with a responsive host’s immune
system (haemocytes), physiology (hormones), and development (moulting) has been suggested
to favour greater specialization and therefore a smaller host range in koinobionts (Askew and
Shaw 1986, Pennacchio and Strand 2006). Additional differences in parasitoid life history traits
have been broadly categorized between idiobionts and koinobionts (Godfray 1994, Quicke
1997), and the first test of the dichotomous hypothesis found support for idiobionts having
shorter development time than koinobionts (Blackburn 1991, Mayhew and Blackburn 1999).
Forestry rearing records of the families Braconidae and Ichneumonidae have provided the
most comprehensive host use data for any family of Hymenoptera (Askew and Shaw 1986,
Sheehan and Hawkins 1991, Bennett 2008). Classification at the subfamily level characterizes
the general biology of species within that taxon. For example, species in the subfamilies
Brachistinae and Helconinae (Bracondiae) are characterized by such features as koinobiont
endoparasitism of Coleoptera (Gauld and Bolton 1988). Thus, the two largest families of
Hymenoptera allow comparisons of biological traits of interest without species level
identifications.
Cleptoparasite: The adult female cleptoparasite enters the host nest, oviposits into a nest
cell, exits the host nest, and does not return (Eggleton and Gaston 1990, Michener 2000).
Cleptoparasite larvae feed from a single host and food provisions (nectar, pollen) that were
deposited into the nest cell by the adult female host species. The cleptoparasitic lifestyle occurs
in members of four superfamilies of Hymenoptera (Apoidea, Chrysidoidea,
88
Evanoidea,Vespoidea), and the usual hosts are solitary and social nest-building Hymenoptera
(Apoidea, Vespoidea) (Gauld and Bolton 1988). Cleptoparasitism is common since
approximately 28% of species of Apidae are cleptoparasites (Cardinal et al. 2010).
The host is commonly killed by the first instar of a cleptoparasite which is actively
mobile, possesses long and heavily sclerotized mandibles and enlarged sensory structures (Rozen
Jr 2001). These structures are gradually lost as the cleptoparasite moults because the probablity
of mortality is greatly reduced when the host larva or other cleptoparasites are killed and after the
nest cell is sealed by the host female (Rozen Jr and Kamel 2009). Cleptoparasites must eliminate
competitors (host and other cleptoparasites) relatively quickly to survive and usurp the limited
food provisions. Minimizing the duration from oviposition to egg hatch therefore provides a
survival advantage to cleptoparasites.
Inducer: The adult female wasp oviposits into a specific plant organ (bud, leaf, stem,
root) and the feeding larva induces an atypical growth known as galls which provides shelter,
nourishment, and protection to the inducer (Stone and Schönrogge 2003). Gall induction is a
highly specialized form of herbivory such that gall wasp larvae continually stimulate the
production of new plant cells to supply nutrients directly to them until they pupate (Shorthouse
1993). Approximately 1400 gall wasps (Hymenoptera: Cynipidae) worldwide induce galls on
oak trees, shrubs, and grasses (Askew 1975, Godfray 1994, Liljeblad and Ronquist 1998).
Inquiline: The adult female inquiline locates a gall induced by another cynipid and
oviposits into the gall chamber. Though larvae of inquilines are specialised herbivores that do
not feed on insect tissues, mortality of the inducer occurs from probing by the inquiline
ovipositor (Shorthouse 1998) or from crushing by developing inquiline gall chambers (Csóka et
al. 2005). Inquilines have lost the ability to initiate their own galls de novo (Ronquist 1994), and
89
are dependent on completing their development within the galls of inducers (Shorthouse 1998).
Inquilinism is restricted to members of the tribe Synergini (family Cynipidae), and the usual host
galls are induced by species within the tribes Cynipini (oak gall wasps), Diplolepidini (rose gall
wasps), and Aylacini (herb gall wasps) (Csóka et al. 2005, Ács et al. 2010). Only approximately
10% of gall wasps (family Cynipinae) are inquilines, but they are important agents of inducer
mortality (Csóka et al. 2005).
Inducers require meristematic tissue within a narrow range of development for successful
gall initiation (Pires and Price 2000, Stone et al. 2002), and it is probable that inquilines also
have a narrow, if not more limited, window of gall vulnerability that allows them to usurp
control of gall development. Rapid development from oviposition to egg hatch would be
advantageous for the survival of inquilines.
3.3 Genome size and Hymenoptera
Genome size is positively correlated with cell size and negatively correlated with cell
division rate in a variety of cell types in a wide range of organisms (Gregory 2005). The direct
influence of genome size on cellular properties may influence organism level traits such as
development, metabolism, and ecological interactions (Gregory 2005).
Genome size has been estimated by flow cytometry in 124 species of Hymenoptera, and
these estimates include representatives from six superfamilies and 14 families (Table 3.1,
Appendix 4). Currently, species coverage is composed of 44.4 % ants (family Formicidae), 26.6
% bees (Apidae), 16.1 % miscellaneous families of parasitoids (Aphelinidae, Braconidae,
Encyrtidae, Eulophidae, Figitidae, Mutillidae, Pteromalidae, and Trichogrammatidae), 0.8 %
sawflies (Cephidae), and 12.1 % wasps (Crabronidae, Sphecidae, and Vespidae) (Appendix 4).
90
On average, about five genera per family have been studied using flow cytometry, but the
average drops to only about two genera per family when social Hymenoptera, such as ants and
bees, are not included (Appendix 4). Current genome size estimates within Hymenoptera
therefore remain very limited in light of the diversity of this order, especially with regard to the
predominant category of parasitoids (Godfray 1994, Quicke 1997, Sharkey 2007, Heraty et al.
2011, Sharkey et al. 2011).
The maximum reported genome size of Hymenoptera is approximately 2 pg (Gadau et al.
2001, Johnston et al. 2004, Barcenas et al. 2008, Tsutsui et al. 2008, Lopes et al. 2009, ArdilaGarcia et al. 2010, Tavares et al. 2010a, Tavares et al. 2010b, Gokhman et al. 2011, Hanrahan
and Johnston 2011), as has also been found in other holometabolous insect orders (Gregory
2002). Most previous studies have focused on reporting the genome sizes of species of
Hymenoptera from focal taxa regardless of biology. Though it is absolutely necessary to
continue to accumulate genome size estimates for all invertebrates (Gregory 2005), observations
from fine scale studies at the species level could also be used to generate new hypotheses about
the role of genome size on organismal biology at a broader scale. A recent example involved
comparisons of mean genome sizes of taxa with different levels of eusociality and parasitoid
lifestyles (Ardila-Garcia et al. 2010). It was hypothesized that eusocial taxa would have small
genome size because small cells would allow for increased numbers of neurons and higher
cognitive functions, and parasitoid taxa would have small genome size to allow for rapid
development compared to their hosts (Ardila-Garcia et al. 2010). Mean genome size of eusocial
and parasitoid taxa were significantly smaller than solitary non-parasitoid taxa, but it was evident
that there was a wide range of genome sizes within eusocial, parasitoid, and solitary nonparasitoid categories and substantial overlap between categories (Ardila-Garcia et al. 2010).
91
However, no significant differences were found between eusocial and solitary species in the
same superfamily (Ardila-Garcia et al. 2010). In addition, if the Ardila-Garcia et al. (2010)
dataset is reanalyzed with species of Mutillidae and Scoliidae re-categorized as parasitoids
instead of solitary non-parasitoid taxa, then mean genome size would not be significantly
different in parasitoid and solitary non-parasitoid taxa (p = 0.16). As Ardila-Garcia et al. (2010)
suggested, there are no consistent patterns between eusociality and parasitoid lifestyles, and the
re-analysis of data from that study suggests that broad categorical comparisons should be
interpreted with caution because statistically significant differences may not exist if species are
categorized differently.
3.4 Objectives
An overall goal of this study is to expand the genome size database of Hymenoptera by
sampling a greater number of parasitoid taxa from a much wider range of families and
superfamilies than has been undertaken to date. The inclusion of many non-parasitoid
Hymenoptera from a broad phylogenetic sample also allows the generation of new hypotheses
and predictions of possible relationships between genome size and the biology of Hymenoptera.
These data were used to address the following specific research objectives.
Objective 3.A.: To test the hypothetical 2 pg threshold of holometabolous insects, using the
order Hymenoptera as a test case.
It has been suggested that holometabolous insects are constrained to have a maximum
genome size of approximately 2 pg (Gregory 2002). Current genome size estimates by flow
cytometry of 124 species of Hymenoptera do not surpass the 2 pg threshold, but the coverage of
14 families from six superfamilies underrepresents the predominant parasitoid lifestyle (Table
92
3.1, Appendix 4). If Hymenoptera are constrained to have a maximum genome size of 2pg, then
all new genome size estimates of species from previously unsampled families and superfamilies
are predicted to be less than 2 pg.
Objective 3.B.: To test whether or not genome size is significantly larger in koinobionts
than in idiobionts, using the families Braconidae and Ichneumonidae as test cases.
Mean genome sizes of parasitoid taxa are not significantly different than mean genome
sizes of non-parasitoid taxa (re-analysis of Ardila-Garcia et al. 2010). However, parasitoids can
be further subdivided according to the dichotomous hypothesis (Askew and Shaw 1986).
Idiobionts have shorter mean development time than koinobionts (Blackburn 1991, Mayhew and
Blackburn 1999). If development time is positively correlated with genome size, then idiobionts
are predicted to have significantly smaller mean genome sizes than koinobionts. Classification at
the subfamily level within the families Braconidae and Ichneumonidae provides the most reliable
characterization of taxa as either idiobionts or koinobionts, even without species-level
identifications (Gauld and Bolton 1988).Therefore, subfamily classification of the two largest
families of Hymenoptera should provide the most reliable test of differences between mean
genome size idiobionts and koinobionts.
Objective 3.C.: To test whether or not mean genome sizes of cleptoparasites are smaller
than those of their hosts.
Cleptoparasites kill the host larva and any competitors that may be present within the host
nest cell. If cleptoparasites have traits that support rapid development of their eggs, then mean
genome size of cleptoparasites should not be significantly larger than their hosts. It is predicted
93
that on average, cleptoparasites will have mean genome sizes significantly smaller than their
hosts because reduced development time would enhance survival against competitors.
Objective 3.D.: To test whether or not mean genome sizes of inquilines are smaller than
those of inducers.
Inquilines of the family Cynipidae must develop within galls induced by another cynipid,
and the window of gall vulnerability is probably narrower than that of inducers. If inquilines
have traits that support rapid development of their eggs, then mean genome sizes of inquilines
should be significantly smaller than those of their inducer hosts.
MATERIALS AND METHODS
3.5 Specimen collection and deposition
The majority of live Hymenoptera used in this study were collected around Guelph, ON
(43.56 N, -80.26 W.), Sudbury, ON (46.5 N, -80.97), and Churchill, MB (58.77 N, -94.17 W)
from May to September of 2008, 2009, and 2010. Within these locations, collection sites
included city parks, mixed-wood stands, ponds, rivers, and post-disturbance fire stands. I, with
the help of volunteers collected most of the Hymenoptera by sweep-netting vagile adults and
aspirating microhymenoptera from foliage (Appendix 2, Appendix 3). Hymenoptera were also
indirectly collected by me, JD Shorthouse, and volunteers by hand-sampling relatively immobile
hosts such as eggs, larvae of exposed and leaf-rolling Lepidoptera, scale insects, and plant galls
(Appendix 2, Appendix 3). These hosts were brought to the laboratory (Churchill Northern
Studies Centre, Laurentian University, or University of Guelph,) closest to the field site(s) and
placed into separate plastic containers according to host type (egg, larva, pupa, or gall) and plant
94
type (sugar maple, Acer saccharum; flowering dogwood, Cornus florida; crab apple, Malus sp.;
goldenrod, Solidago sp.; oak, Quercus sp.; rose, Rosa sp.; trembling aspen, Populus tremuloides;
and willow, Salix sp.). Host larvae were provided fresh foliage every three days from the plant
type on which they had been collected until they either completed development to their adult
stage or a parasitoid exited from them. Pupae and galls that did not produce adults by September
were subjected to cold temperature (4°C) for four months and then subjected to room
temperature (~ 20°C) to break diapause.
All live adult Hymenoptera were individually placed into microcentrifuge tubes and
stored at -80°C in the J Lima collection (University of Guelph) until processed for genome size
estimation and DNA barcoding. All specimens (n = 853) were identified to family by me using
the morphological keys of Gauld and Bolton (1988) and Gibson et al. (1997). Identification to
superfamily, subfamily, tribe, genus and species-level was completed post-DNA barcoding by
me and followed classification according to Michener (2000), Melo and Gonçalves (2005), and
Pulawski (2011) for Apoidea, the Universal Chalcidoidea Database
(www.nhm.ac.uk/jdsml/research-curation/research/projects/chalcidoids/) for Chalcidoidea,
Quicke et al. (2009) and Sharanowski et al. (2011) for Ichneumonoidea, the Ant database
(www.antbase.org/index.htm) for Vespoidea, and the Fauna Europaea project database
(www.faunaeur.org/about_fauna_intro.php) and Sharkey et al. (2011) for the remaining
Hymenoptera. These sources of information were also used to obtain data on life history traits of
collected specimens.
95
3.6 DNA extraction, PCR amplification, and sequence analyses
Depending on the size of the specimen (< 10 mm), the hind tibia along with one or two
other legs were transferred to an ethanol-filled well of a 96-well microtitre plate and shipped to
the Biodiversity Institute of Ontario in Guelph, Ontario, Canada. Total genomic DNA extraction,
PCR reactions, and sequencing procedures were the same as described in Chapter 1 for the DNA
barcode region of COI gene (nucleotide positions 1490-2198 of the Drosophila yakuba
mitochondrial genome). A cluster of DNA barcodes was defined as a unique DNA barcode
operational taxon (DbOT) when the mean intercluster divergence from its nearest neighbour was
2.2% (Chapter Two). Each DbOT was considered to be a species, and their associated DNA
barcodes were used in the Barcode of Life Database search engine (www.barcodinglife.org) to
confirm previous identifications to the lowest taxonomic level possible.
3.7 Genome size estimation
All dissecting equipment, solutions, and tubes were kept on ice during sample
preparation. The frozen head of an adult Hymenoptera and one female of a selected standard (see
below) were dissected to obtain neural tissue and placed within a 2 mL Kontes dounce tissue
grinder (Gerresheimer Group, Dusseldorf, Germany) with 500 L Galbraith buffer solution (per
1 L dH2O: 8.8 g of Na2C6H5O7, 4.2 g of 3-[N-morpholino]-propane sulphonate, 1.99 g MgCl2,
1.0 mL Triton X-100, 100 mL 10 mg/mL RNase A, adjusted to pH 7.2). The solution containing
the heads was then ground gently for 20 strokes with an “A” pestle (Gerresheimer Group,
Dusseldorf, Germany). Afterwards, this sample was filtered through a 30 m mesh
(Spectramesh) into either a microcentrifuge or 12 × 75 mm tube, depending on the flow
96
cytometer used. The sample was stained with 12 L of 5% propidium idodide (50 g/mL) and
kept on ice in the dark for a minimum of 30 minutes prior to flow cytometry.
Depending on availability of flow cytometers, samples were analyzed using a 488 nm
laser on the Beckman Coulter Cell Lab Quanta SC MPL, Beckman Coulter CyAn ADP,
Beckman Coulter Cytomics FC500, or BD FACSCalibur. A minimum of 1500 nuclei per
Hymenoptera sample was analyzed, and genome size (GS) was estimated by comparing the ratio
of fluorescence intensity peaks of unknowns and standards (see formulas [i.] and [ii.]). Most
samples were co-prepared with female Drosophila melanogaster (Oregon R strain), but
whenever overlapping peaks were produced with this standard, another specimen of the same
DbOT was co-prepared with female Apis mellifera to obtain two distinguishable fluorescence
peaks. The formulae for estimating GS are:
or,
[i.] for female (diploid) Hymenoptera, GSHymenoptera =
PHymenoptera  GSstandard
Pstandard
[ii.] for male (haploid) Hymenoptera, GSHymenoptera =
PHymenoptera  GSstandard
2
Pstandard
where PHymenoptera
Pstandard
= mean fluorescence intensity peak of Hymenoptera specimen
= mean fluorescence intensity peak of standard,
either D. melanogaster (Oregon R strain) or A. mellifera.
GSstandard
= D. melanogaster, 1C = 0.18 pg, Rasch et al. (1971),
or A. mellifera, 1C = 0.25 pg, Honeybee Genome Sequencing
Consortium (2006)
97
3.8 Other published data: Genome size estimations
Additional genome size estimates of species of Hymenoptera using flow cytometry were
gathered from the Animal Genome Size Database (Gregory 2011) and published studies
(Appendix 4).
3.9 Data Analysis
Genome size estimate distribution for categorical groups (cleptoparasites, idiobionts,
inducers, inquilines, koinobionts) were examined using the Shapiro-Wilk test of normality prior
to statistical comparisons. Mean genome size estimates for categorical groups were compared by
one-way ANOVA. Some data were not normally distributed, so a Kruskal-Wallis test was also
performed to compare group means. However, the results did not differ qualitatively whether or
not group means were compared by parametric or non-parametric methods, so only results of
ANOVA are reported below. All statistical analyses were performed using the R statistical
package version 2.10.1 (The R Foundation for Statistical Computing 2009) and Statgraphics Plus
version 5.1 (Statistical Graphics Corp. 2001).
RESULTS
3.10 Range of Hymenoptera genome sizes
New genome size estimates for 309 species of Hymenoptera were generated by flow
cytometry in this study, and these genome size estimates include the addition of seven
superfamilies and 20 families and that had not been previously studied (Figure 3.1, Table 3.2,
Appendix 2, Appendix 3). In combination with other studies, regardless of method of genome
size estimation, there are now a total 471 genome size estimates of species of Hymenoptera
98
covering 13 superfamilies and 36 families. Total species coverage is now composed of 15.5 %
ants (family Formicidae), 10.2 % bees (family Apidae), 6.3 % inducers and inquilines (family
Cynipidae), 52.9 % parasitoids (families Aphelinidae, Bethylidae, Braconidae, Ceraphronidae,
Chalcididae, Chrysididae, Diapriidae, Dryinidae, Encyrtidae, Eucharitidae, Eulophidae,
Eupelmidae, Eurytomidae, Figitidae, Gasteruptiidae, Ichneumonidae, Megaspilidae, Mutillidae,
Mymaridae, Ormyridae, Perilampidae, Platygastridae, Proctotrupidae, Pteromalidae, Scoliidae,
Torymidae, and Trichogrammatidae), 6.6 % sawflies (families Argidae, Cephidae,
Tenthredinidae), and 8.5 % non-parasitoid wasps (families Crabronidae, Sphecidae, and
Vespidae) (Table 3.2, Gregory 2011). Mean genome size for all Hymenoptera is 0.40 ± 0.238 (n
= 471) (Figure 3.1, Appendix 2, Appendix 3, Gregory 2011). Genome size estimates range 20fold, from 0.10 pg in the parasitoids Aphidius colemani and Peristenus stygicus (family
Braconidae) to 1.97 pg in the inducer Andricus sp. (family Cynipidae) (Appendix 2, Appendix 3,
Gregory 2011). Lower quartile and median of genome size of Hymenoptera is 0.26 pg and 0.35
pg, respectively. As predicted by the hypothetical threshold for holometabolous insects, no
current genome size estimates of Hymenoptera exceed 2 pg (Figure 3.1, Appendix 2, Appendix
3, Gregory 2011).
A nested analysis of variance using all genome size estimates of Hymenoptera
performed by flow cytometry (n = 433 species, n = 977 individuals) revealed that 15% of the
variation among species occurs at the level of superfamilies within the order Hymenoptera, 13%
among families within superfamilies, 71% among species within families, and 1% among
individuals within a species. This analysis could not be performed at the level of genus due to
lack of confirmed identification to that level, but DNA barcoding allowed for species
identification to a reference specimen or a tentative species identification by grouping DbOTs. In
99
any case, most analyses were performed at the level of superfamilies, families, or species
because major differences in biology of Hymenoptera are more relevant at these levels than
among genera (Gauld and Bolton 1988, Godfray 1994, Quicke 1997).
Hymenoptera are broadly divided into two major groups, the Symphyta, a paraphyletic
grouping of extant phytophagous families that arose from an ancestrally phytophagous lineage,
and the Vespina, an informal name given to the clade consisting of all extant parasitoid,
predatory, and secondarily derived phytophagous families that arose from a parasitoid ancestor
(Figure 3.1, Heraty et al. 2011). Because the Symphyta are not monophyletic, and based on the
current sampling in this study, the superfamily Tenthredinoidea was used as an outgroup to the
Vespina while the single species from the superfamily Cephoidea was not included in further
analyses. Mean genome size of the Tenthredinoidea (0.30 ± 0.086, n = 30) was significantly
smaller than the Vespina (0.42 ± 0.247, n = 402) (F1, 430 = 7.07, p < 0.01). In addition, the
superfamily Tenthredinoidea was compared individually to each superfamily within the Vespina
with sample sizes as large as that for the Tenthredinoidea (i.e. n  30, superfamilies Apoidea,
Chalcidoidea, Cynipoidea, Ichneumonoidea, Vespoidea). In all cases, mean genome size of the
non-parasitoid superfamily Tenthredinoidea was either significantly smaller than or not
significantly different from those of other superfamiles (F5, 406 = 26.49, p < 0.01, followed by
Tukey's HSD post hoc test). A similar analysis was conducted at the family level, but this time
the analysis used smaller sample sizes to allow for more comparisons (n  20, families Apidae,
Braconidae, Cynipidae, Formicidae, Ichneumonidae, Tenthredinidae, Vespidae). Similar to the
outcome of the superfamily comparisons, mean genome size of the non-parasitoid family
Tenthredinidae was either significantly smaller than or not significantly different from mean
100
genome size of each family within the Vespina clade (F6, 309 = 22.16, p < 0.01, followed by
Tukey's HSD post hoc test).
3.11 Genome size: dichotomous hypothesis
This study produced new genome size estimates for 35 species of the family Braconidae
and 91 species of the family Ichneumonidae (Table 3.2). Coverage includes 14 and 13
subfamilies of Braconidae and Ichneumonidae, respectively (Figures 3.2, 3.3). Two-way
ANOVA tested for effect of parasitoid family (Braconidae and Ichneumonidae) and development
type (idiobiont and koinobiont) on mean genome size. Homogeneity of family means of
Braconidae and Ichneumonidae was rejected (F1, 110 = 39.81, p < 0.01), and mean genome size of
Braconidae (0.21 ± 0.110, n = 39) was significantly smaller than Ichneumonidae (0.34 ± 0.106, n
= 75). Two-way ANOVA did not detect an effect of development syndrome on mean genome
size (F1, 110 = 3.51, p = 0.06), and the interaction between family and development type was not
significant (F1, 110 = 0.38, p = 0.38). Thus, the hypothesis that idiobionts on average have smaller
genome size than koinobionts was not supported.
3.12 Genome size: cleptoparasites and hosts
This study produced the first genome size estimates for cleptoparasite species, and these
four estimates included three superfamilies (Apoidea, Chrysidoidea, Evanoidea), two of which
did not have genome size estimates for any species prior to this study (Figure 3.4).
Unfortunately, cleptoparasites and hosts were not sampled from within the same hive, but rather
were collected by sweep-netting adults from vegetation. Therefore, comparison of mean genome
sizes between specific cleptoparasites with their actual hosts was not performed in this study.
101
Instead, mean genome size of all collected cleptoparasites was compared to the mean genome
size of all reported hosts cited from other studies (Gauld and Bolton 1988, Smith 1996, Michener
2000). Mean genome size of all cleptoparasites (0.27 ± 0.020, n = 4) was significantly smaller
than that of all their reported hosts (0.58 ± 0.234, n = 15) (F1, 17 = 6.74, p < 0.05). This result is
robust since the comparative analysis includes representatives from 14 subfamilies in four
superfamilies (Figure 3.4, Appendix 2, Appendix 3). Thus, the hypothesis that cleptoparasites
have smaller genome size than their hosts, on average, is supported.
3.13 Genome size: inquilines and inducers
This study produced the first genome size estimates for inducer and inquiline species
(family Cynipidae, n = 30, Figure 3.5, Appendix 2, Appendix 3). Inducers and inquilines were
collected while exiting from the same host gall (rose or oak) so that specific comparisons of
mean genome between inducers and their inquilines could be performed (Figure 3.5). Mean
genome size of rose gall inducers (Cynipidae: Diplolepis, 0.59 ± 0.083, n = 14) was significantly
larger than their inquilines (Cynipidae: Periclistus, 0.24 ± 0.009, n = 7) (F1, 19 = 118.73, p <
0.01). This pattern was also repeated in the oak gall system where mean genome size of oak gall
inducers (1.75 ± 0.286, n = 4) was significantly larger than that of their inquilines (0.34 ± 0.042,
n = 5) (F1, 7 = 123.14, p < 0.01). In addition, when all inducers from both rose and oak gall
systems were grouped together and compared against all inquilines, mean genome size of all
inducers (0.84 ± 0.518, n = 18) was significantly larger than all inquilines (0.28 ± 0.058, n = 12)
(F1, 28 = 14.04, p < 0.01). Thus, the hypothesis that inquilines on average have smaller genome
size than inducers, on average, is supported.
102
DISCUSSION
3.14 Range of Hymenoptera genome size
This study added 309 new genome size estimates within Hymenoptera (Table 3.2,
Appendix 2, Appendix 3), and this order now has the largest coverage of genome size estimates
of all insects in terms of family richness (n = 36) and species richness (n = 471) (Figure 3.6). The
extensive sampling of Hymenoptera in this study did not discover any species with genome size
larger than the hypothetical 2 pg threshold for holometabolous orders (Gregory 2002). Values of
the 1st, 2nd, and 3rd quartiles of genome size of Hymenoptera were 0.25, 0.35, and 0.50 pg,
respectively. It has been reported that Hymenoptera possess small genomes as relative to other
holometabolous insect orders (Johnston et al. 2004, Tsutsui et al. 2008, Ardila-Garcia et al.
2010). Corresponding quartiles of Coleoptera and Lepidoptera genome size estimations are
larger compared to Hymenoptera, but the 1st and 2nd quartiles of Diptera are smaller (Figure 3.6).
Based on this observation, I predict that the genome size of an unsampled holometabolous
species of insect would follow the suggested ranking of genome size: Diptera < Hymenoptera <
Lepidoptera < Coleoptera, but there is considerable overlap among these orders of insects
(Figure 3.6).
At the family level, with n > 20 estimates per family (Apidae, Braconidae, Cynipidae,
Formicidae, Ichneumonidae, Tenthredinidae, Vespidae), only the Braconidae have a mean
genome size significantly smaller than the median genome size of Diptera (t = -2.75, df = 38, p <
0.01). However, if the disproportionately sampled family Drosophilidae is removed from the
analysis (n = 94, 53 % genome size estimates of Diptera), then the mean genome size of all
families of Hymenoptera are significantly smaller than the median genome size of Diptera (one
103
sample t-tests, p < 0.05). Therefore, broad categorical comparisons need to be interpreted with
caution because statistically significant differences depend on the taxa selected.
Several reported differences in mean genome size between taxonomic ranks have been
qualitative and are not quantitatively supported by statistics (Johnston et al. 2004, Johnston et al.
2007, Gokhman et al. 2011). The standard of choice for insect genome size estimations by flow
cytometry is Drosophila melanogaster (0.18 pg), but it should not be used as a standard
reference for qualitative statements as to whether or not an insect species has a small or large
genome size. For example, the genome size of figitids (Cynipoidea: Figitidae) has been reported
as “large” because their genome size is greater than the genome size of their Drosophila hosts
(Gokhman et al. 2011). However, within the superfamily Cynipoidea, mean genome size of this
parasitoid family (Cynipoidea: Figitidae) is not significantly different from the mean genome
size of their closest sister family, gall wasps (Cynipoidea: Cynipidae) (F1, 39 = 0.30, p = 0.59).
Furthermore, qualitative comparisons of a species genome size should depend on the
biology of closely related groups and be calibrated by a descriptive statistical pattern. For
example, mean genome size of figitids was reported to be close to many Chalcidoidea, but this
was based on comparison of three species of Figitidae with 10 species in five families of the
superfamily Chalcidoidea (Gokhman et al. 2011). This qualitative statement would be more
informative if Chalcidoidea were the sister superfamily to Cynipoidea (Figure 3.1), or if
statistical comparisons were made strictly between superfamilies or between families and not
between different taxonomic levels. Considering this, mean genome size of the superfamily
Cynipoidea is significantly larger than their closest sister superfamily Platygastroidea, and mean
genome size of Cynipoidea is not significantly different from the more distantly related
superfamily Chalcidoidea (F2, 122 = 5.67, p < 0.05, followed by Tukey's HSD post hoc test).
104
However, the mean genome size of the parasitoid family Figitidae (Cynipoidea) is significantly
different than the median genome size of 54 % (n = 7/13) of the parasitoid families within the
superfamily Chalcidoidea (one sample t-tests, p < 0.05). Mean genome size of families within
Chalcidoidea ranges from 0.21 in Trichogrammatidae to 0.78 in Mymaridae (Appendix 2,
Appendix 3). Therefore, the observation that figitid genome sizes are close to those of many
Chalcidoidea is not supported. Both qualitative and quantitative comparative statements of
genome size between taxa need to be directed by knowledge of the range within the same
taxonomic level.
This study found substantial overlap between genome size ranges of non-parasitoid and
parasitoid groups (Figure 3.1), and this informal observation does not support the hypothesis that
parasitic insects have constrained genome sizes (Johnston et al. 2004, Johnston et al. 2007).
Futhermore, both the re-analysis of the Ardila-Garcia et al. (2010) data (n = 91) and the new
comparative analyses of this study (n = 433) demonstrate that mean genome sizes of parasitoid
families do not differ significantly from mean genome sizes of non-parasitoid families. These
comparisons once again demonstrate that selection of comparative groups should be justified a
priori because mean genome size of a family of parasitoid may be either significantly smaller
(Platygastridae < Cynipidae), larger (Torymidae > Cynipidae), or not significantly different
(Figitidae = Cynipidae) from genome size in a non-parasitoid family. At least within
Hymenoptera, differences in genome size cannot be attributed to parasitoid biology.
Though both ectoparasitic lice (Phthiraptera) and endoparasitic twisted-winged flies
(Strepsiptera) are among the smallest insect genome sizes reported (Johnston et al. 2004,
Johnston et al. 2007, Gregory 2011), the genome size of ectoparasitic fleas (Siphonaptera) is
significantly larger than the median genome size of all holometabolous insects (Figure 3.6, t =
105
3.84, df = 1059, p < 0.0001). Considering the 1st quartile of genome size of insects (Figure 3.6,
0.29 pg), only 31.6 % have parasitic or parasitoid lifestyles (n = 115/364). Thus, a preponderance
of insects with small genome size are not parasites or parasitoids, and 55 % of parasitoids (n =
138/250) have a genome size larger than the 1st quartile of all insects. Qualitative and
quantitative statements that parasitic or parasitoid insects have small genome sizes (Johnston et
al. 2004, Johnston et al. 2007, Gregory 2011) are not supported by available data (Appendix 2,
Appendix 3). The search for additional quantitative evidence of associations between parasitic or
parasitoid lifestyles and genome size should continue, but future predictions should not be
formulated based on previous unsupported hypotheses about broad guild categorizations (e.g.,
herbivore, parasitoid, predator).
3.15 Genome size: dichotomous hypothesis
Parasitoids have been broadly categorized according to whether or not their attack causes
the host to stop developing (idiobionts) or whether or not an infected host continues to develop
(koinobionts) (Askew and Shaw 1986). Idiobionts have shorter development time than
koinobionts (Blackburn 1991, Mayhew and Blackburn 1999) and this suggested that idiobionts
may have smaller genome size due to the inverse correlation between cell division rate and
genome size (Gregory 2005). However, no significant differences were found between genome
sizes of idiobionts and koinobionts in either the Braconidae or the Ichneumonidae. However, it
should be noted that without species-level development data to compare, there is no evidence
that the species categorized as idiobionts and koinobionts in this study had any differences in
development time.
106
Immature parasitoid development is affected by ambient environmental conditions such
as humidity, temperature, and photoperiod (Vinson and Iwantsch 1980), but development is
primarily affected by the internal state of the host because of the intimate and prolonged
association between parasitoid and host. Each species of parasitoid attacks one specific life stage
(egg, larva, pupa, adult), and the range of host characteristics such as age, size, and species that a
parasitoid encounters has developmental consequences (Lawrence 1990). Early instars of hosts
have lower concentrations of lipid and haemolyph protein than later instars, and these qualitative
and quantitative differences in lipid and protein availability affect the development time of
parasitoids. In general, idiobionts develop more rapidly than koinobionts (Mayhew and
Blackburn 1999), and this may be due to the fact that there is little benefit to delay development
in a host that will not improve in quality and quantity. However, idiobionts develop slowly in
mature eggs and pupae because the progressive sclerotization of the host decreases the amount of
digestible material available to the parasitoid, which inhibits consumption (Harvey 2005).
Idiobiont development is slower in large hosts because more time is required to consume a large
food item (Harvey 2005). Different host species also potentially affect the rate of development of
idiobionts (Boivin 2010), but separating the effects of host species and mass is not always
possible. Idiobiont development can be delayed or slowed down by diapause throughout the
winter (Harvey 2005).
Koinobiont development rate is also affected by host age and size, and two common
patterns that have emerged are that as host age and size increases: 1) development time decreases
or 2) development time is unaffected (Harvey 2005). Koinobionts of exposed hosts have shorter
development times than koinobionts of concealed hosts (Harvey and Strand 2002), suggesting
that rapid development time reduces mortality risks associated with higher predator encounters
107
and parasitoid load that exposed herbivores, such as leaf chewers, experience compared to
herbivores in concealed sites, such as galls (Hawkins 1994). Thus, development time of
idiobionts and koinobionts is affected by host factors such as stage, size, species, and ecology,
and unless such host factors are kept constant in comparisons, it is not clear if development mode
(idiobiont or koinobiont) alone is responsible for observed differences in development time.
It is therefore rather unrealistic to expect differences in genome size to be positively
correlated with differences in development time from egg to adult across any taxonomic level in
insects. For example, a positive correlation between genome size and development time was
found in a study of 67 species of Drosophila (Diptera: Drosophilidae) (Gregory and Johnston
2008), but another study determined that Psychodidae (Diptera) and Scatopsidae (Diptera) had
longer development times than Drosophila melanogaster despite having smaller genome size
(Schmidt-Ott et al. 2009). Once again, Drosophila melanogaster should not be used as a
qualitative standard to ascertain whether or not development time, genome size, or another trait
is small, average or large in any taxon. Such comparisons should be performed between closely
related groups with similar biology, and with phylogeny taken into account whenever possible.
The number of factors that influence development time likely increases as the number of
taxonomic levels between comparative groups increases, and so any relationship between
genome size and development time will not be easily revealed when distantly related groups are
analyzed. Furthermore, though duration of the cell cycle is positively correlated with genome
size (Gregory 2001), development rate of an entire organism may not correlate with bulk DNA
content because it is composed of populations of cells that grow by the influence of many
independent factors and limitations (Cavalier-Smith 1978).
108
3.16 Genome size: cleptoparasites and hosts
Cleptoparasitism is defined as one animal stealing food or nest area from another animal
(Cardinal et al. 2010), but such a broad categorization would not intuitively lead to a prediction
of differences in mean genome size between a cleptoparasite and its host. However, when
considering cleptoparasites with hospicidal larvae, physiological or genetic traits that support
their rapid development to egg hatch would be advantageous in order to eliminate the host and
competitors. This study determined that the cleptoparasites Nomada (Apoidea, Apidae), Chrysis
and Chrysura (Chrysidoidea, Chrysididae), and Gasteruption (Evanoidea, Gasteruptiidae) have
significantly smaller genome sizes than their reported hosts. Unfortunately, this study was not
able to compare the development time of cleptoparasites to that of their actual hosts because they
were collected as flying adults, and thus conclusions about significant differences in
development times between the two groups cannot be supported at this time. In addition, since
both cleptoparasites and hosts were not collected from a shared nest, any hosts linked to a
cleptoparasite were based on reports to genus level. Nevertheless, the result is considered robust
because it encompasses several subfamilies from four superfamilies that are distantly related
(Figure 3.1).
Few studies have tested and reported development time of cleptoparasites and their hosts
(Rozen 2003), but it has been determined that while some species of cleptoparasite develop more
rapidly than their host (Alves-dos-Santos et al. 2002, Rozen and Kamel 2007, Rozen and Kamel
2009) others do not (Torchio and Burdick 1988).Though cleptoparasites do not always develop
faster than their hosts, rapid development rate may be important to cleptoparasites with
hospicidal larvae. When eggs from several cleptoparasites are deposited in the same host cell, the
first cleptoparasite to hatch has the advantage of killing other eggs of cleptoparasites (Rozen and
109
Kamel 2009). Embryonic development rate of eggs of cleptoparasites, possible competitors, and
actual hosts is required to determine if development time and genome size are correlated within
and between these groups.
3.17 Genome size: inducers and inquilines
Egg development time of cynipids has been reported for few individuals per species and
there are large time intervals between observations, but this limited data (n = 4) appears to
support that inquilines develop faster than inducers (Table 3.3). This study determined that
cynipid inquilines of oak and rose gall systems had significantly smaller genome size than
cynipid inducers (Figure 3.5), but it cannot be concluded at this time that development time also
differed between groups. Finer interval measurement of cynipid egg hatch is required from
inducers and inquilines from the same gall system in order to test for differences in development
rates. Inquiline larvae do not directly kill inducer larvae (Shorthouse 1998), and there are no
reports that they attempt to kill other inquilines. Thus, if rapid development is advantageous to
inquilines, it is most likely due to the necessity of usurping the gall development events rather
than to eliminate competitors.
The range and maximum value of genome size of inquilines is smaller than the range and
maximum value of inducers, and the difference between range and maximum values is greater in
oak gall systems (Figure 3.5). It is possible that cynipid inquiline genome size is more
constrained than that of cynipid inducers because of a rapid development rate. Moreover, other
life-history traits such as small body size may also contribute to inquilines relatively smaller
genome size (Gregory and Johnston 2008).
110
3.18 Genome size and biologically relevant comparisons
The negative correlation between genome size and cell division rate is well established
for plants and animals (Gregory 2001, Gregory 2005, Bennett and Leitch 2005). Development
rate of an entire organism depends on cell division rate and many other factors such as metabolic
rate, environmental conditions (i.e. temperature, photoperiod, humidity), and developmental
complexity (hemimetaboly, holometaboly), which affect whether or not a correlation with
genome size exists. Complex interactions between many factors and genome size require that
tests of differences in mean genome size be based on species that are closely related, share
similar habitats, or interact with each other ecologically. Considering this, it is not surprising that
there was no significant difference between mean genome size of idiobionts and koinobionts
within the superfamily Ichneumonoidea because the broad sampling could not obtain large
sample sizes of closely related species, with no variation in host stages attacked (eggs, larvae,
pupae, adults), and interacting in the same habitat (exposed or concealed). On the other hand,
differences in genome size between interacting species of Hymenoptera within the same nests or
galls did support predictions based on probable rapid development of cleptoparasites and
inquilines, respectively. However, development time data and a statistical test are still required
before any support for differences between groups can be obtained.
Finally, this study shows that genome sizes in Hymenoptera are similar to other
holometabolous insect orders, and broad categorizations of species into guilds such as herbivore,
parasitoid, or predator, should not be used as the basis of making predictions about genome size.
Predictions of genome size correlations, patterns, and trends should be based on established
cellular and organismal knowledge (Gregory 2005). Otherwise, genome size of several species of
Hymenoptera could be compared to test for patterns and correlations without justification based
111
on biology, ecology, and phylogeny, and such comparisons could, in theory, also include any
insect (Drosophila melanogaster), a mammal (Homo sapiens), and a lungfish (Protopterus
aethiopicus).
CONCLUSION
This study is unique in that it brings together new data for genome size estimates by
employing the molecular identification tool of DNA barcoding to test new predictions involving
Hymenoptera. The established positive relationship of genome size and development time in
many eukaryote taxa was used to test for differences in genome sizes between insect orders and
selected groups of Hymenoptera. The range of genome size estimates of Hymenoptera covering
13 superfamilies and 36 families indicated that this order is not constrained to smaller C-values
than other holometabolous orders. Categorization of species by guilds is not pragmatic when
testing differences in mean genome size because the amount of bulk DNA in a cell is best
correlated with cellular and organismal properties that interact with the environment. Species of
Hymenoptera that require resources that are available during a short time period possess small
genome sizes, which may favour rapid development to gain a competitive advantage.
112
Table 3.1
Studies of genome size (GS) estimates of Hymenoptera by flow cytometry
Superfamily:
Family
Number of
species† with
GS estimates
Apoidea:
Apidae
1
• Report GS
Chalcidoidea:
Vespoidea:
Trichogrammatidae
Formicidae
• Report GS
Vespoidea:
Vespidae
1
1
1
Johnston
et al. 2004
Objective of GS estimate
References
Gadau
et al. 2001
Apoidea:
Apidae
1
• Report GS
Honeybee
Genome
Sequencing
Consortium
(2006)
Chalcidoidea:
Pteromalidae
1
• Detect diploid males
• Report GS
Barcenas
et al. 2008
Vespoidea:
Formicidae
• Correlate GS and head width
• Report GS
Tsutsui
et al. 2008
Apoidea:
Apidae
• Report GS
Lopes
et al. 2009
Apoidea:
Apoidea:
Apoidea:
Apidae
Crabronidae
Sphecidae
Chalcidoidea:
Chalcidoidea:
Chalcidoidea:
Chalcidoidea:
Ichneumonoidea:
Vespoidea:
Vespoidea:
Aphelinidae
Encyrtidae
Eulophidae
Trichogrammatidae
Braconidae
Formicidae
Vespidae
• Report GS
• Test mean GS of parasitoid and
non-parasitoid taxa
• Test mean GS of eusocial and
solitary taxa
Ardila-Garcia
et al. 2009
41
3
12
3
2
4
1
1
3
3
18
8
Apoidea:
Apidae
17
Apoidea:
Apidae
1
• Correlate GS and intertegular span
• Correlate GS and head width
• Report GS
• Test mean GS of low and high
heterochromatin species
• Detect diploid males
• Report GS
Cynipoidea:
Figitidae
4
• Report GS
Gokhman
et al. 2011
Apoidea:
Cephoidea:
Ichneumonoidea:
Vespoidea:
Vespoidea:
Apidae
Cephidae
Braconidae
Mutillidae
Vespidae
2
1
2
2
5
• Report GS
Hanrahan
and Johnston
2011
113
Tavares
et al. 2010a
Tavares
et al. 2010b
Table 3.2
Total number of genome size (GS) estimates of Hymenoptera†.
Number of species‡ with GS estimates
Superfamily:
Apoidea:
Apoidea:
Apoidea:
Cephoidea:
Ceraphronoidea:
Ceraphronoidea:
Chalcidoidea:
Chalcidoidea:
Chalcidoidea:
Chalcidoidea:
Chalcidoidea:
Chalcidoidea:
Chalcidoidea:
Chalcidoidea:
Chalcidoidea:
Chalcidoidea:
Chalcidoidea:
Chalcidoidea:
Chalcidoidea:
Chrysidoidea:
Chrysidoidea:
Chrysidoidea:
Cynipoidea:
Cynipoidea:
Diaprioidea:
Evanoidea:
Ichneumonoidea:
Ichneumonoidea:
Platygastroidea:
Proctotrupoidea:
Tenthredinoidea:
Tenthredinoidea:
Vespoidea:
Vespoidea:
Vespoidea:
Vespoidea:
†
‡
§
Family
Apidae
Crabronidae
Sphecidae
Cephidae
Ceraphronidae
Megaspilidae
Aphelinidae
Chalcididae
Encyrtidae
Eucharitidae
Eulophidae
Eupelmidae
Eurytomidae
Mymaridae
Ormyridae
Perilampidae
Pteromalidae
Torymidae
Trichogrammatidae
Bethylidae
Chrysididae
Dryinidae
Cynipidae
Figitidae
Diapriidae
Gasteruptiidae
Braconidae
Ichneumonidae
Platygastridae
Proctotrupidae
Argidae
Tenthredinidae
Formicidae
Mutillidae
Scoliidae
Vespidae
previous studies
39
5
5
1
0
0
4
0
2
0
1
0
0
0
0
0
2
0
3
0
0
0
0
4
0
0
10
1
0
0
0
0
64
4
1
16
162
this study§
13 (4)
2
3 (2)
0
1
1
2 (2)
1
7 (1)
1
11 (1)
3
13
2
5
3
11
9
2 (2)
1
2
1
30
7
3
1
38 (3)
91
9
1
1
29
9
0
0
11
324 (15)
Total
48
7
6
1
1
1
4
1
8
1
11
3
13
2
5
3
13
9
3
1
2
1
30
11
3
1
45
92
9
1
1
29
73
4
1
27
471
All genome size estimation methods included: Biochemical Analysis (n = 1), Feulgen
Densitometry (n = 3), Feulgen Image Analysis Densitometry (n = 34), and Flow
Cytometry (n = 433).
Species listed in Appendix 2, Appendix 3.
Numbers in parentheses represent genome size estimations of species already reported in
literature and repeated in this study as a quality check of flow cytometry protocols.
Therefore, the number of new genome size estimations is 309.
114
Table 3.3
Guild
Egg development time of oak and rose gall wasps.
Species
Egg hatch (d) Study measurement reported
Inducer
Aulacidea hieracii
10
Sliva and Shorthouse (2006)
Inducer†
Besbicus mirabilis
10
Evans (1967)
Inquiline†
Synergus pacificus
4
Evans (1965)
Inducer
Diplolepis fructuum
12-15
Güçlü et al. (2008)
Inducer
Diplolepis japonica
7-10,
30-35
Yasumatsu and Taketani (1967)
Inducer†
Diplolepis nodulosa
8-10
Inquiline†
Periclistus pirata
7
Inducer
Diplolepis polita
5
Shorthouse (1986)
Inducer
Diplolepis rosae
7
Schröder (1967)
4
Shorthouse (1987)
7-10
Shorthouse (1993)
Inducer
Inducer
Brooks and Shorthouse (1998)
Diplolepis spinosa
10
Sliva and Shorthouse (2006)
12
Leggo and Shorthouse (2006b)
14
Shorthouse and Leggo (2002)
Diplolepis triforma
Inquiline
Synergus sp. 1
3
Ikai and Hijii (2007)
Inquiline
Synergus sp. 2
3
Ikai and Hijii (2007)
†
Inducer and inquiline interact in same gall community.
115
Idiobiont
Koinobiont
Equivocal (Idio/Koino)
Hymenoptera
Superfamily
2.00
1.50
0.00
Genome size (pg)
1.00
Ectoparasitoid
Endoparasitoid
Equivocal (Ecto/Endo)
0.50
Herbivore
Xyleoidea
Pamphiliodea
Tenthredinoidea† n = 30
n= 1
Cephoidea
Siricoidea
Xiphydrioidea
Orussoidea
Stephanoidea
Ceraphronoidea n = 2
Megalyroidea
paraphyletic
Trigonalyoidea
Evanoidea‡
n=
1
Chrysidoidea‡
n=
4
Vespoidea‡
n = 87
Apoidea‡
n = 50
Ichneumonoidea† n = 130
Platygastroidea
n=
Cynipoidea†
n = 41
9
Proctotrupoidea n = 1
Diaprioidea
n=
Chalcidoidea†
n = 74
3
Mymarommatoidea
Figure 3.1. Genome size diversity of superfamilies within Hymenoptera. Genome size was
analyzed by flow cytometry, and estimates displayed were obtained from this study (n = 309
species, Appendix 2, Appendix 3) and from literature (n = 124 species, Appendix 4).
Development syndrome of parasitoids is mapped onto the tree from Sharkey et al. (2011). Some
superfamilies include several larval feeding modes: † Inducers or inquilines, ‡ cleptoparasite, §
predator. Height of the genome size bar represents number of species.
116
Idiobiont
Koinobiont
Equivocal (Idio/Koino)
Diptera
Hemiptera
Lepidoptera
0.80
0.60
Genome size (pg)
0.40
Host
order
Coleoptera
0.20
Braconidae
subfamily
0.00
Ectoparasitoid
Endoparasitoid
Equivocal (Ecto/Endo)
Acampsohelconinae
Brachistinae
Helconinae
Macrocentrinae
n=
1
n=
n=
1
2
n=
5
n=
1
n=
7
n=
n=
1
1
Xiphozelinae
Amicrocentrinae
Charmontinae
Microtypinae
Homolobinae
Orgilinae
Meteorinae
Euphorinae
Cenocoeliinae
Microgastrinae
Cardiochilinae
Miracinae
Khoikhoiinae
Mendesellinae
Cheloninae
Ichneutinae
Agathidinae
Sigalphinae
Meteorideinae
Exothecinae
Opiinae
Alysiinae
n = 10
Exothecinae
Gnamptodontinae
Braconinae
n=
1
n=
n=
3
1
n=
2
n=
3
Doryctinae
Rogadinae
Hormiinae
Rhysipolinae
Pambolinae
Rhyssalinae
Maxfischeriinae
Aphidiinae
Mesostoinae†
Figure 3.2. Genome size diversity of subfamilies within Braconidae. Genome size was analyzed
by flow cytometry, and estimates displayed were obtained from this study (n = 35 species,
Appendix 2, Appendix 3) and from literature (n = 4, Appendix 4). Development syndrome of
parasitoids is mapped onto the tree from Sharanowski et al. (2011). Height of the genome size
bar represents number of species.
117
Diptera
Idiobiont
Koinobiont
Equivocal (Idio/Koino)
Campopleginae
n = 14
Ophioninae
Anomaloninae
n=
n=
1
3
Mesochorinae
n=
1
Nesomesochorinae
Cremastinae
Ctenopelmatinae
Metopiinae
0.80
0.60
Genome size (pg)
0.40
Host
order
0.20
Ichneumonidae
subfamily
Hymenoptera
Lepidoptera
0.00
Ectoparasitoid
Endoparasitoid
Equivocal (Ecto/Endo)
Tatogastrinae
Ctenopelmatinae n = 2
Orthopelmatinae n = 4
Oxytorinae
Ctenopelmatinae
Banchinae
n=
7
n=
3
n=
4
Tersilochinae
Lycorininae
Tryphoninae
Brachyscleromatinae
Stilbopinae
Tryphoninae
Cryptinae
n = 17
Adelognathinae
Agriotypinae
Ichneumoninae
n=
5
n=
5
n=
n=
4
4
Alomyinae
Brachycyrtinae
Pedunculinae
Claseinae
Pimplinae
Poemeniinae
Rhyssinae
Orthocentrinae
Diplazontinae
Collyriinae
Cylloceriinae
Acaenitinae
Diacritinae
Labeninae
Xoridinae
Figure 3.3. Genome size diversity of subfamilies within Ichneumonidae. Genome size was
analyzed by flow cytometry, and estimates displayed were obtained from this study (n = 75
species, Appendix 2, Appendix 3). Development syndrome of parasitoids is mapped onto the tree
from Quicke et al. (2009). Height of the genome size bar represents number of species.
118
Cleptoparasite
Host
1.20
1.00
0.80
0.60
0.40
0.20
Genome size (pg)
Cleptoparasite DbOT
Apoidea,
Apidae:
Nomada
Chrysidoidea,
Chrysididae:
Chrysis
Chrysidoidea,
Chrysididae:
Chrysura
Evanoidea,
Gasteruptiidae:
Gasteruption
Figure 3.4. Genome size diversity of cleptoparasites (n = 4 species) and reported hosts (n = 15
species) (Appendix 2, Appendix 3). Genome size was analyzed by flow cytometry, and estimates
displayed were obtained from this study. Several species of host are used by more than one
species of cleptoparasite. Height of host genome size bar represents the number of species
utilized by the cleptoparasite.
119
Inquiline
Inducer
2.00
1.80
1.60
1.40
1.20
1.00
0.80
0.60
0.40
0.20
Genome size (pg)
unsampled
inquiline†
unsampled
inquiline†
Oak galls
DbOT 157
DbOT 156
DbOT 155
DbOT 147‡
Inquiline DbOT
DbOT 146‡
unsampled
inquiline†
unsampled
inquiline†
unsampled
inquiline†
DbOT 37,
Periclistus
Rose galls
DbOT 34,
Periclistus
DbOT 33,
Periclistus
DbOT 31,
Periclistus
DbOT 29,
Periclistus
DbOT 28,
Periclistus
DbOT 27,
Periclistus
Figure 3.5. Genome size diversity of inquilines (n = 12 species) and inducers (n = 18 species)
(Appendix 2, Appendix 3). Genome size was analyzed by flow cytometry, and estimates
displayed were obtained from this study. The gall community of one species of inducer may have
several species of inquilines. † Only an inducer exited from the gall so genome size of inquilines
from the same gall could not be estimated. Height of inducer genome size bar represents number
of species.
120
Insecta
Order
Thysanura
Ephemeroptera
n=
n=
Odonata
n = 130
Blattodea
Isoptera
Mantodea
Phasmatodea
Embioptera
Orthoptera
Dermaptera
Zoraptera
Phthiraptera
Hemiptera
n=
n=
n=
n=
n=
n=
n=
n=
n=
n=
Hymenoptera
n = 471
Strepsiptera
n=
Coleoptera
n = 237
Lepidoptera
n = 169
Diptera
n = 177
Mecoptera
Siphonaptera
n=
n=
0
4
Genome size (pg)
8
12
16
20
1
1
13
16
6
7
1
49
1
1
1
51
2
2
1
Figure 3.6. Genome size diversity of orders within class Insecta. Genome size was analyzed by
multiple methods, and estimates were obtained from this study (n = 309 species, Appendix 2,
Appendix 3) and from literature (n = 1028 species, Appendix 4, Gregory 2011). Height of the
genome size bar represents number of species.
121
CHAPTER FOUR
General discussion and conclusion
122
4. 1 Identification challenges within this thesis
Regardless of preference in using morphology, molecules, or a combination of both in
specimen identification, there are significant issues in reliability. It is challenging to be proficient
in the identification of many taxa, especially in the diverse order Hymenoptera (Godfray and
Shimada 1999, Gariepy et al. 2007, Stone et al. 2008). Possible sources of species identification
errors include, but not limited to, outdated reference sources (keys and species descriptions),
misinterpretation of correct reference sources, level of experience of observer (novice or expert),
mislabelling specimens by observer (data entry), unspecific primer design, and DNA
contamination. Throughout this thesis, both morphology and molecules were used for family
level and species level (DbOT) identification, respectively. Identification systems based on
morphology and/or molecular data are challenged with identifying specimens that are not
included in the key/reference library, and such unknown specimens may lead to erroneous
identifications (Gaston and O’Neill 2004). Ideally, identification systems should clearly
designate all undescribed species as new to science, but ultimate responsibility to identify species
is the user and not solely the system.
Morphology was given precedence over molecules when identifying reference specimens
of Diplolepis (Cynipidae), Periclistus (Cynipidae), and Torymus (Torymidae) (Chapter Two),
and also for superfamily and family level identification of other Hymenoptera (Chapter Two and
Chapter Three). This is not to say that morphology trumps molecules in identification, but rather
that identification by DNA barcoding had to be monitored by the user to maintain high levels of
success and accuracy. For example, some microhymenoptera sequences were contaminated by
Apoidea and Vespoidea DNA, but these sequences were detected and deleted from subsequent
analyses. It is reasonable to assume that microhymenoptera sweep-netted and aspirated from
123
flowers would be contaminated with hairs from various bees and wasps, and due to the small size
of microhymenoptera (< 3 mm long) the universal primers preferentially amplified the hairs from
other Hymenoptera. In addition, a few parasitoid sequences were contaminated with host DNA
due to preferential amplification by the universal primers, but these sequences were also easy to
detect and deleted from subsequent analyses. The ability to re-examine specimens is critical to
maintain identification accuracy by molecular methods such as DNA barcoding, and studies
involving Hymenoptera need to be aware of possible contamination (Rougerie et al. 2010, Lee
and Lee 2012).
An original intention that may have been understated by Hebert et al. (2003) was the
necessity of collaboration between molecular biologists and taxonomists to successfully develop
a DNA barcode reference library. Unfortunately, the Barcode of Life Database (BoLD,
www.barcodinglife.org) does not allow confident assignment to species or genera for most
families of Hymenoptera (Santos et al. 2011), and so the DNA barcode reference library is not
readily available for identification of most Hymenoptera collected in bioinventories.Therefore,
family level morphology was predominantly used to sort community members of rose galls
induced by Diplolepis (Chapter Two) and to obtain broad scale (superfamily and family) genome
size comparisons (Chapter Three). Afterwards, a species threshold (2.2% from its nearest
neighbour) based on both DNA barcode and ITS1 sequences was calculated and then used to
guide separation of specimens into DbOTs. The species threshold made it possible to estimate
species (DbOTs) richness of rose gall communities (Chapter Two) and to make genome size
comparisons between parasitoid and non-parasitoid lineages (Chapter Three), subfamilies of
Ichneumonoidea (Braconidae and Ichneumonidae) (Chapter Three), cleptoparasites and their
hosts (Chapter Three), and inducers and inquilines of oak and rose galls (Chapter Three).
124
Application of a species threshold throughout this thesis is not the same as assuming
equal mutation or speciation rates among Hymenoptera lineages, and it is recognized that a
universal species threshold does not exist and should not be applied to any scientific
investigation (Cognato 2006). However, the 2.2% species threshold applied throughout this
thesis is based on congruence between COI and ITS1 sequences from Hymenoptera collected
within a narrow geographic area (Chapter Two), is calculated from the more appropriate
minimum average sequence divergence between nearest neighbour species (Meier et al. 2008),
and is within the range of species thresholds applied in other bioinventory studies of
Hymenoptera (Smith et al. 2005a, Smith et al. 2009). There is a probability that a new DNA
barcode from an unidentified individual may not be correctly assigned to its species because its
DNA barcode may fall outside the normally encountered range of genetic divergence recognized
for a species (DeWalt 2011). However, the likelihood that large intraspecific genetic divergences
would be found between individuals of the same species collected within the same narrow
geographic area (Appendix 1, Appendix 3) is low because gene flow is not limited (DeWalt
2011). The lack of a DNA barcode reference library (Santos et al. 2011) and the lack of
morphological characters (males, larvae, head removal) for species identification of
Hymenoptera (Chapter Two and Chapter Three) meant that the application of the 2.2% species
threshold was necessary and practical to achieve the thesis objectives. Finally, a distinction needs
to be recognized between applying a tested species threshold in a narrow geographic area
without the availability of taxonomic expertise and applying an arbitrary universal species
threshold to individuals collected from widely dispersed geographic areas without including
available additional data (behavioural, molecular, morphological) necessary for species
identification and discovery. As BoLD increases its DNA barcode reference library for
125
Hymenoptera, it will be possible to assign the DbOTs within this thesis to genus and species.
Though future species designation will provide an extra level of detail to the findings of this
thesis, it will not alter the general conclusions of Chapter Two and Chapter Three.
Unfortunately, the universal primers (Lep-F1, Lep-R1, MLep-F1, MLep-R1) did not
amplify a DNA barcode for several specimens in the superfamilies Ceraphronoidea,
Chrysidoidea, and Chalcidoidea; thus, one specimen was randomly selected to represent genome
size estimation for some families within those superfamilies (Appendix 2, Appendix 3).
Therefore, multiple specimens (males and females) from the same family of Bethylidae,
Ceraphronidae, Eucharitidae, and Megaspilidae could not be included in the analyses as they
could not be separated into unique DbOTs and have a mean genome size estimated per species.
Overall, the failure to amplify DNA barcodes with universal primers from a few families was
inconsequential since most families collected for this thesis were readily sequenced (87.9 %, n =
29/33). Since the focus of this thesis was broad scale collecting of Hymenoptera, the impact of
primer failure was negligible. However, if DNA barcodes must be generated for all specimens
collected in another project, then alternative primers would need to be designed for specific taxa
of Hymenoptera. Other studies had to design and optimize alternative primers for DNA
barcoding of specific families within Chalcidoidea (Li et al. 2010) and several families across
Hymenoptera (Santos et al. 2011). The necessity of multiple primers and specific primers for
DNA barcoding of select taxa of Hymenoptera is no more cumbersome than using multiple
morphological keys when sorting insects.
Developing experience and awareness of limitations of both morphological
identifications of live Hymenoptera and DNA barcoding have provided a reasonable safeguard to
minimize identification errors in this thesis. Sampling was restricted to intact specimens that
126
could be morphologically identified to both family and gender so that DNA contamination and
incorrect genome size estimation (male haploid, female diploid) could be eliminated. As
discussed above, morphological and molecular data are valuable characters, and if properly used
together, they assist initial taxon separation and guide future taxon delimitation.
4. 2 Conclusions and synthesis
In Chapter Two, DNA barcodes and ITS1 sequences revealed that morphologically
identified Diplolepis (Cynipidae), Periclistus (Cynipidae), and Torymus (Torymidae) associated
with rose galls induced by Diplolepis contain either cryptic, synonymous, new, or unsampled
species. Furthermore, a 2.2% species threshold estimated that the richness of parasitoids
collected from rose galls induced by Diplolepis in Canada in a 10 year period was greater than
previous estimated richness collected throughout North America, north of Mexico, over a 100
year period. These results provide evidence that additional character sets, whether they be
morphological, molecular, and/or biological, are required to revise the delimitation of species of
Hymenoptera associated with rose galls.
The qualitative data of species of Periclistus and Torymus suggested that inquilines were
not more inducer specific than the parasitoid, respectively. However, the dataset of the study was
restricted to specimens less than 10 years old, and these preliminary results are suggestive but
not strongly supported. A larger quantitative dataset would be required to adequately test for
association of inducer species with community composition of either inquilines or parasitoids
(Bailey et al. 2009). The JDS reference collection at Laurentian University in Sudbury, ON,
contains thousands of unidentified inhabitants from rose galls induced by Diplolepis collected
over the past 42 years, and with the aid of DNA barcoding to sort specimens to DbOTs,
127
inquilines and parasitoids could be identified and quantified for each inducer. Additionally, a
high precision food web could be recreated with the qualitative and quantitative trophic links for
any inducer species (Kaartinen et al. 2010, Hrcek et al. 2011). Specimens of Hymenoptera > 10
years old would require development of new internal primer pairs to amplify degraded DNA.
Individuals would be selected by a taxonomic expert to serve as vouchers for male and females
of a species (DbOT) and have their DNA barcodes amplified. To reduce costs, individuals of
species that have one distinct DNA barcode cluster and that can be separated by morphology
would not require further DNA barcoding. Otherwise, taxa that are difficult to identify by
morphology and male specimens may all require DNA barcoding to construct an accurate food
web.
A future unique contribution to cecidology would be to DNA barcode eggs, larvae, and
pupae of inducers and inquilines with histological examinations of gall tissues. Cryptic,
synonymous, new, or unsampled species in a gall community are more likely to be undetectable
in their immature stages, and these lifestages are encountered during the process of histological
sectioning of galls (LeBlanc and Lacroix 2001, Shorthouse et al. 2005, Leggo and Shorthouse
2006a, Leggo and Shorthouse 2006b, Sliva and Shorthouse 2006). The possible inclusion of
DNA barcoding in future histological studies offers the opportunity to search for distinct gall
characters on a finer scale that may have been previously overlooked as intrataxon variability.
In Chapter Three, the goal of expanding the genome size database of Hymenoptera
resulted in an increase of 66 %, 56 %, and 54 % in species (DbOTs), family, and superfamily
new estimates (Figure 4. 1). Diversity of larval lifestyle was also increased with the first genome
size estimates of cleptoparasites, inducers, and inquilines into the database. The addition of 309
new genome size estimates within the order Hymenoptera has now lifted the ranking of this
128
order from lowest genome size coverage of diverse holometabolous orders (Coleoptera, Diptera,
Lepidoptera) to the highest coverage of all insects, both hemimetabolous and holometabolous
(Table 4.1).
Broad guild categorizations (herbivore, parasitoid, predator) are insufficient to provide
hypotheses and predictions about genome size patterns. This study determined that the order
Hymenoptera is not constrained to small C-values more so than other holometabolous orders. It
has been suggested that parasitic or parasitoid insects have small genome sizes (Johnston et al.
2004, Johnston et al. 2007), but the extensive sampling of Hymenoptera within this study
established that this is not the case. It is now known that parasitic or parasitoid biology is not a
trait that unequivocally constrains genome size. For example, the entirely parasitic order
Siphonaptera (fleas) has genome size significantly larger than the median for all holometabolous
insects. Coleoptera, Diptera, Lepidoptera, Neuroptera, and Trichoptera have several families
with parasitoid species (Eggleton and Belshaw 1992, Godfray 1994, Quicke 1997), but none
have had their genome size estimated (Gregory 2011). To further support or refute that parasitic
or parasitoid biology does not constrain genome size, genome size of parasitoid species should
be compared to sister taxa (genera, family, order) that do not contain parasitoid species. Also,
specific traits related to genome size should be clearly stated for a particular guild or taxon which
can then be tested. For example, this study predicted that idiobionts would have smaller genome
size than koinobionts based on the observation that idiobionts have shorter development time
(Blackburn 1991, Mayhew and Blackburn 1999). Though, no significant difference was found
between genome size of idiobionts and koinobionts, the prediction was specific and based on
data from published studies (Blackburn 1991, Mayhew and Blackburn 1999). It would not have
been reasonable to predict differences between genome size of idiobionts and koinobionts based
129
on generalized statements about differences in their host range (Askew and Shaw 1986,
Pennacchio and Strand 2006) because there are currently no data suggesting such a relationship.
It is possible that high fecundity, small body size, or high metabolic rate may constrain genome
size (Johnston et al. 2004, Johnston et al. 2007), but comparative tests of these traits between
parasitic or parasitoid groups and non-parasitic or non-parasitoid groups are still required.
The importance of reduced development time and the link with small genome size was a
central theme throughout Chapter Three. This pattern was evident when interacting species of
Hymenoptera were competing within a narrow window of opportunity for a resource that was
critical for survival. This was true for cleptoparasites and inquilines having significantly smaller
genome size than their hosts and inducers, respectively. Future sampling of other systems with
cleptoparasites and inquilines can test the general prediction that they have significantly smaller
genome size than their hosts. It would also be interesting to determine in which situations this
pattern does not occur.
Both cleptoparasites and inquilines are restricted to specific habitats, such as nests and
galls, respectively, in which they encounter hosts. Cleptoparasite and inquiline eggs are placed at
some distance from any host or competitor and so it is plausible that ovipositing females do not
assess host condition. However, ovipositing parasitoids often interact with their host to assess
size, species, stage, and whether or not the host has been previously parasitized (Godfray 1994,
Quicke 1997). In essence, ovipositing parasitoids decide whether or not a host is acceptable
before they oviposit. In general, idiobionts are competitively superior to koinobionts because
their attack stops development of the host which in turn would kill any developing koinobiont
(Godfray 1994, Quicke 1997). Perhaps a relaxed mortality schedule of idiobionts in comparison
to koinobionts has also relaxed some constraint on genome size. Thus, though idiobiont
130
development time has been reported to be faster than koinobionts (Blackburn 1991, Mayhew and
Blackburn 1999), it may be mortality risks that have a stronger influence on genome size.
Chapter Three did not reveal any significant difference in mean genome size between idiobiont
and koinobiont species within both Braconidae and Ichneumonidae. Variation in genome size
may be revealed if development time and mortality risks within closely related idiobionts or
koinobionts that attack similar hosts are sampled. Afterwards, comparisons between idiobiont
and koinobiont species attacking the same host may reveal differences that the broad scale
sampling of this study could not investigate specifically.
This thesis illustrated the utility of DNA barcoding to enhance explorative surveys of
richness of Hymenoptera in gall systems and sampling of species of Hymenoptera for broad
scale genome size estimations and fine scale comparative tests. Data of genome size variation in
any category of interest (species, habitat type, lifestyle) can be collected on a large scale due to
the sampling efficiency of flow cytometry. With the addition of a molecular identification tool,
such as DNA barcoding, the study of biology of Hymenoptera is no longer restricted to described
species available in cultures. Now individuals can be sampled in the field and reliably linked
every field season to continue observations and data collection. Based on larger scale
observations, new hypotheses and predictions can be formulated about the effect of the amount
of bulk DNA on organism physiology (development), morphology (size), and ecological
interactions (Gregory 2005).
131
Table 4.1
Total number of genome size (GS) estimates of Insecta†.
Order
Blattaria
Dermaptera
Embioptera
Ephemeroptera
Hemiptera
Isoptera
Mantodea
Odonata
Orthoptera
Phasmatodea
Phthiraptera
Thysanura
Zoraptera
Developmental
complexity
Hemimetabolous
Hemimetabolous
Hemimetabolous
Hemimetabolous
Hemimetabolous
Hemimetabolous
Hemimetabolous
Hemimetabolous
Hemimetabolous
Hemimetabolous
Hemimetabolous
Hemimetabolous
Hemimetabolous
Coleoptera
Diptera
Hymenoptera
Lepidoptera
Mecoptera
Siphonaptera
Strepsiptera
Holometabolous
Holometabolous
Holometabolous
Holometabolous
Holometabolous
Holometabolous
Holometabolous
Number of families‡§
with GS estimates
4
1
1
1
9
6
2
9
7
3
1
1
1
25
18
36 (16)
21
1
1
2
Number of species‡§
with GS estimates
13
1
1
1
51
16
6
130
49
7
1
1
1
237
177
471 (162)
169
2
1
2
† Genome size estimates listed include established methods such as feulgen densitometry, flow
cytometry, and whole genome sequencing.
‡ Taxa listed in Appendix 2, Appendix 3, Appendix 4, and www.genomesize.com.
§ Number in parentheses state number of taxa that had their genome size estimated prior to this
thesis.
132
Idiobiont
Koinobiont
Equivocal (Idio/Koino)
Hymenoptera
Superfamily
2.00
1.50
0.00
Genome size (pg)
1.00
Ectoparasitoid
Endoparasitoid
Equivocal (Ecto/Endo)
0.50
Herbivore
Xyleoidea
Pamphiliodea
Tenthredinoidea† n = 0 + 30
n= 1
Cephoidea
Siricoidea
Xiphydrioidea
Orussoidea
Stephanoidea
Ceraphronoidea
n=
0+
2
Evanoidea‡
n=
0+
1
Chrysidoidea‡
n=
0+
4
Vespoidea‡
n = 85 + 20
Apoidea‡
n = 49 + 12
Megalyroidea
paraphyletic
Trigonalyoidea
Ichneumonoidea† n = 11 + 126
Platygastroidea
n=
0+
9
Cynipoidea†
n=
4 + 37
Proctotrupoidea
n=
0+
1
Diaprioidea
n=
0+
3
Chalcidoidea†
n = 12 + 65
Mymarommatoidea
Figure 4.1. New genome size estimates within Hymenoptera. Genome size was analyzed by
multiple methods, and estimates displayed were obtained from this study (red bars and red text, n
= 310, Appendix 2, Appendix 3) and from literature (black bars and black text, n = 162,
Appendix 4). Superfamily in red text indicates new genome size estimates for entire superfamily.
Development syndrome of parasitoids is mapped onto tree from Sharkey et al. (2011). Some
superfamilies include several larval feeding modes: † Inducers or inquilines, ‡ cleptoparasite, §
predator. Height of genome size bar represents number of species.
133
REFERENCES
134
Abrahamson WG, Melika G, Scrafford R, Csóka G (1998) Host-plant associations and
specificity among cynipid gall-inducing wasps of eastern USA. In: G Csóka, WJ
Mattson, GN Stone, PW Price (eds), The biology of gall-inducing arthropods. U.S. Forest
Service General Technical Report NC-199. pp 226-240.
Ács Z, Melika G, Pénzes Z, Pujade-Villar J, Stone GN (2007) The phylogenetic relationships
between Dryocosmus - Chilaspis and allied genera of oak gallwasps (Hymenoptera,
Cynipidae: Cynipini). Systematic Entomology 32:70-80.
Ács Z, Challis RJ, Bihari P, Blaxter M, Hayward A, Melika G, Csóka G, Pénzes Z, Pujade-Villar
J, Nieves-Aldrey J-L, Schönrogge K, Stone GN (2010) Phylogeny and DNA barcoding of
inquiline oak gallwasps (Hymenoptera: Cynipidae) of the Western Palaearctic. Molecular
Phylogenetics and Evolution 55: 210-225.
Aebi A, Schönrogge K, Melika G, Quacchia A, Alma A, Stone GN (2007) Native and introduced
parasitoids attacking the invasive chestnut gall wasp Dryocosmus kuriphilus. EPPO
Bulletin 37: 166-171.
Aguiar AP, Santos BF (2010) Discovery of potent, unsuspected sampling disparities for Malaise
and Möricke traps, as shown for Neotropical Cryptini (Hymenoptera, Ichneumonidae).
Journal Insect Conservation 14: 199-206.
Alonso-Zarazaga MA, Pujade-Villar J (2006) What is Diplolepis analis Boyer de Fonscolombe,
1832 (Hymenoptera, Cynipidae)? Bulletin de la Societe Entomologique de France 111:
119-121.
Alves-dos-Santos I, Melo GAR, Rozen Jr JG (2002) Biology and immature stages of the bee
tribe Tetrapediini (Hymenoptera: Apidae). American Museum Novitates 3377: 1-45.
135
Ardila-Garcia AM, Umphrey GJ, Gregory TR (2010) An expansion of the genome size dataset
for the insect order Hymenoptera, with a first test of parasitism and eusociality as
possible constraints. Insect Molecular Biology 19: 337-346.
Askew RR (1975) The organization of chalcid-dominated parasitoid communities centred upon
endophytic hosts. In: PW Price (ed), Evolutionary strategies of parasitic insects and
mites. Plenum Press, New York. pp 130-153.
Askew RR, Plantard O, Gómez JF, Nieves MH, Nieves-Aldrey JL (2006) A catalogue of
parasitoids and inquilines in galls of Aylacini, Diplolepidini and Pediaspidini (Hym.,
Cynipidae) in the West Palaearctic. Zootaxa 1301: 1-60.
Askew RR, Shaw MR (1986) Parasitoid communities: their size, structure and development. In: J
Waage, D Greathead (eds), Insect parasitoids. Academic Press, London. pp 237-264.
Austin AD, Dowton M (2000) The Hymenoptera - an introduction. In: AD Austin, M Dowton
(eds), Hymenoptera: Evolution, Biodiversity and Biological Control. CSIRO Publishing,
Collingwood. pp 3-8.
Bailey R, Schönrogge K, Cook JM, Melika G, Csóka G, Thuróczy C, Stone GN (2009) Host
niches and defensive extended phenotypes structure parasitoid wasp communities. Plos
Biology 7: e1000179.
Barcenas NM, Thompson NJ, Gomez-Tovar V, Morales-Ramos JA, Johnston JS (2008) Sex
determination and genome size in Catolaccus grandis (Burks, 1954) (Hymenoptera:
Pteromalidae). Journal of Hymenoptera Research 17: 201-209.
Barron JR (1977) The nearctic species of Orthopelma (Hymenoptera: Ichneumonidae).
Systematic Entomology 32: 171-176.
136
Bassett HF (1890) New species of North American Cynipidae. Transactions of the American
Entomological Society 17:59-63.
Beattie AJ, Oliver I (1994) Taxonomic minimalism. Trends in Ecology and Evolution 9: 488490.
Beattie AJ, Oliver I (1999) Biodiversity buzzwords: Another reply to Goldstein. Conservation
Biology 13: 1514.
Bennett AMR (2008) Review and identification keys to the ichneumonid parasitoids
(Hymenoptera: Ichneumonidae) of Nearctic Choristoneura species (Lepidoptera:
Tortricidae) Canadian Entomologist 140: 1-47.
Bennett MD, Leitch IJ (2005) Genome size evolution in plants. In: TR Gregory (ed), The
Evolution of the Genome. San Diego, Elsevier. pp 89-162.
Beutenmüller W (1908) Notes on Harris’s types of Cynipidae. Psyche 15: 9-10.
Bickford D, Lohman DJ, Sodhi NS, Ng PKL, Meier R, Winker K, Ingram KK, Das I (2007)
Cryptic species as a window on diversity and conservation. Trends in Ecology and
Evolution 22: 148 -155.
Blackburn TM (1990) Comparative and experimental studies of animal life histories. PhD thesis.
University of Oxford, Oxford, England. 214 pp.
Blackburn TM (1991) Evidence for a fast-slow continuum of life-history traits among parasitoid
Hymenoptera. Functional Ecology 5: 65-74.
Boivin G (2010) Phenotypic plasticity and fitness in egg parasitoids. Neotropical Entomology
39: 457-463.
137
Boring CA, Sharanowski BJ, Sharkey MJ (2011) Maxfischeriinae: a new braconid subfamily
(Hymenoptera) with highly specialized egg morphology. Systematic Entomology 36:
529-548.
Brooks SE, Shorthouse JD (1997) Biology of the rose stem galler Diplolepis nodulosa
(Hymenoptera: Cynipidae) and its associated component community in central Ontario.
The Canadian Entomologist 129: 1121-1140.
Brooks SE, Shorthouse JD (1998) Developmental morphology of stem galls of Diplolepis
nodulosa (Hymenoptera: Cynipidae) and those modified by the inquiline Periclistus
pirata (Hymenoptera: Cynipidae) on Rosa blanda (Rosaceae). Canadian Journal Botany
76: 365-381.
Brown Jr W, George Jr M, Wilson AC (1979) Rapid evolution of animal mitochondrial DNA.
Proceedings of the National Academy of Science USA 76: 1967-1971.
Burks BD (1979) Cynipoidea. In: KV Krombien, PD Hurd, DR Smith Jr, BD Burks (eds),
Catalog of Hymenoptera of North America North of Mexico. Volume 1. Smithsonian
Institution Press, Washington DC. pp 1045-1107.
Cardinal S, Straka J, Danforth BN (2010) Comprehensive phylogeny of apid bees reveals the
evolutionary origins and antiquity of cleptoparasitism. Proceedings of the National
Academy of Sciences 107: 16207-16211.
Casiraghi M, Labra M, Ferri E, Galimberti A, De Mattia F (2010) DNA barcoding: a sixquestion tour to improve users' awareness about the method. Briefings in Bioinformatics
11: 440-453.
138
Caterino MS, Tishechkin AK (2006) DNA identification and morphological description of the
first confirmed larvae of Hateriinae (Coleoptera: Histeridae). Systematic Entomology 31:
405-418.
Cavalier-Smith T (1978) Nuclear volume control by nucleoskeletal DNA, selection for cell
volume and cell growth rate, and the solution of the DNA c-value paradox. Journal of
Cell Science 34: 247-278.
CFIA (2011) List of approved arthropod biological control agents from commercial sources that
do not fall under the mandate of the Plant Protection Act. www.inspection.gc.ca/english/
plaveg/ protect/dir/biocontrole.shtml. December 2011.
Clary DO, Wolstenholme DR (1985) The mitochondrial DNA molecule of Drosophila yakuba:
nucleotide sequence, gene organization and genetic code. Journal of Molecular Evolution
22: 252-271.
Cognato AI (2006) Standard percent DNA sequence difference for insects does not predict
species boundaries. Journal Economic Entomology 99: 1037-1045.
Cognato AI, Sun JH (2007) DNA based cladograms augment the discovery of a new Ips species
from China (Coleoptera: Curculionidae: Scolytinae). Cladistics, 23, 539-551.
Craddock EM, Kacmarczyk T, Dawley RM (2000). The roles of genome size and cell size in
body size variation among Hawaiian Drosophila. Abstract, 41st Annual Drosophila
Research Conference, Pittsburg, PA, 20-26 March.
Csóka G, Stone GN, Melika G (2005) Biology, ecology, and evolution of gall-inducing
Cynipidae. In: Raman A, Schaefer CW, and Withers TM (eds), Biology, ecology and
evolution of gall-inducing arthropods. Vol. 2. Science Publishers Inc., Enfield. pp 573642.
139
Dailey DC, Campbell L (1973) A new species of Diplolepis from California. The Pan-Pacific
Entomologist 49: 174-176.
von Dalla Torre KW, Kieffer JJ (1910) Cynipidae. In: FE Schulze (ed) Das Tierreich. Ein
Zusammenstellung und Kennzeichnung der rezenten Tierformen. Vol. 24. Lieferung
Hymenoptera. Friedländer und Sohn, Berlin. 891 pp.
Derraik JGB, Early JW, Closs GP, Dickinson KJM (2010) Morphospecies and taxonomic
species comparison for Hymenoptera. Journal of Insect Science 10: 1-7.
DeSalle R, Egan MG, Siddall M (2005) The Unholy Trinity: taxonomy, species delimitation and
DNA Barcoding. Philosophical Transactions: Biological Sciences 360: 1905-1916.
DeWalt RE (2011) DNA barcoding: a taxonomic point of view. Journal of the North American
Benthological Society 30:174-181.
Doležel J, Bartoš J, Voglmayr H, Greilhuber J (2003) Nuclear DNA content and genome size of
trout and human. Cytometry 51A: 127-128.
Drown DM, Brown JM (1998) Molecular phylogeny of North American oak-galling cynipini
(Hymenoptera: Cynipidae) supports need for generic revision. In: G Csóka, WJ Mattson,
GN Stone, PW Price (eds), The biology of gall-inducing arthropods. U.S. Forest Service
General Technical Report NC-199. pp 241-246.
Ebach MC, de Carvalho MR (2010) Anti-intellectualism in the DNA Barcoding Enterprise.
Zoologia 27: 165-178.
Eggleton P, Belshaw R (1992) Insect parasitoids: an evolutionary overview. Philosophical
Transactions of the Royal Society of London Series B 337: 1-20.
Eggleton P, Gaston KJ (1990) "Parasitoid" species and assemblages: convenient definitions or
misleading compromises? Oikos 59: 417-421.
140
ESC (2011) Joint Annual Meetings of The Entomological Society of Canada. http://www.escsec.ca/ annmeet.html. December 2011.
Evans D (1965) The life history and immature stages of Synergus pacificus McCracken and
Egbert (Hymenoptera: Cynipidae). Canadian Entomologist 97: 185-188.
Evans D (1967) The bisexual and agamic generations of Besbicus mirabilis (Hymenoptera:
Cynipidae), and their associate insects. Canadian Entomologist 99: 187-196.
Ferrari JA, Rai KS (1989) Phenotypic correlates of genome size variation in Aedes albopictus.
Evolution 43: 895-899.
Finston TL, Hebert PD, Foottit RB (1995) Genome size variation in aphids. Insect Biochemistry
Molecular Biology 25: 189-196.
Floyd R, Abebe E, Papert A, Blaxter M (2002) Molecular barcodes for soil nematode
identification. Molecular Ecology 11: 839-850.
Floyd R, Lima J, deWaard J, Humble L, Hanner R (2010) Common goals: policy implications of
DNA barcoding as a protocol for identification of arthropod pests. Biological Invasions
12: 2947-2954.
Gadau J, Gerloffs CU, Krugers N, Chan H, Schmid-Hempel P, Wille A, Page Jr RE (2001) A
linkage analysis of sex determination in Bombus terrestris (L.) (Hymenoptera: Apidae).
Heredity 87: 234-242.
Gariepy TD, Kuhlmann U, Gillott C, Erlandson M (2007) Parasitoids, predators and PCR: the
use of diagnostic molecular markers in biological control of Arthropods. Journal of
Applied Entomology 131: 225-240.
141
Gariepy T, Kuhlmann U, Gillott C, Erlandson M (2008) A large-scale comparison of
conventional and molecular methods for the evaluation of host-parasitoid associations in
nontarget risk-assessment studies. Journal Applied of Ecology 45: 708-715.
Gaston KJ, O'Neill MA (2004) Automated species identification: why not? Philosophical
Translations of the Royal Society London B 359: 655-667.
Gauld ID, Bolton B (1988) The Hymenoptera. British Museum (Natural History)/Oxford
University Press, London. 332 pp.
Gibson GAP, Huber JT, Woolley JB (1997) Annotated keys to the genera of Nearctic
Chalcidoidea (Hymenoptera). NRC Research Press, Ottawa. 794 pp.
Godfray HCJ (1994) Parasitoids, behavioural and evolutionary ecology. Princeton University
Press, Princeton. 488 pp.
Godfray HCJ, Shimada M. (1999) Parasitoids: a model system to answer questions in
behavioural, evolutionary and population ecology. Research Population Ecology 41: 310.
Goldstein PZ (1997) How many things are there? A reply to Oliver and Beattie, Beattie and
Oliver, Oliver and Beattie, and Oliver and Beattie. Conservation Biology 11: 571-574.
Gokhman VE, Johnston JS, Small C,Rajwani R, Hanrahan SJ, Govind S (2011) Genomic and
karyotypic variation in Drosophila parasitoids (Hymenoptera, Cynipoidea, Figitidae).
Comparative Cytogenenetics 5: 211-221.
Gómez JL, Nieves-Aldrey JL, Nieves MH (2008) Comparative morphology, biology and
phylogeny of terminal-instar larvae of the European species of Toryminae (Hym.,
Chalcidoidea, Torymidae) parasitoids of gall wasps (Hym. Cynipidae). Zoological
Journal of the Linnean Society 154: 676-721.
142
Goulet H, Hubert JF (1993) Hymenoptera of the world. An identification guide to families.
Research Branch, Agricultural Canada Publication, Ottawa. 668 pp.
Graham MWR de V, Gijswijt MJ (1998) Revision of the European species of Torymus Dalman
(s. lat.) (Hymenoptera: Torymidae). Zoologische Verhandelingen 317: 1-202.
Gregory TR (2001) Coincidence, coevolution, or causation? DNA content, cell size, and the Cvalue enigma. Biological Reviews 76: 65-101.
Gregory TR (2002) Genome size and developmental complexity. Genetica 115: 131-146.
Gregory TR (2005) Genome size evolution in animals. In: TR Gregory (ed), The Evolution of
the Genome. San Diego, Elsevier. pp 3-87.
Gregory TR (2011) Animal Genome Size Database. www.genomesize.com.
Gregory TR, Johnston JS (2008) Genome size diversity in the family Drosophilidae. Heredity
101: 228-238.
Gregory TR, Nedvěd O, Adamowicz SJ (2003) C-value estimates for 31 species of ladybird
beetles (Coleoptera: Coccinellidae). Hereditas 139: 121-127.
Greilhuber J, Doležel J, Lysá MA, Bennett MD (2005) The origin, evolution and proposed
stabilization of the terms ‘genome size’ and ‘C-value’ to describe nuclear DNA. Contents
Annals of Botany 95: 255-260.
Grissell EE (1995) Toryminae (Hymenoptera: Chalcidoidea: Torymidae): a redefinition, generic
classification, and annotated world catalog of species. Memoirs on Entomology,
International 2:1-470.
Grissell EE (1999) Hymenopteran biodiversity: some alien notions. American Entomologist 45:
235-244.
143
Grissell EE (2004) A new species of Torymus (Hymenoptera: Torymidae) associated with
Dactylopius (Hemiptera: Dactylopiidae). Journal of the Kansas Entomological Society
77: 639-643.
Güçlü S, Hayat R, Shorthouse JD, Tozlu G (2008) Gall-inducing wasps of the genus Diplolepis
(Hymenoptera: Cynipidae) on shrub roses of Turkey. Proceedings of the Entomological
Society of Washington 110: 204-217.
Hafen E, Stocker H (2003) How are the sizes of cells, organs, and bodies controlled? PLoS Biol
1: e86.
Hanner RH, Lima J, Floyd R (2009) DNA barcoding and its relevance to pests, plants and
biological control. Acta Horticulturae 823: 41-47.
Hanrahan SJ, Johnston JS (2011) New genome size estimates of 134 species of arthropods.
Chromosome Research 19: 809-823.
Harper LJ, Schönrogge K, Lim KY, Francis P, and Lichtenstein CP (2004) Cynipid galls: insectinduced modifications of plant development create novel plant organs. Plant, Cell and
Environment 27: 327-335.
Harvey JA (2005) Factors affecting the evolution of development strategies in parasitoid wasps:
the importance of functional constraints and incorporating complexity. Entomologia
Experimentalis et Applicata 117: 1-13.
Harvey JA, Strand MR (2002) The developmental strategies of endoparasitoid wasps vary with
host feeding ecology. Ecology 83: 2439-2451.
Hawkins BA (1994) Pattern and Process in Host-Parasitoid Interactions. University of
Cambridge Press, Cambridge. 200 pp.
144
Hayward A, Stone GN (2005) Oak gall wasp communities: evolution and ecology. Basic and
Applied Ecology: 6 435-443.
Hebert PD N, Cywinska A, Ball SL, deWaard J R (2003) Biological identifications through
DNA barcodes. Proceedings of the Royal Society London. Series B 270: 313-321.
Heraty J, Ronquist F, Carpenter JM, Hawks D, Schulmeister S, Dowling AP, Murray D, Munro
J, Wheeler WC, Schiff N, Sharkey M (2011) Evolution of the Hymenopteran
megaradiation. Molecular Phylogenetics and Evolution 60:73-88.
Honey Bee Genome Sequencing Consortium (2006) Insights into social insects from the genome
of the honey bee Apis mellifera. Nature 443: 931-949.
Hrcek J, Miller SE, Quicke DLJ, Smith MA (2011) Molecular detection of trophic links in a
complex insect host–parasitoid food web. Molecular Ecology Resources 11: 786-794.
Huber JT (2009) Biodiversity of Hymenoptera. In: RG Foottit, PH Adler (eds), Insect
Biodiversity: Science and Society. Blackwell Publishing, London. pp 303-323.
Ikai N, Hijii N (2007) Sex ratio of inquiline wasps on cynipid oak galls in relation to gall
characteristics. Annals of the Entomological Society of America 100: 869-875.
Ishiwata K, Sasaki Go, Ogawac J, Miyata T, Su Z-H (2011) Phylogenetic relationships among
insect orders based on three nuclear protein-coding gene sequences. Molecular
Phylogenetics and Evolution 58: 169-180.
Ivanova NV, deWaard JR, Hebert PDN (2006) An inexpensive, automation-friendly protocol for
recovering high-quality DNA. Molecular Ecology Notes 6: 998-1002.
Ji Y-J, Zhang D-X, He L-J (2003) Evolutionary conservation and versatility of a new set of
primers for amplifying the ribosomal internal transcribed spacer regions in insects and
other invertebrates. Molecular Ecology Notes 3: 581-585.
145
Johnston JS, Ross LD, Beani L, Hughes DP, Kathirithamby J (2004) Tiny genomes and
endoreduplication in Strepsiptera. Insect Molecular Biology 13: 581-585.
Johnston JS, Yoon KS, Strycharz JP, Pittendrigh BR, Clark JM (2007) Body lice and head lice
(Anoplura: Pediculidae) have the smallest genomes of any hemimetabolous insect
reported to date. Journal Medical Entomology 44: 1009-1012.
Kaartinen R, Stone GN, Hearn J, Lohse K, Roslin T (2010) Revealing secret liaisons: DNA
barcoding changes our understanding of food webs. Ecological Entomology 35: 623-638.
KinseyAC (1920) Phylogeny of cynipid genera and biological characteristics. Bulletin American
Museum Natural History 42: 357-402.
Kinsey AC (1922) Studies of some new and described Cynipidae (Hymenoptera). Indiana
University Studies 53: 3-141.
Krell F-T (2004) Parataxonomy vs. taxonomy in biodiversity studies - pitfalls and applicability
of ‘morphospecies’ sorting. Biodiversity and Conservation 13: 795-812.
Lalonde RG, Shorthouse JD (2000) Using rose galls for field exercises in community ecology
and island biogeography. The American Biology Teacher 62: 436-441.
Lawrence P (1990) The biochemical and physiological effects of insect hosts on the development
and ecology of their insect parasites: an overview. Archives of Insect Biochemistry and
Physiology 13: 217-228.
LaSalle J, Gauld ID (1991) Parasitic Hymenoptera and the biodiversity crisis. Redia 74: 315-334.
LeBlanc DA, Lacroix CR (2001) Developmental potential of galls induced by Diplolepis
rosaefolii (Hymenoptera : Cynipidae) on the leaves of Rosa virginiana and the influence
of Periclistus species on the Diplolepis rosaefolii galls. International Journal of Plant
Science 162: 29-46.
146
Lee W, Lee S (2012) Unexpected problem in aphid DNA barcoding by universal primers.
Entomological Science 15: 121-126.
Leggo JJ, Shorthouse JD (2006a) Development of stem galls of Diplolepis triforma
(Hymenoptera: Cynipidae) on Rosa acicularis (Rosaceae). The Canadian Entomologist
138: 661-680.
Leggo JJ, Shorthouse JD (2006b) Modification of galls of Diplolepis triforma (Hymenoptera:
Cynipidae) by the parasitoids Eurytoma spongiosa (Hymenoptera: Eurytomidae) and
Glyphomerus stigma (Hymenoptera: Torymidae). The Canadian Entomologist 138: 681696.
Li Y, Zhou X, Feng G, Hu H, Niu L, Hebert PDN, Huang D (2010), COI and ITS2 sequences
delimit species, reveal cryptic taxa and host specificity of fig-associated Sycophila
(Hymenoptera, Eurytomidae). Molecular Ecology Resources 10: 31-40.
Liljeblad J, Ronquist F (1998) A phylogenetic analysis of higher-level gall wasp relationships
(Hymenoptera: Cynipidae). Systematic Entomology 23: 229-252.
Liljeblad J, Ronquist F, Nieves-Aldrey J-L, Fontal-Cazalla F, Ros-Farre P, Gaitros D, PujadeVillar J (2008) A fully web-illustrated morphological phylogenetic study of relationships
among oak gall wasps and their closest relatives (Hymenoptera: Cynipidae). Zootaxa
1796: 1-73.
Liu Z, Engel MS, Grimaldi DA (2007) Phylogeny and geological history of the cynipoid wasps
(Hymenoptera: Cynipoidea). American Museum Novitates 3583: 1-48.
Lopes DM, de Carvalho CR, Clarindo WR, Praça MW, Tavares MG (2009) Genome size
estimation of three stingless bee species (Hymenoptera, Meliponinae) by flow cytometry.
Apidologie 40: 517-523.
147
Lotfalizadeh H, Delvare G, Rasplus J (2007) Eurytoma caninae sp. n. (Hymenoptera,
Eurytomidae), a common species previously overlooked with E. rosae. Zootaxa 1640:
55-68.
Mackauer M, Sequeira R (1993) Patterns of development in insect parasites. In: NE Beckage, SN
Thompson, BA Federici (eds), Parasites and Pathogens of Insects. Academic Press, New
York. pp 1-20.
Masner L, Barron JR, Danks HV, Finnamore AT, Francoeur A, Gibson GAP, Mason WR,
Yoshimoto CM (1979) Hymenoptera. In: HV Danks (ed), Canada and its insect fauna.
Memoirs of the Entomological Society of Canada 108. Entomological Society of Canada,
Ottawa. pp 485-508.
Mayhew PJ, Blackburn TM (1999) Does parasitoid development mode organise life-history traits
in the parasitoid Hymenoptera? Journal of Animal Ecology 68: 906-916.
Meier R, Zhang G, Ali F (2008) The use of mean instead of smallest interspecific distances
exaggerates the size of the barcoding gap and leads to misidentification. Systematic
Biology 57: 809-813.
Melika G, Abrahamson WG (2000) Historical review and current state of the world generic
classification of oak galls (Hymenoptera: Cynipidae: Cynipini). In: AD Austin, M
Dowton (eds), Hymenoptera: Evolution, Biodiversity and Biological Control. CSIRO
Publishing, Collingwood. pp 218-230.
Melika G, Abrahamson WG (2007) Review of the Nearctic gallwasp species of the genus
Bassettia Ashmead, 1887, with description of new species (Hymenoptera: Cynipidae:
Cynipini). Acta Zoologica Academiae Scientiarum Hungaricae 53: 131-148.
148
Melika G, Bechtold M (2001) Taxonomic notes and type designations of gall inducing cynipid
wasps described by G. Mayr ( Insecta: Hymenoptera: Cynipidae ). Annalen des
Naturhistorischen Museums in Wien 103 B: 327-329.
Melo GAR, Gonçalves RB (2005) Higher-level bee classification (Hymenoptera, Apoidea,
Apidae sensu lato). Revista Brasileira de Zoologia 22: 153-159.
Meyer CP, Paulay G (2005) DNA barcoding: Error rates based on comprehensive sampling.
PLoS Biology 3: 2229-2238.
Michener CD (2000) The bees of the world. Johns Hopkins University Press, Baltimore. 913 pp.
Miller KB, Alarie Y, Wolfe GW, Whiting MF (2005) Association of insect lifestages using DNA
sequences: the larvae of Philodytes umbrinus (Motschulsky) (Coleoptera: Dytiscidae).
Systematic Entomology 30: 499-509.
Monti MM, Nappo AG, Giorgini M (2005) Molecular characterization of closely related species
in the parasitic genus Encarsia (Hymenoptera: Aphelinidae) based on the mitochondrial
cytochrome subunit I gene. Bulletin of Entomological Research 95: 401-408.
Mills NJ (1992) Parasitoid guilds, life-styles, and host ranges in the parasitoid complexes of
tortricoid hosts (Lepidoptera: Tortricidae). Environmental Entomology 21: 320-329.
Nieves-Aldrey J-L, Medianero E (2011) Taxonomy of inquilines of oak gall wasps of Panama,
with description of eight new species of Synergus Hartig (Hymenoptera, Cynipidae,
Synergini). Zootaxa 2774: 1–47.
Oliver I, Beattie AJ (1993) A possible method for the rapid assessment of biodiversity
Conservation Biology 7: 562-568.
Oliver I, Beattie AJ (1996) Invertebrate morphospecies as surrogates for species: A case study.
Conservation Biology 10: 99-109.
149
Olson E (1964) A preliminary study of Minnesota rose gall insects. Journal of the Minnesota
Academy of Science 32: 26-29.
Packer L, Gibbs J, Sheffield C, Hanner R (2009) DNA barcoding and the mediocrity of
morphology. Molecular Ecology Resources 9 (Suppl. 1): 42-50.
Pennacchio F, Strand MR (2006) Evolution of developmental strategies in parasitic
Hymenoptera. Annual Review of Entomology 51: 233-258.
Pénzes Z, Melika G, Bozsóki Z, Bihari P, Mikó I, Tavakoli M, Pujade-Villar J, Fehér B, Fӧlüp
D, Szabó K, Bozsó M, Sipos B, Somogy K, Stone GN (2009) Systematic reappraisal of
the gall-usurping wasp genus Synophrus Hartig, 1843 (Hymenoptera: Cynipidae:
Synergini). Systematic Entomology 34: 688-711.
Petitpierre E, Segarra C, Juan C (1993) Genome size and chromosomal evolution in leaf beetles
(Coleoptera, Chrysomelidae). Hereditas 119: 1-6.
Pires CSS, Price PW (2000) Patterns of host plant growth and attack and establishment of gallinducing wasp (Hymenoptera: Cynipidae). Environmental Entomology 29: 49-54.
Plantard O, Shorthouse JD, and Rasplus J-Y (1998) Molecular phylogeny of the genus
Diplolepis (Hymenoptera: Cynipidae). In: G Csóka, WJ Mattson, GN Stone, PW Price
(eds), The biology of gall-inducing arthropods. U.S. Forest Service General Technical
Report NC-199. pp 247–260.
Plantard O, Solignac M (1998) Wolbachia induced thelytoky in cynipids. In: G Csóka, WJ
Mattson, GN Stone, PW Price (eds), The biology of gall-inducing arthropods. U.S. Forest
Service General Technical Report NC-199. pp 111–121.
Pulawski WJ (2011) http://researcharchive.calacademy.org/research/entomology/Entomology_
Resources/Hymenoptera/sphecidae/Family_group_names_and_classification.pdf
150
Pujade-Villar J, Plantard O (2002) About the validity of Diplolepis fructuum (Rübsaamen) and
some new synonyms in Diplolepis nervosa (Curtis) (Hym.: Cynipidae: Diplolepidini). In:
G Melika, C Thuróczy (eds), Parasitic Wasps: Evolution, Systematic, Biodiversity and
Biological Control. Agroinform. pp 135-142.
Quicke DLJ (1997) Parasitic wasps. Chapman & Hall, London. 470 pp.
Quicke DLJ, Laurenne NM, Fitton MG, Broad GR (2009) A thousand and one wasps: a 28S
rDNA and morphological phylogeny of the Ichneumonidae (Insecta: Hymenoptera) with
an investigation into alignment parameter space and elision. Journal of Natural History
43: 1305-1421.
Rasch EM, Barr HJ, Rasch RW (1971) The DNA content of sperm of Drosophila melanogaster.
Chromosoma 33: 1-18.
Rempel SJ (2002) The Torymus Complex (Hymenoptera: Torymidae) associated with galls of
Diplolepis (Hymenoptera: Cynipidae) in Canada. MSc thesis. Laurentian University,
Sudbury. 153 pp.
Ritchie AJ (1984) A review of the higher classification of the inquiline gall wasps
(Hymenoptera: Cynipidae) and a revision of the Nearctic species of Periclistus Forster.
PhD thesis. Carleton University, Ottawa. 368 pp.
Ritchie AJ, Peters TM (1981) The external morphology of Diplolepis rosae (Hymenoptera:
Cynipidae, Cynipinae). Annals of the Entomological Society of America 74: 191-199.
Rohwer SA, Fagan M (1917) The type-species of the genera of Cynipoidea or the gall wasps and
parasitic Cynipoids. Proceedings of the United States Nntional Museum 3: 357-380.
151
Rokas A, Melika G, Abe Y, Nieves-Aldrey JL, Cook JM, Stone GN (2003) Lifecycle closure,
lineage sorting, and hybridization revealed in a phylogenetic analysis of European oak
gallwasps (Hymenoptera: Cynipidae: Cynipini) using mitochondrial sequence data.
Molecular Phylogenetics and Evolution 26: 36-45.
Rokas A, Nylander JAA, Ronquist F, Stone GN (2002) A maximum likelihood analysis of eight
phylogenetic markers in gallwasps (Hymenoptera: Cynipidae): implications for insect
phylogenetic studies. Molecular Phylogenetics and Evolution 22: 206-219.
Ronquist F (1994) Evolution of parasitism among closely related species: Phylogenetic
relationships and the origin of inquilinism in gall wasps (Hymenoptera, Cynipidae).
Evolution 48: 241-266.
Ronquist F, Liljeblad J (2001) Evolution of the gall wasp-host plant association. Evolution 55:
2503-2522.
Rougerie R, Smith MA, Fernandez-Triana J, Lopez-Vaamonde C, Ratnasingham S, Hebert PDN
(2010) Molecular analysis of parasitoid linkages (MAPL): gut contents of adult parasitoid
wasps reveal larval host. Molecular Ecology 20: 179-186.
Rozen Jr JG (2001) A Taxonomic Key to Mature Larvae of Cleptoparasitic Bees (Hymenoptera:
Apoidea). American Museum Novitates 3309: 1-28.
Rozen Jr JG (2003) Eggs, ovariole numbers, and modes of parasitism of cleptoparasitic bees,
with emphasis on Neotropical species (Hymenoptera: Apoidea). American Museum
Novitates 3413: 1-36.
Rozen Jr JG, Kamel SM (2007) Investigations on the biologies and immature stages of the
cleptoparasitic bee genera Radoszkowskiana and Coelioxys and their Megachile Hosts
152
(Hymenoptera: Apoidea: Megachilidae: Megachilini). American Museum Novitates
3573: 1-43.
Rozen Jr JG, Kamel SM (2009) Hospicidal behavior of the cleptoparasitic wasp Sapyga
luteomaculata and investigations into ontogenetic changes in its larval anatomy
(Hymenoptera: Vespoidea: Sapygidae). American Museum Novitates 3644: 1-24.
Rubinoff D (2006) Utility of mitochondrial DNA barcodes in species conservation. Conservation
Biology 20: 1026-1033.
Santos AMC, Besnard G, Quicke DLJ (2011) Applying DNA barcoding for the study of
geographical variation in host–parasitoid interactions. Molecular Ecology Resources 11:
46-59.
Schick KN, Potter D, Shorthouse JD (2010) A preliminary study of molecular relationships
within Diplolepis polita (Hymenoptera: Cynipidae). 7th International Congress of
Hymenopterists. Köszeg, Hungary. Oral presentation.
Schmidt-Ott U, Ab MR, Sander K, Johnston JS (2009) Extremely small genomes in two
unrelated dipteran insects with shared early developmental traits. Development Genes
and Evolution 219: 207-210.
Schönrogge K, Atkinson RJ, Bellido D, and Pujade-Villar J (2002) The population biology of
oak gall wasps (Hymenoptera: Cynipidae). Annual Review of Entomology 47: 633-668.
Scudder GGE (2009) The importance of insects. In: RG Foottit, PH Adler (eds), Insect
Biodiversity: Science and Society. Wiley-Blackwell, Oxford. pp 7-32.
Sha ZL, Zhu CD, Murphy RW, La Salle J, Huang DW (2006) Mitochondrial phylogeography of
a leafmeiner parasitoid, Diglyphus isaea (Hymenoptera: Eulophidae) in China. Biological
38: 380-389.
153
Sharanowski BJ, Dowling APG, Sharkey MJ (2011) Molecular phylogenetics of Braconidae
(Hymenoptera: Ichneumonoidea), based on multiple nuclear genes, and implications for
classification. Systematic Entomology 36: 549-572.
Sharkey MJ (2007) Phylogeny and classification of Hymenoptera. Zootaxa 1668: 521-548.
Sharkey MJ, Carpenter JM, Vilhelmsen L, Heraty J, Liljeblad J, Dowling APG, Schulmeister S,
Murray D, Deans AR, Ronquist F, Krogmann L, Wheeler WC (2011) Phylogenetic
relationships among superfamilies of Hymenoptera. Cladistics 27: 1-33.
Sheehan W, Hawkins BA (1991) Attack strategy as an indicator of host range in metopiinae and
pimplinae Ichneumonidae (Hymenoptera). Ecological Entomology 16: 129-131.
Sheffield CS, Hebert PD, Kevan PG, Packer L (2009) DNA barcoding a regional bee
(Hymenoptera: Apoidea) fauna and its potential for ecological studies. Molecular
Ecology Resources 9 (Suppl. 1): 196-207.
Shorthouse JD (1973) The insect community associated with rose galls of Diplolepis polita
(Cynipidae, Hymenoptera). Quaestiones Entomologicae 9: 55-98.
Shorthouse JD (1975) The roles of insect inhabitants in six Diplolepis (Cynipidae, Hymenoptera)
rose leaf galls of Western Canada. PhD thesis. University of Saskatchewan, Saskatoon,
Canada. 276 pp.
Shorthouse JD (1980) Modifications of galls of Diplolepis polita by the inquiline Periclistus
pirata. Bulletin de la Société Botanique de France 127: 79-84.
Shorthouse JD (1987) Gall inducing cynipid wasps attacking Rosa rugosa. Canadian Journal of
Plant Science 67: 1227-123l.
154
Shorthouse JD (1988) Occurrence of two gall wasps of the genus Diplolepis (Hymenoptera:
Cynipidae) on the domestic shrub rose, Rosa Rugosa Thunb. (Rosaceae). The Canadian
Entomologist, 120, 727-737.
Shorthouse JD (1993) Adaptations of the gall wasps of the genus Diplolepis (Hymenoptera:
Cynipidae) and the role of gall anatomy in cynipid systematics. Memoires of the
Entomological Society of Canada 165: 139-163.
Shorthouse JD (1998) Role of Periclistus (Hymenoptera: Cynipidae) inquilines in leaf galls of
Diplolepis (Hymenoptera: Cynipidae) on wild roses in Canada. In: G Csóka, WJ Mattson,
GN Stone, PW Price (eds), The biology of gall-inducing arthropods. U.S. Forest Service
General Technical Report NC-199. pp 61–81.
Shorthouse JD (2010) Galls induced by cynipid wasps of the genus Diplolepis (Hymenoptera:
Cynipidae) on the roses of Canada's grasslands. In: JD Shorthouse, KD Floate (eds),
Arthropods of Canadian Grasslands (Volume 1): Ecology and Interactions in Grassland
Habitats. Biological Survey of Canada, Ottawa. pp 251-279.
Shorthouse JD, Brooks SE (1998) Biology of the galler Diplolepis rosaefolii (Hymenoptera:
Cynipidae), its associated component community, and host shift to the shrub rose Thérèse
Bugnet. The Canadian Entomologist 130: 357-366.
Shorthouse JD, Leggo JJ (2002) Immature stages of the galler Diplolepis triforma
(Hymenoptera: Cynipidae) with comments on the role of its prepupa. The Canadian
Entomologist 134: 433-446.
Shorthouse JD, Leggo JJ, Sliva MD, Lalonde RG (2005) Has egg location influenced the
radiation of Diplolepis (Hymenoptera: Cynipidae) gall wasps on wild roses? Basic and
Applied Ecology 6: 423-434.
155
Shorthouse JD, Ritchie RJ (1984) Description and biology of a new species of Diplolepis
Fourcroy (Hymenoptera: Cynipidae) inducing galls on the stems of Rosa acicularis. The
Canadian Entomologist 116: 1623-1636.
Sliva MD, Shorthouse JD (2006) Comparison of the development of stem galls induced by
Aulacidae hieracii (Hymenoptera: Cynipidae) on hawkweed and by Diplolepis spinosa
(Hymenoptera: Cynipidae) on rose. Canadian Journal of Botany 84: 1052-1074.
Smith DR (1996) Review of the Gasteruptiidae (Hymenoptera) of eastern North America.
Proceedings of the Entomological Society of Washington 98: 491-499.
Smith MA, Eveleigh ES, McCann KS, McCarthy PC, Van Rooyen KI (2011) Barcoding a
quantified food web: crypsis, concepts, ecology and hypotheses. PLoS ONE 6(7):
e14424.
Smith MA, Fernandez-Triana J, Roughley R, Hebert PDN (2009) DNA barcode accumulation
curves for understudied taxa and areas. Molecular Ecology Resources 9: 208-216.
Smith MA, Fisher BL, Hebert PDN (2005a) DNA barcoding for effective biodiversity
assessment of a hyperdiverse arthropod group: the ants of Madagascar. Philosophical
Transactions of the Royal Society B: Biological Science 360: 1825-1834.
Smith MA, Umphrey GJ, Fisher BL, Hebert PDN (2005b) Rapid assessment of ant diversity in a
northern world heritage site using DNA barcodes. London, UK: The Natural History
Museum. Poster.
Smith MA, Rodriguez JJ, Whitfield JB, Deans AR, Janzen DH, Hallwachs W, Hebert PDN
(2008) Extreme diversity of tropical parasitoid wasps exposed by iterative integration of
natural history, DNA barcoding, morphology, and collections. Proceedings National
Academy Science USA 105: 12359-12364.
156
Stone GN, Atkinson RJ, Rokas A, Nieves-Aldrey JL, Melika G, Acs Z, Csoka G, Hayward A,
Bailey R, Buckee C, McVean GAT (2008) Evidence for widespread cryptic sexual
generations in apparently purely asexual Andricus gallwasps. Molecular Ecology 17:
652–665.
Stone GN, Cook JM (1998) The structure of cynipid oak galls: patterns in the evolution of an
extended phenotype. Proceedings of the Royal Society of London B 265: 979-988.
Stone GN, Schönrogge K (2003) The adaptive significance of insect gall morphology. Trends in
Ecology & Evolution 18: 512-522.
Stone GN, Schönrogge K, Atkinson AJ, Bellido D, Pujade-Villar J (2002) The population
biology of oak gall wasps (Hymenoptera:Cynipidae) Annual Review of Entomology
47:633-668.
Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: Molecular
evolutionary genetics analysis using maximum likelihood, evolutionary distance, and
maximum parsimony methods. Molecular Biology and Evolution 28: 2731-2739.
Tavares MG, Carvalho CR, Soares FAF (2010a) Genome size variation in Melipona species
(Hymenoptera: Apidae) and sub-grouping by their DNA content. Apidologie 41: 636642.
Tavares MG, Carvalho CR, Soares FAF, Fernandes A (2010b) Detection of diploid males in a
natural colony of the cleptobiotic bee Lestrimelitta sp (Hymenoptera, Apidae) Genetics
and Molecular Biology 33: 491-493.
Teletchea F (2010) After 7 years and 1000 citations: Comparative assessment of the DNA
barcoding and the DNA taxonomy proposals for taxonomists and non-taxonomists.
Mitochondrial DNA 21: 206-226.
157
Triplehorn CA, Johnson NF (2005) Borer and Delong's Introduction to the Study of Insects.
Thomson, Brooks/ Cole, Belmont. 864 pp.
Torchio PF, Burdick DJ (1988) Comparative notes on the biology and development of Epeolus
compactus Cresson, a cleptoparasite of Colletes kincaidii Cockerell. Annals
Entomological Society America 81: 626-636.
Truman JW, Riddiford LM (1999) The origins of insect metamorphosis. Nature 401: 447-452.
Truman JW, Riddiford LM (2002) Endocrine insights into the evolution of metamorphosis in
insects. Annual Review Entomology 47: 467-500.
Tsutsui ND, Suarez AV, Spagna JC, Johnston JS (2008) The evolution of genome size in ants.
BMC Evolutionary Biology 8: 64.
Vinson SB, Iwantsch GF (1980) Host suitability for insect parasitoids. Annual Review
Entomology 25: 397-419.
deWaard JR, Mitchell A, Keena MA, Gopurenko D, Boykin LM, Armstrong KF, Pogue MG,
Lima J, Floyd R, Hanner RH, Humble LM (2010) Towards a global barcode library for
Lymantria (Lepidoptera: Lymantriinae) tussock moths of biosecurity concern. PloS One
5: e14280.
Waugh J (2007) DNA barcoding in animal species: Progress, potential and pitfalls. BioEssays
29:188-197.
Weis AE, Walton R, Crego CL (1988) Reactive plant-tissue sites and the population biology of
gall makers. Annual Review of Entomology 33: 467-486.
Weld LH (1952) New American cynipid wasps from galls. Proceedings of the United States
National Museum 102: 315-343.
158
Wiebes-Rijks AA, Shorthouse, JD (1992) Ecological relationships of insects inhabiting cynipid
galls. In: JD Shorthouse and O Rohfritsch (eds), Biology of Insect-Induced Galls. Oxford
University Press, New York. pp 238–257.
Will KW, Mishler BD, Wheeler QD (2005) The perils of DNA barcoding and the need for
integrative taxonomy. Systematic Biology 54:844–851.
Yassin A, Markow TA, Narechania A, O'Grady PM, DeSalle R (2010) The genus Drosophila as
a model for testing tree- and character-based methods of species identification using
DNA barcoding. Molecular Phylogenetics and Evolution 57: 509–517.
Yasumatsu K, Taketani A (1967) Some remarks on the commonly known species of the genus
Diplolepis Geoffroy in Japan. Esakia 6: 77-87.
159
160
JDS
JDS
JL
JDS
JDS
JDS
JDS
JDS
JDS
JDS
JDS
JDS
23 D. bicolor
24 D. bicolor
25 D . sp.
26 D. bicolor
27 D. bicolor
28 D. bicolor
29 D. bicolor
30 D. bicolor
31 D. bicolor
32 D. bassetti
33 D. bassetti
34 D. bassetti
JDS
15 D. bicolor
JDS
JDS
14 D. bicolor
22 D. bicolor
JDS
13 D. bicolor
JDS
JDS
12 D. bicolor
21 D. bicolor
JDS
11 D . sp.
JDS
JDS
10 D . sp.
20 D. bicolor
JL
9 D . sp.
JDS
JL
8 D . sp.
19 D. bicolor
JL
7 D . sp.
JDS
JL
6 D . sp.
18 D. bicolor
JDS
5 D. eglanteriae
JDS
JDS
4 D. eglanteriae
17 D. bicolor
JDS
3 D. eglanteriae
JDS
JDS
2 D. eglanteriae
16 D. bicolor
Verified
JDS
n Specimen designation
1 D. eglanteriae
Identification†
DbOT05
DbOT05
DbOT05
DbOT04
DbOT04
DbOT04
DbOT04
DbOT04
DbOT04
DbOT03
DbOT03
DbOT03
DbOT03
DbOT03
DbOT03
DbOT03
DbOT03
DbOT03
DbOT03
DbOT03
DbOT03
DbOT03
DbOT03
DbOT02
DbOT02
DbOT01
DbOT01
DbOT01
DbOT01
DbOT01
DbOT01
DbOT01
DbOT01
DbOT01
DbOT ID
601
601
601
601
601
601
601
601
601
601
601
601
601
601
601
601
601
601
601
601
601
601
601
601
601
601
601
601
601
601
601
601
601
COI
601
Process ID
385
385
385
Rose314-08
Rose313-08
Rose086-08
Rose014-08
Rose013-08
Rose010-08
Rose003-08
Rose002-08
Rose001-08
Perna172-09
Rose020-08
Rose019-08
Rose018-08
Rose017-08
Rose016-08
Rose015-08
Rose011-08
Rose009-08
Rose008-08
Rose007-08
Rose006-08
Rose005-08
Rose004-08
Rose554-08
Rose553-08
Hygen983-10
Hygen982-10
Hygen981-10
Hygen980-10
Rose506-08
Rose505-08
Rose504-08
Rose502-08
ITS1
385 Rose093-08
no. basepairs
2002-10
2002-10
2002-10
2002-10
2002-10
2007-09
1999-09
1999-09
1999-09
2005-05
2007-09
2003-05
2003-05
2003-05
2003-05
2003-05
1999-10
2007-09
2007-09
2007-09
2007-09
2007-09
2007-09
1996-11
1996-11
2010-08
2010-08
2010-08
2010-08
1996-05
1996-05
1996-05
1996-05
Date
1996-05
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Japan
Japan
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Country
Canada
Coaldale (AB)
Coaldale (AB)
Coaldale (AB)
Coaldale (AB)
Coaldale (AB)
Waterton L N P (AB)
Lethbridge (AB)
Lethbridge (AB)
Lethbridge (AB)
Thunder Bay (ON)
Waterton L N P (AB)
Pincher Creek (AB)
Pincher Creek (AB)
Pincher Creek (AB)
Coaldale (AB)
Coaldale (AB)
Kelowna (BC)
Waterton L N P (AB)
Waterton L N P (AB)
Waterton L N P (AB)
Waterton L N P (AB)
Waterton L N P (AB)
Waterton L N P (AB)
Kuroishi (Aomori)
Kuroishi (Aomori)
Guelph (ON)
Guelph (ON)
Guelph (ON)
Guelph (ON)
Niagara F (ON)
Niagara F (ON)
Niagara F (ON)
Niagara F (ON)
Site (Province or Region)
Niagara F (ON)
Collection‡
Appendix 1. Taxa included in DNA barcoding of rose gall inhabitants, together with identification and collection information.
JDS
JDS
BE, JDS
JDS
JDS
JDS, MRS
JDS, MRS
JDS, MRS
JDS, MRS
MJTB, JDS
JDS, MRS
JDS, MRS
JDS, MRS
JDS, MRS
JDS, MRS
JDS, MRS
RGL, JDS
JDS, MRS
JDS, MRS
JDS, MRS
JDS, MRS
JDS, MRS
JDS, MRS
NS
NS
GL, JL, TE
GL, JL, TE
GL, JL, TE
GL, JL, TE
SEB
SEB
SEB
SEB
Team
SEB, JDS
1
1
1
1
1
1
1
1
1
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
1
1
1
1
Voucher
1
161
DbOT07
JDS
JDS
JDS
JDS
JDS
JDS
JDS
JDS
JL
JL
JDS
59 D. polita
60 D. polita
61 D. polita
62 D. polita
63 D. polita
64 D. polita
65 D. polita
66 D. polita
67 D . sp.
68 D . sp.
69 D. polita
DbOT08
DbOT07
DbOT07
DbOT07
DbOT07
DbOT07
DbOT07
DbOT07
DbOT07
DbOT07
DbOT07
DbOT07
DbOT06
DbOT06
DbOT06
DbOT06
JDS
DbOT06
DbOT06
JDS
JDS
50 D. bassetti
DbOT06
58 D. polita
JDS
49 D. bassetti
DbOT06
57 D. polita
JDS
48 D. bassetti
DbOT06
DbOT06
JDS
47 D. bassetti
DbOT06
JDS
JDS
46 D. bassetti
DbOT06
56 D. bassetti
JDS
45 D. bassetti
DbOT05
JDS
JL
44 D . sp.
DbOT05
55 D. bassetti
JDS
43 D. bassetti
DbOT05
DbOT05
JDS
JDS
42 D. bassetti
53 D. bassetti
JDS
41 D. bassetti
DbOT05
JDS
JDS
40 D. bassetti
DbOT05
53 D. bassetti
JDS
39 D. bassetti
DbOT05
JDS
JDS
38 D. bassetti
DbOT05
DbOT05
52 D. bassetti
JDS
37 D. bassetti
JDS
JDS
36 D. bassetti
DbOT05
DbOT ID
51 D. bassetti
Verified
JDS
n Specimen designation
35 D. bassetti
Identification†
601
601
601
601
601
601
601
601
601
601
601
601
601
601
601
601
601
601
601
601
601
601
601
601
601
601
601
601
601
601
601
601
601
601
COI
601
ITS1
no. basepairs
Rose394-08
Vnmb789-09
Vnmb769-09
Rose390-08
Rose386-08
Rose382-08
Rose381-08
Rose380-08
Rose379-08
Rose378-08
Rose366-08
Rose365-08
Rose363-08
Rose337-08
Rose336-08
Rose335-08
Rose332-08
Rose330-08
Rose329-08
Rose328-08
Rose327-08
Rose326-08
Rose325-08
Rose324-08
Rose322-08
Pipi395-09
Rose334-08
Rose333-08
Rose321-08
Rose320-08
Rose319-08
Rose318-08
Rose317-08
Rose316-08
Rose315-08
Process ID
2003-03
2008-09
2008-09
1995-10
1998-08
1998-08
1998-08
1998-08
1998-08
1998-08
1986-10
1986-10
1986-10
2007-09
2007-09
2007-09
2007-09
1999-10
1999-10
1999-10
1999-10
1999-10
1999-10
1999-10
1999-10
2002-05
2007-09
2007-09
2002-10
2002-10
2002-10
2002-10
2002-10
2002-10
Date
2002-10
USA
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Country
Canada
San Joaquin C (CA)
Smooth Rock F (ON)
Clute (ON)
Pacific Rim N P (BC)
Queen Charlotte I (BC)
Queen Charlotte I (BC)
Queen Charlotte I (BC)
Queen Charlotte I (BC)
Queen Charlotte I (BC)
Queen Charlotte I (BC)
Cypress Hills P P (AB)
Cypress Hills P P (AB)
Cypress Hills P P (AB)
Waterton L N P (AB)
Waterton L N P (AB)
Waterton L N P (AB)
Waterton L N P (AB)
Osoyoos (BC)
Osoyoos (BC)
Osoyoos (BC)
Osoyoos (BC)
Osoyoos (BC)
Osoyoos (BC)
Osoyoos (BC)
Osoyoos (BC)
Coaldale (AB)
Waterton L N P (AB)
Waterton L N P (AB)
Coaldale (AB)
Coaldale (AB)
Coaldale (AB)
Coaldale (AB)
Coaldale (AB)
Coaldale (AB)
Site (Province or Region)
Coaldale (AB)
Collection‡
KNS
GL, JL
GL, JL
JDS
JDS
JDS
JDS
JDS
JDS
JDS
JDS
JDS
JDS
JDS, MRS
JDS, MRS
JDS, MRS
JDS, MRS
RGL, JDS
RGL, JDS
RGL, JDS
RGL, JDS
RGL, JDS
RGL, JDS
RGL, JDS
RGL, JDS
JDS
JDS, MRS
JDS, MRS
JDS
JDS
JDS
JDS
JDS
JDS
Team
JDS
1
2
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
1
1
1
1
1
1
1
1
Voucher
1
162
JDS
JDS
JDS
JL
JL
JL
JL
JL
JL
JL
JL
JDS
94 D. fructuum
95 D. fructuum
96 D . sp.
97 D . sp.
98 D . sp.
99 D . sp.
100 D . sp.
101 D . sp.
102 D . sp.
103 D . sp.
104 D. rosae
JDS
85 D. fructuum
JDS
JDS
84 D. fructuum
93 D. fructuum
JDS
83 D. fructuum
92 D. fructuum
JDS
82 D. fructuum
JDS
JDS
81 D. fructuum
91 D. fructuum
JDS
80 D. fructuum
JDS
JDS
79 D. fructuum
90 D. fructuum
JDS
78 D. fructuum
JDS
JDS
89 D. fructuum
JDS
76 D. fructuum
77 D. fructuum
JDS
JDS
75 D. polita
88 D. fructuum
JDS
74 D. polita
JDS
JDS
73 D. polita
87 D. fructuum
JDS
72 D. polita
JDS
JDS
71 D. polita
86 D. fructuum
Verified
JDS
n Specimen designation
70 D. polita
Identification†
DbOT11
DbOT11
DbOT11
DbOT11
DbOT11
DbOT11
DbOT11
DbOT10
DbOT10
601
601
601
601
601
601
601
601
601
601
601
DbOT09
DbOT09
601
601
601
601
601
601
601
601
601
601
601
601
601
601
601
601
601
601
601
601
601
601
601
COI
601
390
ITS1
no. basepairs
DbOT09
DbOT09
DbOT09
DbOT09
DbOT09
DbOT09
DbOT09
DbOT09
DbOT09
DbOT09
DbOT09
DbOT09
DbOT09
DbOT09
DbOT09
DbOT09
DbOT09
DbOT09
DbOT08
DbOT08
DbOT08
DbOT08
DbOT08
DbOT08
DbOT ID
Rose091-08
Hygen348-10
Hygen347-10
Hygen344-10
Hygen343-10
Hygen342-10
Hygen341-10
Hygen340-10
Hygen339-10
Rose470-08
Rose469-08
Rose468-08
Rose467-08
Rose466-08
Rose465-08
Rose464-08
Rose463-08
Rose462-08
Rose461-08
Rose460-08
Rose459-08
Rose458-08
Rose457-08
Rose456-08
Rose455-08
Rose453-08
Rose453-08
Rose452-08
Rose094-08
Rose400-08
Rose399-08
Rose398-08
Rose397-08
Rose396-08
Rose395-08
Process ID
2003-04
2009-05
2009-05
2009-05
2009-05
2009-05
2009-05
2009-04
2009-04
2008-01
2008-01
2008-01
2008-01
2008-01
2008-01
2008-01
2008-01
2008-01
2008-01
2008-01
2008-01
2008-01
2008-01
2008-01
2008-01
2008-01
2008-01
2008-01
2008-01
2003-03
2003-03
2003-03
2003-03
2003-03
Date
2003-03
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Turkey
Turkey
Turkey
Turkey
Turkey
Turkey
Turkey
Turkey
Turkey
Turkey
Turkey
Turkey
Turkey
Turkey
Turkey
Turkey
Turkey
Turkey
Turkey
Turkey
USA
USA
USA
USA
USA
Country
USA
SG, RH
SG, RH
SG, RH
SG, RH
SG, RH
SG, RH
SG, RH
SG, RH
SG, RH
(Gümüşhane )
(Gümüşhane )
(Gümüşhane )
(Gümüşhane )
(Gümüşhane )
(Gümüşhane )
(Gümüşhane )
(Gümüşhane )
Picton (ON)
Manitoulin I (ON)
Manitoulin I (ON)
Manitoulin I (ON)
Manitoulin I (ON)
Manitoulin I (ON)
Manitoulin I (ON)
Picton (ON)
Picton (ON)
Erzurum (Erzurum)
Erzurum (Erzurum)
Erzurum (Erzurum)
Erzurum (Erzurum)
Erzurum (Erzurum)
Erzurum (Erzurum)
Erzurum (Erzurum)
Erzurum (Erzurum)
Erzurum (Erzurum)
JDS
JDR, JDS
JDR, JDS
JDR, JDS
JDR, JDS
JDR, JDS
JDR, JDS
JDS
JDS
SG, RH
SG, RH
SG, RH
SG, RH
SG, RH
SG, RH
SG, RH
SG, RH
SG, RH
SG, RH
SG, RH
Kelkit (Gümüşhane )
(Gümüşhane )
Erzurum (Erzurum)
KNS
KNS
KNS
KNS
KNS
Team
KNS
San Joaquin C (CA)
San Joaquin C (CA)
San Joaquin C (CA)
San Joaquin C (CA)
San Joaquin C (CA)
Site (Province or Region)
San Joaquin C (CA)
Collection‡
1
2
2
2
2
2
2
2
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
Voucher
1
163
JDS
JDS
JDS
JDS
JDS
113 D. rosae
114 D. rosae
115 D. rosae
116 D. rosae
117 D. rosae
JDS
JDS
JDS
JDS
JDS
JDS
JDS
JDS
JDS
JL
JL
JDS
JDS
JDS
JDS
JDS
JL
123 D. rosaefolii
125 D. rosaefolii
126 D. rosaefolii
127 D. rosaefolii
128 D. rosaefolii
129 D. rosaefolii
130 D. rosaefolii
131 D. rosaefolii
132 D . sp.
133 D . sp.
134 D. rosaefolii
135 D. rosaefolii
136 D. rosaefolii
137 D. rosaefolii
138 D. rosaefolii
139 D . sp.
JDS
122 D. rosaefolii
124 D. rosaefolii
JDS
121 D. rosaefolii
JDS
JDS
112 D. rosae
120 D. rosaefolii
DbOT11
JDS
111 D. rosae
JDS
JDS
110 D. rosae
JDS
JDS
109 D. rosae
118 D. rosae
DbOT11
JDS
108 D. rosae
119 D. rosaefolii
DbOT11
JDS
107 D. rosae
DbOT13
DbOT13
DbOT13
DbOT13
DbOT13
DbOT13
DbOT13
DbOT13
DbOT12
400
601
601
601
601
601
601
601
601
601
601
DbOT12
DbOT12
601
601
601
601
601
601
601
601
601
601
601
601
601
601
601
601
601
601
601
601
601
601
601
COI
601
386
388
ITS1
no. basepairs
DbOT12
DbOT12
DbOT12
DbOT12
DbOT12
DbOT12
DbOT12
DbOT12
DbOT12
DbOT12
DbOT11
DbOT11
DbOT11
DbOT11
DbOT11
DbOT11
DbOT11
DbOT11
DbOT11
DbOT11
JDS
106 D. rosae
DbOT11
Verified
JDS
DbOT ID
n Specimen designation
105 D. rosae
Identification†
Hygen349-10
Rose288-08
Rose287-08
Rose286-08
Rose285-08
Rose284-08
Hygen355-10
Hygen351-10
Rose312-08
Rose311-08
Rose310-08
Rose309-08
Rose308-08
Rose307-08
Rose306-08
Rose305-08
Rose304-08
Rose303-08
Rose296-08
Rose295-08
Rose294-08
Rose501-08
Rose500-08
Rose499-08
Rose498-08
Rose497-08
Rose496-08
Rose495-08
Rose494-08
Rose493-08
Rose492-08
Rose491-08
Rose490-08
Rose489-08
Rose488-08
Process ID
2008-09
1991-09
1991-09
1991-09
1991-09
1991-09
2009-05
2009-05
2007-09
2007-09
2007-09
2007-09
2007-09
2007-09
2007-09
2007-09
2007-09
2007-09
1999-09
1999-09
1999-09
1994-05
1994-05
1994-05
1994-05
1994-05
2003-04
2003-04
2003-04
2003-04
1987-10
1987-10
1987-10
1987-10
Date
1987-10
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Country
Canada
Timmins (ON)
Timmins (ON)
Timmins (ON)
Timmins (ON)
Timmins (ON)
Timmins (ON)
Timmins (ON)
Timmins (ON)
Waterton L N P (AB)
Waterton L N P (AB)
Waterton L N P (AB)
Waterton L N P (AB)
Waterton L N P (AB)
Waterton L N P (AB)
Waterton L N P (AB)
Waterton L N P (AB)
Waterton L N P (AB)
Waterton L N P (AB)
Douglas P P (SK)
Douglas P P (SK)
Douglas P P (SK)
Malden Center (ON)
Malden Center (ON)
Malden Center (ON)
Malden Center (ON)
Malden Center (ON)
Prince Edward C (ON)
Prince Edward C (ON)
Prince Edward C (ON)
Prince Edward C (ON)
St. Johns (NF)
St. Johns (NF)
St. Johns (NF)
St. Johns (NF)
Site (Province or Region)
St. Johns (NF)
Collection‡
GL, JL
JDS
JDS
JDS
JDS
JDS
ADR, JDS
ADR, JDS
JDS, MRS
JDS, MRS
JDS, MRS
JDS, MRS
JDS, MRS
JDS, MRS
JDS, MRS
JDS, MRS
JDS, MRS
JDS, MRS
JDS, MRS
JDS, MRS
JDS, MRS
JDS
JDS
JDS
JDS
JDS
JDS
JDS
JDS
JDS
AW, RWW
AW, RWW
AW, RWW
AW, RWW
Team
AW, RWW
2
1
1
1
1
1
2
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
Voucher
1
164
JDS
JDS
JL
JL
JL
JL
JDS
JDS
JDS
JDS
JDS
JDS
164 D. nebulosa
165 D . sp.
166 D . sp.
167 D . sp.
168 D . sp.
169 D. ignota
170 D. ignota
171 D. ignota
172 D. ignota
173 D. ignota
174 D. ignota
JDS
155 D. fusiformans
JDS
JDS
153 D. fusiformans
163 D. nebulosa
JDS
153 D. fusiformans
162 D. nebulosa
JDS
152 D. fusiformans
JDS
JDS
151 D. fusiformans
161 D . sp.
JL
150 D . sp.
JDS
JL
149 D . sp.
160 D . sp.
JL
148 D . sp.
JDS
JL
147 D . sp.
159 D. fusiformans
JL
146 D . sp.
JDS
JL
145 D . sp.
158 D. fusiformans
JL
144 D . sp.
JDS
JL
143 D . sp.
157 D. fusiformans
JL
142 D . sp.
JDS
JL
141 D . sp.
156 D. fusiformans
Verified
JL
n Specimen designation
140 D . sp.
Identification†
DbOT15
DbOT15
DbOT15
DbOT15
DbOT15
DbOT15
DbOT15
DbOT15
DbOT15
DbOT15
DbOT14
DbOT14
DbOT14
DbOT14
DbOT14
DbOT14
DbOT14
DbOT14
DbOT14
DbOT14
DbOT14
DbOT14
DbOT14
DbOT14
DbOT14
DbOT14
DbOT13
DbOT13
DbOT13
DbOT13
DbOT13
DbOT13
DbOT13
DbOT13
DbOT13
DbOT ID
601
601
601
601
601
601
601
601
601
601
601
601
601
601
601
601
597
601
601
601
601
601
601
601
601
601
601
597
597
597
597
471
597
601
COI
601
394
394
394
ITS1
no. basepairs
Rose026-08
Rose025-08
Rose024-08
Rose023-08
Rose022-08
Rose021-08
Hygen322-10
Hygen320-10
Hygen318-10
Hygen317-10
Rose449-08
Rose443-08
Rose442-08
Rose562-08
Rose558-08
Rose230-08
Rose229-08
Rose228-08
Rose227-08
Rose226-08
Rose225-08
Rose224-08
Rose223-08
Rose082-08
Hygen302-10
Hygen299-10
Vnmb794-09
Pipi169-09
Pipi167-09
Pipi161-09
Pipi159-09
Pipi158-09
Pipi157-09
Hygen354-10
Hygen350-10
Process ID
2007-05
2007-05
2007-05
2007-05
2007-05
2007-05
2009-05
2009-05
2009-05
2009-05
2002-10
2002-10
2002-10
1971-05
2000-06
2006-04
2006-04
2006-04
2006-04
2006-04
2006-04
2006-04
2006-04
2006-04
2009-04
2009-05
2008-09
2008-09
2008-09
2008-09
2008-09
2008-09
2008-09
2008-09
Date
2008-09
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Country
Canada
(mid-west)
(mid-west)
(mid-west)
(mid-west)
(mid-west)
(mid-west)
Fort Macleod (AB)
Fort Macleod (AB)
Fort Macleod (AB)
Fort Macleod (AB)
Coaldale (AB)
Coaldale (AB)
Coaldale (AB)
Peace River (AB)
Renfrew (ON)
Renfrew (ON)
Renfrew (ON)
Renfrew (ON)
Renfrew (ON)
Renfrew (ON)
Renfrew (ON)
Renfrew (ON)
Renfrew (ON)
Renfrew (ON)
Renfrew (ON)
Chelmsford (ON)
Smooth Rock F (ON)
Sudbury (ON)
Sudbury (ON)
Sudbury (ON)
Sudbury (ON)
Sudbury (ON)
Sudbury (ON)
Timmins (ON)
Site (Province or Region)
Timmins (ON)
Collection‡
JDS, MRS
JDS, MRS
JDS, MRS
JDS, MRS
JDS, MRS
JDS, MRS
JDS
JDS
JDS
JDS
JDS
JDS
JDS
JDS
JDS
JDS, MRS
JDS, MRS
JDS, MRS
JDS, MRS
JDS, MRS
JDS, MRS
JDS, MRS
JDS, MRS
JDS, MRS
MRS, JDS
JDS
GL, JL
GL, JL
GL, JL
GL, JL
GL, JL
GL, JL
GL, JL
GL, JL
Team
GL, JL
1
1
1
1
1
1
2
2
2
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
Voucher
2
165
JDS
JDS
JDS
204 D. nebulosa
205 D. nebulosa
206 D. nebulosa
JDS
JL
203 D . sp.
209 D. nebulosa
JL
202 D . sp.
JDS
JL
201 D . sp.
JDS
JL
200 D . sp.
207 D. nebulosa
JL
199 D . sp.
208 D. nebulosa
JL
JL
190 D . sp.
JL
JL
189 D . sp.
198 D . sp.
JL
188 D . sp.
197 D . sp.
JL
187 D . sp.
JL
JDS
186 D. ignota
196 D . sp.
JDS
185 D. ignota
JL
JDS
184 D. ignota
195 D . sp.
JDS
183 D. ignota
JL
JDS
182 D. ignota
194 D . sp.
JDS
181 D. ignota
JL
JDS
180 D. ignota
193 D . sp.
JDS
179 D. ignota
JL
JDS
178 D. ignota
192 D . sp.
JDS
177 D. ignota
JL
JDS
176 D. ignota
191 D . sp.
Verified
JDS
n Specimen designation
175 D. ignota
Identification†
DbOT15
DbOT15
DbOT15
DbOT15
DbOT15
DbOT15
DbOT15
DbOT15
DbOT15
DbOT15
DbOT15
DbOT15
DbOT15
DbOT15
DbOT15
DbOT15
DbOT15
DbOT15
DbOT15
DbOT15
DbOT15
DbOT15
DbOT15
DbOT15
DbOT15
DbOT15
DbOT15
DbOT15
DbOT15
DbOT15
DbOT15
DbOT15
DbOT15
DbOT15
DbOT15
DbOT ID
601
601
601
601
601
601
601
601
601
601
601
601
601
601
601
601
601
601
601
601
601
601
601
601
601
601
601
601
601
601
601
601
601
601
COI
601
394
ITS1
no. basepairs
Rose427-08
Rose426-08
Rose425-08
Rose424-08
Rose423-08
Rose081-08
Hygen310-10
Rose738-09
Rose737-09
Rose736-09
Rose735-09
Rose734-09
Rose733-09
Rose732-09
Rose731-09
Rose730-09
Rose729-09
Rose728-09
Rose727-09
Rose726-09
Rose725-09
Rose724-09
Rose723-09
Rose038-08
Rose037-08
Rose036-08
Rose035-08
Rose034-08
Rose033-08
Rose032-08
Rose031-08
Rose030-08
Rose029-08
Rose028-08
Rose027-08
Process ID
2004-10
2004-10
2004-10
2004-10
2004-10
2004-10
2009-10
2007-09
2007-09
2007-09
2007-09
2007-09
2007-09
2007-09
2007-09
2007-05
2007-05
2007-05
2007-05
2007-05
2007-05
2007-05
2007-05
2007-05
2007-05
2007-05
2007-05
2007-05
2007-05
2007-05
2007-05
2007-05
2007-05
2007-05
Date
2007-05
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Country
Canada
Manitoulin I (ON)
Manitoulin I (ON)
Manitoulin I (ON)
Manitoulin I (ON)
Manitoulin I (ON)
Manitoulin I (ON)
Sudbury (ON)
Coaldale (AB)
Coaldale (AB)
Coaldale (AB)
Coaldale (AB)
Coaldale (AB)
Coaldale (AB)
Coaldale (AB)
Coaldale (AB)
Coaldale (AB)
Coaldale (AB)
Coaldale (AB)
Coaldale (AB)
Coaldale (AB)
Coaldale (AB)
Coaldale (AB)
Coaldale (AB)
(mid-west)
(mid-west)
(mid-west)
(mid-west)
(mid-west)
(mid-west)
(mid-west)
(mid-west)
(mid-west)
(mid-west)
(mid-west)
Site (Province or Region)
(mid-west)
Collection‡
ADR, JDS
ADR, JDS
ADR, JDS
ADR, JDS
ADR, JDS
ADR, JDS
JDS
JDS, MRS
JDS, MRS
JDS, MRS
JDS, MRS
JDS, MRS
JDS, MRS
JDS, MRS
JDS, MRS
JDS, MRS
JDS, MRS
JDS, MRS
JDS, MRS
JDS, MRS
JDS, MRS
JDS, MRS
JDS, MRS
JDS, MRS
JDS, MRS
JDS, MRS
JDS, MRS
JDS, MRS
JDS, MRS
JDS, MRS
JDS, MRS
JDS, MRS
JDS, MRS
JDS, MRS
Team
JDS, MRS
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
1
1
1
1
1
1
1
1
1
1
1
Voucher
1
166
JDS
JDS
JDS
JL
JL
JL
JL
JL
JL
JL
JL
JL
JL
JL
JL
JL
JL
JL
227 D. nebulosa
228 D. nebulosa
229 D. nebulosa
230 D . sp.
231 D . sp.
232 D . sp.
233 D . sp.
234 D . sp.
235 D . sp.
236 D . sp.
237 D . sp.
238 D . sp.
239 D . sp.
240 D . sp.
241 D . sp.
242 D . sp.
243 D . sp.
244 D . sp.
JDS
225 D. nebulosa
JDS
JDS
224 D. nebulosa
226 D. nebulosa
JDS
223 D. nebulosa
JDS
218 D. nebulosa
JDS
JDS
217 D. nebulosa
222 D. nebulosa
JDS
216 D. nebulosa
JDS
JDS
215 D. nebulosa
221 D. nebulosa
JDS
214 D. nebulosa
JDS
JDS
213 D. nebulosa
JDS
JDS
212 D. nebulosa
219 D. nebulosa
JDS
211 D. nebulosa
220 D. nebulosa
Verified
JDS
n Specimen designation
210 D. nebulosa
Identification†
DbOT15
DbOT15
DbOT15
DbOT15
DbOT15
DbOT15
DbOT15
DbOT15
DbOT15
DbOT15
DbOT15
DbOT15
DbOT15
DbOT15
DbOT15
DbOT15
DbOT15
DbOT15
DbOT15
DbOT15
DbOT15
DbOT15
DbOT15
DbOT15
DbOT15
DbOT15
DbOT15
DbOT15
DbOT15
DbOT15
DbOT15
DbOT15
DbOT15
DbOT15
DbOT15
DbOT ID
601
601
601
601
567
601
601
601
597
601
601
601
601
601
601
601
601
601
601
601
601
601
601
601
601
601
601
601
601
601
601
601
601
601
COI
601
394
394
ITS1
no. basepairs
Rose684-09
Rose683-09
Rose682-09
Rose681-09
Rose680-09
Rose679-09
Rose678-09
Rose677-09
Rose676-09
Rose675-09
Rose674-09
Rose673-09
Rose672-09
Rose671-09
Rose670-09
Rose451-08
Rose450-08
Rose448-08
Rose447-08
Rose446-08
Rose445-08
Rose444-08
Rose441-08
Rose440-08
Rose439-08
Rose438-08
Rose437-08
Rose436-08
Rose435-08
Rose434-08
Rose433-08
Rose431-08
Rose430-08
Rose429-08
Rose428-08
Process ID
2002-10
2002-10
2004-10
2004-10
2004-10
2004-10
2004-10
2004-10
2004-10
2004-10
2007-09
2007-09
2007-09
2007-09
2007-09
2002-10
2002-10
2002-10
2002-10
2002-10
2002-10
2002-10
2007-09
2007-09
2007-09
2007-09
2007-09
2007-09
2007-09
2007-09
2007-09
2004-10
2004-10
2004-10
Date
2004-10
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Country
Canada
Coaldale (AB)
Coaldale (AB)
Manitoulin I (ON)
Manitoulin I (ON)
Manitoulin I (ON)
Manitoulin I (ON)
Manitoulin I (ON)
Manitoulin I (ON)
Manitoulin I (ON)
Manitoulin I (ON)
Waterton L N P (AB)
Waterton L N P (AB)
Waterton L N P (AB)
Waterton L N P (AB)
Waterton L N P (AB)
Coaldale (AB)
Coaldale (AB)
Coaldale (AB)
Coaldale (AB)
Coaldale (AB)
Coaldale (AB)
Coaldale (AB)
Waterton L N P (AB)
Waterton L N P (AB)
Waterton L N P (AB)
Waterton L N P (AB)
Waterton L N P (AB)
Waterton L N P (AB)
Waterton L N P (AB)
Waterton L N P (AB)
Waterton L N P (AB)
Manitoulin I (ON)
Manitoulin I (ON)
Manitoulin I (ON)
Site (Province or Region)
Manitoulin I (ON)
Collection‡
JDS
JDS
ADR, JDR, JDS
ADR, JDR, JDS
ADR, JDR, JDS
ADR, JDR, JDS
ADR, JDR, JDS
ADR, JDR, JDS
ADR, JDR, JDS
ADR, JDR, JDS
JDS, MRS
JDS, MRS
JDS, MRS
JDS, MRS
JDS, MRS
JDS
JDS
JDS
JDS
JDS
JDS
JDS
JDS, MRS
JDS, MRS
JDS, MRS
JDS, MRS
JDS, MRS
JDS, MRS
JDS, MRS
JDS, MRS
JDS, MRS
ADR, JDS
ADR, JDS
ADR, JDS
Team
ADR, JDS
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
Voucher
1
167
JL
JL
JDS
JDS
JDS
JDS
JDS
JDS
JDS
JDS
JDS
JDS
269 D . sp.
270 D. gracilis
271 D. gracilis
272 D. gracilis
273 D. gracilis
274 D. gracilis
275 D. gracilis
276 D. gracilis
277 D. gracilis
278 D . nebulosa
279 D. nodulosa
JDS
260 D. variabilis
JL
JDS
259 D. variabilis
268 D . sp.
JDS
258 D. variabilis
267 D . sp.
JDS
257 D. variabilis
JL
JDS
256 D. variabilis
JL
JDS
255 D. variabilis
266 D . sp.
JL
253 D . sp.
265 D . sp.
JL
253 D . sp.
JL
JL
252 D . sp.
264 D . sp.
JL
251 D . sp.
JDS
JL
250 D . sp.
263 D. variabilis
JL
249 D . sp.
JDS
JL
248 D . sp.
262 D. variabilis
JL
247 D . sp.
JDS
JL
246 D . sp.
261 D. variabilis
Verified
JL
n Specimen designation
245 D . sp.
Identification†
DbOT17
DbOT16
DbOT16
DbOT16
DbOT16
DbOT16
DbOT16
DbOT16
DbOT16
DbOT16
DbOT16
DbOT15
DbOT15
DbOT15
DbOT15
DbOT15
DbOT15
DbOT15
DbOT15
DbOT15
DbOT15
DbOT15
DbOT15
DbOT15
DbOT15
DbOT15
DbOT15
DbOT15
DbOT15
DbOT15
DbOT15
DbOT15
DbOT15
DbOT15
DbOT15
DbOT ID
601
601
601
601
601
601
601
601
601
601
601
601
601
562
601
601
601
601
601
601
601
601
601
601
601
601
601
601
601
601
601
601
601
601
COI
601
ITS1
no. basepairs
Rose418-08
Rose432-08
Rose356-08
Rose355-08
Rose353-08
Rose353-08
Rose352-08
Rose346-08
Rose341-08
Rose338-08
Hygen308-10
Rose714-09
Rose711-09
Rose710-09
Rose708-09
Rose707-09
Rose211-08
Rose210-08
Rose209-08
Rose208-08
Rose207-08
Rose206-08
Rose204-08
Rose203-08
Rose083-08
Hygen378-10
Hygen377-10
Hygen376-10
Hygen375-10
Rose690-09
Rose689-09
Rose688-09
Rose687-09
Rose686-09
Rose685-09
Process ID
1999-10
2007-09
2007-09
2007-09
2007-09
2007-09
2007-09
1999-09
1999-09
1972-09
2009-09
2007-05
2007-05
2007-05
2007-05
2007-05
2007-05
2007-05
2007-05
2007-05
2007-05
2007-05
2007-05
2007-05
2007-05
2009-05
2009-05
2009-05
2009-05
2002-10
2002-10
2002-10
2002-10
2002-10
Date
2002-10
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Country
Canada
Kelowna (BC)
Waterton L N P (AB)
Waterton L N P (AB)
Waterton L N P (AB)
Waterton L N P (AB)
Waterton L N P (AB)
Waterton L N P (AB)
Saskatoon (SK)
Moose Jaw (SK)
Leader (SK)
Deux Rivieres (ON)
Peachland (BC)
Peachland (BC)
Peachland (BC)
Peachland (BC)
Peachland (BC)
Peachland (BC)
Peachland (BC)
Peachland (BC)
Peachland (BC)
Peachland (BC)
Peachland (BC)
Peachland (BC)
Peachland (BC)
Peachland (BC)
Peachland (BC)
Peachland (BC)
Peachland (BC)
Peachland (BC)
Coaldale (AB)
Coaldale (AB)
Coaldale (AB)
Coaldale (AB)
Coaldale (AB)
Site (Province or Region)
Coaldale (AB)
Collection‡
RGL, JDS
JDS, MRS
JDS, MRS
JDS, MRS
JDS, MRS
JDS, MRS
JDS, MRS
JDS, MRS
JDS, MRS
JDS
JDS
JB, RGL, JDS
JB, RGL, JDS
JB, RGL, JDS
JB, RGL, JDS
JB, RGL, JDS
RGL, JDS
RGL, JDS
RGL, JDS
RGL, JDS
RGL, JDS
RGL, JDS
RGL, JDS
RGL, JDS
RGL, JDS
RGL
RGL
RGL
RGL
JDS
JDS
JDS
JDS
JDS
Team
JDS
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
Voucher
2
168
JL
JL
JL
JL
JL
JL
JL
JL
JL
JL
JL
JL
304 D . sp.
305 D . sp.
306 D . sp.
307 D . sp.
308 D . sp.
309 D . sp.
310 D . sp.
311 D . sp.
312 D . sp.
313 D . sp.
314 D . sp.
JDS
295 D. triforma
JL
JDS
294 D. triforma
303 D . sp.
JDS
293 D . sp.
302 D . sp.
JDS
292 D . sp.
JL
JDS
291 D . sp.
JL
JDS
290 D . sp.
301 D . sp.
JL
289 D . sp.
300 D . sp.
JL
288 D . sp.
JL
JL
287 D . sp.
299 D . sp.
JL
286 D . sp.
JDS
JL
285 D . sp.
298 D. triforma
JL
284 D . sp.
JDS
JL
283 D . sp.
297 D. triforma
JL
282 D . sp.
JDS
JL
281 D . sp.
296 D. triforma
Verified
JL
n Specimen designation
280 D . sp.
Identification†
DbOT18
DbOT18
DbOT18
DbOT18
DbOT18
DbOT18
DbOT18
DbOT18
DbOT18
DbOT18
DbOT18
DbOT18
DbOT18
DbOT18
DbOT18
DbOT18
DbOT18
DbOT18
DbOT18
DbOT18
DbOT18
DbOT18
DbOT18
DbOT18
DbOT18
DbOT17
DbOT17
DbOT17
DbOT17
DbOT17
DbOT17
DbOT17
DbOT17
DbOT17
DbOT17
DbOT ID
601
601
599
601
597
582
597
601
601
601
601
601
601
601
601
601
601
601
601
601
601
601
601
601
601
601
601
601
601
601
601
601
601
601
COI
601
ITS1
no. basepairs
Pipi188-09
Pipi187-09
Pipi186-09
Pipi185-09
Pipi183-09
Pipi182-09
Pipi181-09
Hygen992-10
Hygen991-10
Hygen989-10
Hygen987-10
Hygen984-10
Hygen327-10
Hygen326-10
Hygen324-10
Hygen323-10
Rose047-08
Rose046-08
Rose045-08
Rose044-08
Rose043-08
Rose534-08
Rose533-08
Rose532-08
Rose530-08
Rose668-09
Rose667-09
Rose666-09
Rose665-09
Rose664-09
Rose663-09
Rose662-09
Rose661-09
Rose660-09
Rose659-09
Process ID
2008-09
2008-09
2008-09
2008-09
2008-09
2008-09
2008-09
2008-09
2008-09
2008-09
2008-09
2008-09
2009-05
2008-09
2009-05
2009-05
2008-01
2008-01
2008-01
2008-01
2008-01
2003-04
2003-04
2003-04
2003-04
1999-08
1999-08
2000-04
2000-04
2000-04
2000-04
2000-04
2007-09
2002-04
Date
2002-04
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Country
Canada
Sudbury (ON)
Sudbury (ON)
Sudbury (ON)
Sudbury (ON)
Sudbury (ON)
Sudbury (ON)
Sudbury (ON)
Timmins (ON)
Timmins (ON)
Timmins (ON)
Timmins (ON)
Timmins (ON)
Manitoulin I (ON)
Timmins (ON)
Manitoulin I (ON)
Chelmsford (ON)
Sudbury (ON)
Sudbury (ON)
Sudbury (ON)
Sudbury (ON)
Sudbury (ON)
Picton (ON)
Picton (ON)
Picton (ON)
Picton (ON)
Manitoulin I (ON)
Manitoulin I (ON)
Manitoulin I (ON)
Manitoulin I (ON)
Manitoulin I (ON)
Manitoulin I (ON)
Manitoulin I (ON)
Waterton L N P (AB)
Manitoulin I (ON)
Site (Province or Region)
Manitoulin I (ON)
Collection‡
GL, JL
GL, JL
GL, JL
GL, JL
GL, JL
GL, JL
GL, JL
GL, JL
GL, JL
GL, JL
GL, JL
GL, JL
JDR, JDS
GL, JL
JDR, JDS
JDS
AJR, JDS
AJR, JDS
AJR, JDS
AJR, JDS
AJR, JDS
JDS
JDS
JDS
JDS
JLe, JDS
JLe, JDS
JB, JLe, SR
JB, JLe, SR
JB, JLe, SR
JB, JLe, SR
JB, JLe, SR
JDS, MRS
STO, JDS
Team
STO, JDS
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
Voucher
2
169
JDS
JDS
JDS
348 D. spinosa
349 D. spinosa
JDS
344 D. spinosa
347 D. spinosa
JDS
343 D. spinosa
JDS
JDS
342 D. spinosa
JDS
JDS
341 D. spinosa
345 D. spinosa
DbOT20
JDS
340 D. spinosa
346 D. spinosa
DbOT20
JDS
DbOT20
DbOT20
DbOT20
DbOT20
DbOT20
DbOT20
DbOT20
DbOT20
DbOT20
DbOT20
DbOT20
DbOT20
DbOT20
DbOT20
DbOT20
DbOT20
339 D. spinosa
DbOT20
DbOT20
JDS
JL
330 D . sp.
DbOT20
JDS
JL
329 D . sp.
DbOT20
338 D. spinosa
JL
328 D . sp.
DbOT20
337 D. spinosa
JL
327 D . sp.
DbOT20
JDS
JL
326 D . sp.
DbOT20
336 D. spinosa
JL
325 D . sp.
DbOT20
JDS
JL
324 D . sp.
DbOT20
335 D. spinosa
JL
323 D . sp.
DbOT20
DbOT20
JDS
JL
322 D . sp.
334 D. spinosa
JL
321 D . sp.
DbOT19
JDS
JL
320 D . sp.
DbOT19
333 D. spinosa
JL
319 D . sp.
DbOT19
JDS
JL
318 D . sp.
DbOT19
DbOT18
332 D. spinosa
JDS
317 D . sp.
JL
JL
316 D . sp.
DbOT18
DbOT ID
331 D . sp.
Verified
JL
n Specimen designation
315 D . sp.
Identification†
601
601
601
601
601
601
601
601
585
601
601
601
601
601
601
601
584
601
601
560
601
591
601
579
601
589
584
601
601
601
601
601
601
601
COI
601
ITS1
no. basepairs
Rose116-08
Rose115-08
Rose114-08
Rose113-08
Rose112-08
Rose111-08
Rose110-08
Rose109-08
Rose108-08
Rose107-08
Rose106-08
Rose105-08
Rose104-08
Rose098-08
Rose097-08
Rose096-08
Rose095-08
Rose084-08
Hygen990-10
Hygen988-10
Hygen986-10
Hygen985-10
Hygen434-10
Hygen433-10
Hygen430-10
Hygen428-10
Hygen427-10
Hygen426-10
Hygen425-10
Vnmb777-09
Pipi190-09
Hygen325-10
Rose564-08
Vnmb781-09
Pipi189-09
Process ID
2005-05
2005-05
2005-05
2005-05
2005-05
2005-05
2005-05
2005-05
2005-05
2005-05
2005-05
2005-05
2005-05
2006-04
2006-04
2006-04
2006-04
2006-04
2009-05
2009-05
2009-05
2009-05
2009-05
2009-05
2009-05
2009-05
2009-05
2009-05
2009-05
2008-09
2008-09
2009-05
1976-05
2008-09
Date
2008-09
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Country
Canada
Fort Albany (ON)
Fort Albany (ON)
Fort Albany (ON)
Attawapiskat (ON)
Attawapiskat (ON)
Attawapiskat (ON)
Attawapiskat (ON)
Attawapiskat (ON)
Thunder Bay (ON)
Thunder Bay (ON)
Thunder Bay (ON)
Thunder Bay (ON)
Thunder Bay (ON)
Renfrew (ON)
Renfrew (ON)
Renfrew (ON)
Renfrew (ON)
Renfrew (ON)
Chelmsford (ON)
Chelmsford (ON)
Chelmsford (ON)
Chelmsford (ON)
Manitoulin I (ON)
Manitoulin I (ON)
Manitoulin I (ON)
Manitoulin I (ON)
Manitoulin I (ON)
Manitoulin I (ON)
Sudbury (ON)
Timmins (ON)
Sudbury (ON)
Sudbury (ON)
Sudbury (ON)
Timmins (ON)
Site (Province or Region)
Sudbury (ON)
Collection‡
MJTB
MJTB
MJTB
MJTB
MJTB
MJTB
MJTB
MJTB
MJTB, JDS
MJTB, JDS
MJTB, JDS
MJTB, JDS
MJTB, JDS
JDS, MRS
JDS, MRS
JDS, MRS
JDS, MRS
JDS, MRS
JDS
JDS
JDS
JDS
JDR, JDS
JDR, JDS
JDR, JDS
JDR, JDS
JDR, JDS
JDR, JDS
JDS
GL, JL
GL, JL
JDS
JDS
GL, JL
Team
GL, JL
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
2
2
2
2
1
2
Voucher
2
170
JL
JL
JL
JDS
JDS
JDS
JDS
JDS
JDS
JDS
JDS
JDS
374 D . sp.
375 D . sp.
376 D. californica
377 D. californica
378 D. californica
379 D. californica
380 D. californica
381 D. californica
382 D. californica
383 D. californica
384 D. radicum
JDS
365 D. spinosa
JL
JDS
364 D. spinosa
373 D . sp.
JDS
363 D. spinosa
372 D . sp.
JDS
362 D. spinosa
JL
JDS
361 D. spinosa
371 D . sp.
JDS
360 D. spinosa
JL
JL
359 D . sp.
370 D . sp.
JDS
358 D. spinosa
JDS
JDS
357 D. spinosa
369 D. spinosa
JDS
356 D. spinosa
JDS
JDS
355 D. spinosa
368 D. spinosa
JDS
353 D. spinosa
JDS
JDS
353 D. spinosa
367 D. spinosa
JDS
352 D. spinosa
JDS
JDS
351 D. spinosa
366 D. spinosa
Verified
JDS
n Specimen designation
350 D. spinosa
Identification†
DbOT23
DbOT22
DbOT22
DbOT22
DbOT22
DbOT22
DbOT22
DbOT22
DbOT22
DbOT21
DbOT21
DbOT21
DbOT21
DbOT21
DbOT21
DbOT21
DbOT21
DbOT21
DbOT21
DbOT21
DbOT21
DbOT21
DbOT21
DbOT21
DbOT21
DbOT20
DbOT20
DbOT20
DbOT20
DbOT20
DbOT20
DbOT20
DbOT20
DbOT20
DbOT20
DbOT ID
601
601
601
601
601
601
601
601
601
601
601
601
601
601
601
601
601
601
601
601
601
601
601
601
601
601
601
600
601
601
601
585
589
601
COI
601
ITS1
no. basepairs
Rose179-08
Rose524-08
Rose523-08
Rose521-08
Rose520-08
Rose519-08
Rose518-08
Rose516-08
Rose515-08
Rose611-08
Rose610-08
Rose609-08
Rose567-08
Rose566-08
Rose565-08
Rose143-08
Rose142-08
Rose141-08
Rose140-08
Rose139-08
Rose138-08
Rose137-08
Rose136-08
Rose135-08
Rose134-08
Vnmb785-09
Rose149-08
Rose133-08
Rose132-08
Rose130-08
Rose126-08
Rose125-08
Rose124-08
Rose118-08
Rose117-08
Process ID
2005-05
1993-02
1993-02
1993-02
1993-02
1993-02
1969-08
1969-08
1969-08
2007-05
2007-05
2007-05
2007-05
2007-05
2007-05
2007-05
2007-05
2007-05
2007-05
2007-05
2007-05
2007-05
2007-05
2007-05
2007-05
2008-09
1999-09
2006-04
2006-04
2006-04
2006-04
2006-04
2006-04
2005-05
Date
2005-05
Canada
USA
USA
USA
USA
USA
USA
USA
USA
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Country
Canada
Fort Albany (ON)
Davis (CA)
Davis (CA)
Davis (CA)
Davis (CA)
Davis (CA)
San Diego C (CA)
San Diego C (CA)
San Diego C (CA)
Waterton L N P (AB)
Waterton L N P (AB)
Waterton L N P (AB)
Waterton L N P (AB)
Waterton L N P (AB)
Waterton L N P (AB)
Waterton L N P (AB)
Waterton L N P (AB)
Waterton L N P (AB)
Waterton L N P (AB)
Waterton L N P (AB)
Waterton L N P (AB)
Waterton L N P (AB)
Waterton L N P (AB)
Waterton L N P (AB)
Waterton L N P (AB)
Barber`s Bay (ON)
Cypress Hills P P (SK)
Kanata (ON)
Kanata (ON)
Renfrew (ON)
Renfrew (ON)
Renfrew (ON)
Renfrew (ON)
Fort Albany (ON)
Site (Province or Region)
Fort Albany (ON)
Collection‡
MJTB
RGL, JDS
RGL, JDS
RGL, JDS
RGL, JDS
RGL, JDS
FGA
FGA
FGA
JDS, MRS
JDS, MRS
JDS, MRS
JDS, MRS
JDS, MRS
JDS, MRS
JDS, MRS
JDS, MRS
JDS, MRS
JDS, MRS
JDS, MRS
JDS, MRS
JDS, MRS
JDS, MRS
JDS, MRS
JDS, MRS
GL, JL
JDS, MRS
JDS, MRS
JDS, MRS
JDS, MRS
JDS, MRS
JDS, MRS
JDS, MRS
MJTB
Team
MJTB
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
1
1
1
1
1
1
1
1
1
1
2
1
1
1
1
1
1
1
1
Voucher
1
171
JL
JL
JL
JL
JL
JL
JL
JL
JL
JL
JL
JL
409 P . sp.
410 P . sp.
411 P . sp.
412 P . sp.
413 P . sp.
414 P . sp.
415 P . sp.
416 P . sp.
417 P . sp.
418 P . sp.
419 P . sp.
JL
400 D . sp.
JL
JL
399 D . sp.
408 P . sp.
JL
398 D . sp.
407 P . sp.
JL
397 D . sp.
ADR
JDS
396 D. radicum
406 P. pirata
JL
395 D . sp.
ADR
JL
394 D . sp.
405 P. pirata
JL
393 D . sp.
ADR
JL
392 D . sp.
404 P. arefactus
JL
391 D . sp.
ADR
JL
390 D . sp.
403 P. arefactus
JL
389 D . sp.
JDS
JDS
388 D. radicum
402 D . sp.
JDS
387 D. radicum
JL
JDS
386 D. radicum
401 D . sp.
Verified
JDS
n Specimen designation
385 D. radicum
Identification†
DbOT26
DbOT26
DbOT26
DbOT26
DbOT26
DbOT26
DbOT26
DbOT26
DbOT26
DbOT26
DbOT26
DbOT26
DbOT26
DbOT26
DbOT26
DbOT25
DbOT25
DbOT24
DbOT24
DbOT24
DbOT24
DbOT24
DbOT24
DbOT24
DbOT23
DbOT23
DbOT23
DbOT23
DbOT23
DbOT23
DbOT23
DbOT23
DbOT23
DbOT23
DbOT23
DbOT ID
601
601
601
601
601
601
590
601
601
601
601
601
601
367
365
599
599
601
601
601
601
601
601
601
601
601
601
601
601
601
601
601
601
601
COI
601
705
705
ITS1
no. basepairs
Perna229-09
Perna227-09
Perna182-09
Perna133-09
Perna131-09
Perna129-09
Perna082-09
Hygen438-10
Hygen437-10
Hygen435-10
Hygen334-10
Hygen332-10
Hygen331-10
Pipi246-09
Perna028-09
Perna008-09
Perna007-09
Rose557-08
Rose706-09
Rose705-09
Rose704-09
Rose702-09
Rose701-09
Rose087-08
Hygen364-10
Hygen363-10
Rose698-09
Rose696-09
Rose694-09
Rose693-09
Rose691-09
Rose183-08
Rose182-08
Rose181-08
Rose180-08
Process ID
2002-05
2002-05
1999-09
2002-05
2002-05
2002-05
2002-05
2009-05
2009-05
2009-05
2009-05
2009-05
2009-04
1978-05
1976-05
1967-04
1967-04
2000-06
2003-05
2003-05
2003-05
2003-05
2003-05
2003-05
2009-05
2009-05
2005-05
2005-05
2005-05
2005-05
2005-05
2005-05
2005-05
2005-05
Date
2005-05
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
USA
USA
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Country
Canada
Timmins (ON)
Timmins (ON)
Liebenthal (SK)
Lethbridge (AB)
Timmins (ON)
Timmins (ON)
Timmins (ON)
Sudbury (ON)
Sudbury (ON)
Sudbury (ON)
Sudbury (ON)
Sudbury (ON)
Renfrew (ON)
Manitoulin I (ON)
Manitoulin I (ON)
Yolo C (CA)
Yolo C (CA)
Renfrew (ON)
Sceptre (SK)
Sceptre (SK)
Sceptre (SK)
Sceptre (SK)
Sceptre (SK)
Great Sand H (SK)
Chelmsford (ON)
Chelmsford (ON)
Fort Albany (ON)
Fort Albany (ON)
Fort Albany (ON)
Fort Albany (ON)
Fort Albany (ON)
Fort Albany (ON)
Fort Albany (ON)
Fort Albany (ON)
Site (Province or Region)
Fort Albany (ON)
Collection‡
JDS
JDS
JDS, MRS
JDS
JDS
JDS
JDS
JDS
JDS
JDS
JDS
JDS
MRS, JDS
JDS
RGL, JDS
CD
CD
JDS
JDS, MRS
JDS, MRS
JDS, MRS
JDS, MRS
JDS, MRS
JDS, MRS
JL
JL
MJTB
MJTB
MJTB
MJTB
MJTB
MJTB
MJTB
MJTB
Team
MJTB
2
2
2
2
2
2
2
2
2
2
2
2
2
1
1
1
1
1
2
2
2
2
2
1
2
2
2
2
2
2
2
1
1
1
Voucher
1
172
JL
JL
JL
JL
JL
JL
JL
JL
JL
JL
JL
JL
444 P . sp.
445 P . sp.
446 P . sp.
447 P . sp.
448 P . sp.
449 P . sp.
450 P . sp.
451 P . sp.
452 P . sp.
453 P . sp.
453 P . sp.
JL
435 P . sp.
JL
ADR
434 P. pirata
443 P . sp.
JL
433 P . sp.
442 P . sp.
JL
432 P . sp.
JL
JL
431 P . sp.
441 P . sp.
JL
430 P . sp.
JL
JL
429 P . sp.
JL
JL
428 P . sp.
440 P . sp.
JL
427 P . sp.
439 P . sp.
JL
426 P . sp.
JL
JL
425 P . sp.
438 P . sp.
JL
424 P . sp.
JL
JL
423 P . sp.
JL
JL
422 P . sp.
437 P . sp.
JL
421 P . sp.
436 P . sp.
Verified
JL
n Specimen designation
420 P . sp.
Identification†
DbOT27
DbOT27
DbOT27
DbOT27
DbOT27
DbOT27
DbOT27
DbOT27
DbOT27
DbOT27
DbOT27
DbOT27
DbOT27
DbOT27
DbOT27
DbOT27
DbOT27
DbOT27
DbOT27
DbOT27
DbOT27
DbOT26
DbOT26
DbOT26
DbOT26
DbOT26
DbOT26
DbOT26
DbOT26
DbOT26
DbOT26
DbOT26
DbOT26
DbOT26
DbOT26
DbOT ID
601
601
601
601
601
502
601
601
556
601
601
601
601
601
601
601
601
599
599
601
367
599
601
601
601
601
601
575
575
601
526
601
597
477
COI
601
706
706
706
706
ITS1
no. basepairs
Pipi517-09
Pipi516-09
Pipi495-09
Pipi494-09
Pipi493-09
Perna267-09
Perna266-09
Perna265-09
Perna264-09
Perna159-09
Perna158-09
Perna157-09
Perna156-09
Perna155-09
Perna154-09
Perna153-09
Perna152-09
Lymmk189-09
Lymmk188-09
Hygen436-10
Pipi238-09
Vnmb786-09
Pipi518-09
Pipi499-09
Pipi497-09
Pipi472-09
Pipi471-09
Perna278-09
Perna274-09
Perna273-09
Perna247-09
Perna237-09
Perna235-09
Perna233-09
Perna230-09
Process ID
2002-05
2002-05
1999-09
1999-09
1999-09
2007-09
2007-09
2007-09
2007-09
2007-09
2007-09
2007-09
2007-05
2007-05
2007-05
2007-05
2007-05
2007-05
2007-05
2009-05
1981-10
2008-09
2002-05
1999-09
1999-09
2002-05
2002-05
2009-04
2002-05
2002-05
2002-05
2002-05
2002-05
2002-05
Date
2002-05
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Country
Canada
Dryden (ON)
Dryden (ON)
Liebenthal (SK)
Liebenthal (SK)
Liebenthal (SK)
Waterton L N P (AB)
Waterton L N P (AB)
Waterton L N P (AB)
Waterton L N P (AB)
Waterton L N P (AB)
Waterton L N P (AB)
Waterton L N P (AB)
Waterton L N P (AB)
Waterton L N P (AB)
Waterton L N P (AB)
Waterton L N P (AB)
Waterton L N P (AB)
Waterton L N P (AB)
Waterton L N P (AB)
Sudbury (ON)
Macklin (SK)
Barber`s Bay (ON)
Dryden (ON)
Liebenthal (SK)
Liebenthal (SK)
Timmins (ON)
Timmins (ON)
Renfrew (ON)
Timmins (ON)
Timmins (ON)
Lethbridge (AB)
Timmins (ON)
Timmins (ON)
Timmins (ON)
Site (Province or Region)
Timmins (ON)
Collection‡
STO, JDS
STO, JDS
JDS, MRS
JDS, MRS
JDS, MRS
JDS, MRS
JDS, MRS
JDS, MRS
JDS, MRS
JDS, MRS
JDS, MRS
JDS, MRS
JDS, MRS
JDS, MRS
JDS, MRS
JDS, MRS
JDS, MRS
JDS
JDS
JDS
RGL, JDS
GL, JL
STO, JDS
JDS, MRS
JDS, MRS
JDS
JDS
MRS, JDS
JDS
JDS
JDS
JDS
JDS
JDS
Team
JDS
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
1
2
2
2
2
2
2
2
2
2
2
2
2
2
Voucher
2
173
JL
JL
JL
JL
JL
JL
JL
ADR
ADR
ADR
ADR
ADR
479 P . sp.
480 P . sp.
481 P . sp.
482 P . sp.
483 P . sp.
484 P . sp.
485 P. piceus
486 P. piceus
487 P. piceus
488 P. piceus
489 P. piceus
JL
470 P . sp.
JL
JL
469 P . sp.
478 P . sp.
JL
468 P . sp.
477 P . sp.
JL
467 P . sp.
JL
JL
466 P . sp.
476 P . sp.
JL
465 P . sp.
JL
JL
464 P . sp.
475 P . sp.
JL
463 P . sp.
JL
JL
462 P . sp.
474 P . sp.
JL
461 P . sp.
JL
JL
460 P . sp.
473 P . sp.
JL
459 P . sp.
JL
JL
458 P . sp.
472 P . sp.
JL
457 P . sp.
JL
JL
456 P . sp.
471 P . sp.
Verified
JL
n Specimen designation
455 P . sp.
Identification†
DbOT29
DbOT29
DbOT29
DbOT29
DbOT29
DbOT28
DbOT28
DbOT28
DbOT27
DbOT27
DbOT27
DbOT27
DbOT27
DbOT27
DbOT27
DbOT27
DbOT27
DbOT27
DbOT27
DbOT27
DbOT27
DbOT27
DbOT27
DbOT27
DbOT27
DbOT27
DbOT27
DbOT27
DbOT27
DbOT27
DbOT27
DbOT27
DbOT27
DbOT27
DbOT27
DbOT ID
367
367
367
367
365
601
601
601
601
601
601
601
601
601
601
601
601
601
601
601
601
601
601
601
601
601
601
601
601
601
601
601
601
601
COI
601
703
703
703
ITS1
no. basepairs
Pipi236-09
Pipi235-09
Pipi233-09
Pipi232-09
Perna022-09
Hygen373-10
Hygen372-10
Hygen371-10
Rose612-08
Rose572-08
Rose571-08
Rose570-08
Rose569-08
Rose568-08
Pipi547-09
Pipi546-09
Pipi545-09
Pipi544-09
Pipi543-09
Pipi542-09
Pipi541-09
Pipi540-09
Pipi531-09
Pipi530-09
Pipi529-09
Pipi528-09
Pipi527-09
Pipi526-09
Pipi525-09
Pipi524-09
Pipi523-09
Pipi522-09
Pipi521-09
Pipi520-09
Pipi519-09
Process ID
1972-03
1972-03
1972-03
1972-03
1972-03
2009-05
2009-05
2009-05
2007-05
2007-05
2007-05
2007-05
2007-05
2007-05
2007-05
2007-05
2007-05
2007-05
2007-05
2007-05
2007-05
2007-05
2007-05
2007-05
2007-05
2007-05
2007-05
2007-05
2007-05
2007-05
2002-05
2002-05
2002-05
2002-05
Date
2002-05
USA
USA
USA
USA
USA
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Country
Canada
Solano C (CA)
Solano C (CA)
Solano C (CA)
Solano C (CA)
Solano C (CA)
Peachland (BC)
Peachland (BC)
Peachland (BC)
Waterton L N P (AB)
Waterton L N P (AB)
Waterton L N P (AB)
Waterton L N P (AB)
Waterton L N P (AB)
Waterton L N P (AB)
Waterton L N P (AB)
Waterton L N P (AB)
Waterton L N P (AB)
Waterton L N P (AB)
Waterton L N P (AB)
Waterton L N P (AB)
Waterton L N P (AB)
Waterton L N P (AB)
Waterton L N P (AB)
Waterton L N P (AB)
Waterton L N P (AB)
Waterton L N P (AB)
Waterton L N P (AB)
Waterton L N P (AB)
Waterton L N P (AB)
Waterton L N P (AB)
Dryden (ON)
Dryden (ON)
Dryden (ON)
Dryden (ON)
Site (Province or Region)
Dryden (ON)
Collection‡
JDS
JDS
JDS
JDS
JDS
RGL
RGL
RGL
JDS, MRS
JDS, MRS
JDS, MRS
JDS, MRS
JDS, MRS
JDS, MRS
JDS, MRS
JDS, MRS
JDS, MRS
JDS, MRS
JDS, MRS
JDS, MRS
JDS, MRS
JDS, MRS
JDS, MRS
JDS, MRS
JDS, MRS
JDS, MRS
JDS, MRS
JDS, MRS
JDS, MRS
JDS, MRS
STO, JDS
STO, JDS
STO, JDS
STO, JDS
Team
STO, JDS
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
Voucher
2
174
JL
JL
JL
JL
JL
JL
JL
JL
JL
JL
JL
JL
JL
512 P . sp.
513 P . sp.
514 P . sp.
515 P . sp.
516 P . sp.
517 P . sp.
518 P . sp.
519 P . sp.
520 P . sp.
521 P . sp.
522 P . sp.
523 P . sp.
524 P . sp.
JL
505 P . sp.
JL
JL
504 P . sp.
511 P . sp.
JL
503 P . sp.
JL
JL
502 P . sp.
510 P . sp.
JL
501 P . sp.
JL
JL
500 P . sp.
509 P . sp.
JL
499 P . sp.
JL
JL
498 P . sp.
508 P . sp.
JL
497 P . sp.
JL
JL
496 P . sp.
507 P . sp.
JL
495 P . sp.
JL
DbOT30
JL
506 P . sp.
DbOT30
ADR
DbOT30
DbOT30
DbOT30
DbOT30
DbOT30
DbOT30
DbOT30
DbOT30
DbOT30
DbOT30
DbOT30
DbOT30
DbOT30
DbOT30
DbOT30
DbOT30
DbOT30
DbOT30
DbOT30
DbOT30
DbOT30
DbOT30
DbOT30
DbOT30
DbOT30
DbOT30
DbOT30
DbOT30
DbOT30
DbOT30
DbOT30
DbOT30
ADR
ADR
DbOT30
Verified
ADR
DbOT ID
492 "P. weldi (nom . nud .)"§
493 "P. weldi (nom . nud .)"§
494 P . sp.
n Specimen designation
490 "P. weldi (nom . nud .)"§
491 "P. weldi (nom . nud .)"§
Identification†
566
601
560
601
601
601
601
601
601
601
601
601
601
599
599
593
593
599
599
599
599
599
599
599
599
599
599
601
601
601
601
367
367
367
COI
365
ITS1
no. basepairs
Perna195-09
Perna192-09
Perna191-09
Perna181-09
Perna180-09
Perna178-09
Perna177-09
Perna176-09
Perna175-09
Perna174-09
Perna173-09
Perna169-09
Perna168-09
Perna094-09
Perna093-09
Perna090-09
Perna089-09
Perna056-09
Perna055-09
Perna054-09
Perna053-09
Perna052-09
Perna051-09
Perna050-09
Perna049-09
Perna046-09
Perna045-09
Hygen370-10
Hygen366-10
Hygen295-10
Hygen294-10
Pipi268-09
Pipi264-09
Pipi262-09
Perna035-09
Process ID
2005-05
2005-05
2003-05
2001-08
2001-08
2001-08
1999-10
1999-10
2005-05
2005-05
2005-05
2003-05
2003-05
2001-08
2001-08
1999-10
1999-10
2005-05
2005-05
2005-05
2005-05
2005-05
2005-05
2005-05
2005-05
2003-05
2003-05
2008-09
2008-09
2009-05
2009-05
1981-10
1981-10
1971-08
Date
1981-10
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Country
Canada
Thunder Bay (ON)
Thunder Bay (ON)
Coaldale (AB)
Timmins (ON)
Timmins (ON)
Timmins (ON)
Winfield (BC)
Winfield (BC)
Fort Albany (ON)
Fort Albany (ON)
Fort Albany (ON)
Coaldale (AB)
Coaldale (AB)
Timmins (ON)
Timmins (ON)
Winfield (BC)
Winfield (BC)
Fort Albany (ON)
Fort Albany (ON)
Fort Albany (ON)
Fort Albany (ON)
Thunder Bay (ON)
Thunder Bay (ON)
Thunder Bay (ON)
Thunder Bay (ON)
Coaldale (AB)
Coaldale (AB)
Timmins (ON)
Timmins (ON)
Fort Macleod (AB)
Fort Macleod (AB)
Lethbridge (AB)
Banff (AB)
Dawson City (YK)
Site (Province or Region)
Banff (AB)
Collection‡
MJTB, JDS
MJTB, JDS
JDS, MRS
JDS
JDS
JDS
RGL, JDS
RGL, JDS
MJTB
MJTB
MJTB
JDS, MRS
JDS, MRS
JDS
JDS
RGL, JDS
RGL, JDS
MJTB
MJTB
MJTB
MJTB
MJTB, JDS
MJTB, JDS
MJTB, JDS
MJTB, JDS
JDS, MRS
JDS, MRS
GL, JL
GL, JL
JDS
JDS
RGL, JDS
RGL, JDS
RGL, JDS
Team
RGL, JDS
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
1
1
1
Voucher
1
175
JL
JL
JL
JL
JL
JL
JL
JL
JL
JL
JL
JL
539 P . sp.
550 P . sp.
551 P . sp.
552 P . sp.
553 P . sp.
553 P . sp.
555 P . sp.
556 P . sp.
557 P . sp.
558 P . sp.
559 P . sp.
JL
530 P . sp.
JL
JL
539 P . sp.
538 P . sp.
JL
538 P . sp.
537 P . sp.
JL
537 P . sp.
JL
JL
536 P . sp.
536 P . sp.
JL
535 P . sp.
JL
JL
534 P . sp.
535 P . sp.
JL
533 P . sp.
JL
JL
532 P . sp.
534 P . sp.
JL
531 P . sp.
JL
JL
530 P . sp.
533 P . sp.
JL
529 P . sp.
JL
JL
528 P . sp.
532 P . sp.
JL
527 P . sp.
JL
JL
526 P . sp.
531 P . sp.
Verified
JL
n Specimen designation
525 P . sp.
Identification†
DbOT30
DbOT30
DbOT30
DbOT30
DbOT30
DbOT30
DbOT30
DbOT30
DbOT30
DbOT30
DbOT30
DbOT30
DbOT30
DbOT30
DbOT30
DbOT30
DbOT30
DbOT30
DbOT30
DbOT30
DbOT30
DbOT30
DbOT30
DbOT30
DbOT30
DbOT30
DbOT30
DbOT30
DbOT30
DbOT30
DbOT30
DbOT30
DbOT30
DbOT30
DbOT30
DbOT ID
601
601
601
601
601
601
601
601
601
601
601
601
601
601
601
601
601
601
601
601
601
601
601
601
601
597
582
597
582
601
601
565
601
557
COI
553
704
704
704
704
704
ITS1
no. basepairs
Pipi435-09
Pipi434-09
Pipi433-09
Pipi432-09
Pipi431-09
Pipi430-09
Pipi429-09
Pipi428-09
Pipi427-09
Pipi424-09
Pipi423-09
Pipi422-09
Pipi421-09
Pipi420-09
Pipi419-09
Pipi418-09
Pipi417-09
Pipi416-09
Pipi415-09
Pipi414-09
Pipi412-09
Pipi410-09
Pipi405-09
Pipi386-09
Pipi178-09
Pipi176-09
Pipi175-09
Pipi174-09
Pipi172-09
Pipi039-09
Perna201-09
Perna200-09
Perna198-09
Perna197-09
Perna196-09
Process ID
2002-10
2002-10
2002-10
2002-10
2002-10
2002-10
2002-10
2003-05
2003-05
2003-05
2003-05
2003-05
2003-05
2005-05
2005-05
2005-05
2005-05
2005-05
2005-05
2005-05
2005-05
2005-05
2005-05
2003-05
2008-09
2008-09
2008-09
2008-09
2008-09
2008-09
2005-05
2005-05
2005-05
2005-05
Date
2005-05
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Country
Canada
Coaldale (AB)
Coaldale (AB)
Coaldale (AB)
Coaldale (AB)
Coaldale (AB)
Coaldale (AB)
Coaldale (AB)
Coaldale (AB)
Coaldale (AB)
Coaldale (AB)
Coaldale (AB)
Coaldale (AB)
Coaldale (AB)
Fort Albany (ON)
Fort Albany (ON)
Fort Albany (ON)
Fort Albany (ON)
Fort Albany (ON)
Fort Albany (ON)
Fort Albany (ON)
Thunder Bay (ON)
Thunder Bay (ON)
Thunder Bay (ON)
Pincher Creek (AB)
Sudbury (ON)
Sudbury (ON)
Sudbury (ON)
Sudbury (ON)
Sudbury (ON)
Sudbury (ON)
Fort Albany (ON)
Fort Albany (ON)
Fort Albany (ON)
Fort Albany (ON)
Site (Province or Region)
Thunder Bay (ON)
Collection‡
JDS
JDS
JDS
JDS
JDS
JDS
JDS
JDS, MRS
JDS, MRS
JDS, MRS
JDS, MRS
JDS, MRS
JDS, MRS
MJTB
MJTB
MJTB
MJTB
MJTB
MJTB
MJTB
MJTB, JDS
MJTB, JDS
MJTB, JDS
JDS, MRS
GL, JL
GL, JL
GL, JL
GL, JL
GL, JL
GL, JL
MJTB
MJTB
MJTB
MJTB
Team
MJTB, JDS
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
Voucher
2
176
JL
JL
JL
JL
JL
JL
JL
JL
JL
JL
JL
JL
JL
583 P . sp.
584 P . sp.
585 P . sp.
586 P . sp.
587 P . sp.
588 P . sp.
589 P . sp.
590 P . sp.
591 P . sp.
592 P . sp.
593 P . sp.
594 P . sp.
ADR
582 P . sp.
ADR
JL
ADR
573 "P. ashmeadi (nom . nud .)"§
574 "P. ashmeadi (nom . nud .)"§
575 "P. cataractans (nom . nud .)"§
581 P . sp.
JL
572 P . sp.
JL
JL
571 P . sp.
580 P . sp.
JL
570 P . sp.
JL
JL
569 P . sp.
JL
JL
568 P . sp.
579 P . sp.
JL
567 P . sp.
578 P . sp.
JL
566 P . sp.
JL
JL
565 P . sp.
577 P . sp.
DbOT32
JL
564 P . sp.
JL
DbOT32
JL
563 P . sp.
576 P . sp.
DbOT32
JL
562 P . sp.
DbOT32
DbOT32
DbOT32
DbOT32
DbOT32
DbOT32
DbOT32
DbOT32
DbOT32
DbOT32
DbOT32
DbOT32
DbOT32
DbOT32
DbOT32
DbOT32
DbOT32
DbOT32
DbOT32
DbOT31
DbOT31
DbOT31
DbOT30
DbOT30
DbOT30
DbOT30
DbOT30
DbOT30
DbOT30
DbOT30
DbOT30
JL
561 P . sp.
DbOT30
Verified
JL
DbOT ID
n Specimen designation
560 P . sp.
Identification†
601
601
601
601
601
601
601
601
601
601
601
601
601
599
599
601
601
601
601
367
367
367
601
601
601
599
601
601
574
601
601
569
601
601
COI
601
699
699
699
ITS1
no. basepairs
Perna160-09
Perna151-09
Perna150-09
Perna147-09
Perna146-09
Perna142-09
Perna139-09
Perna138-09
Perna136-09
Perna125-09
Perna124-09
Perna117-09
Perna116-09
Perna077-09
Perna072-09
Hygen367-10
Hygen358-10
Hygen356-10
Hygen311-10
Pipi209-09
Pipi197-09
Pipi195-09
Pipi514-09
Pipi508-09
Perna145-09
Vnmb766-09
Pipi566-09
Pipi565-09
Pipi491-09
Pipi490-09
Pipi482-09
Pipi481-09
Pipi479-09
Pipi478-09
Pipi436-09
Process ID
2008-02
2002-05
2002-05
2002-05
2002-05
2002-05
2002-05
2002-05
2002-05
2004-10
2004-10
2007-05
2007-05
2004-10
2007-05
2008-09
2008-09
2009-05
2009-10
1979-05
1979-05
1979-05
2002-05
2002-05
2002-05
2008-09
2002-10
2002-10
1999-10
1999-10
2001-08
2001-08
2001-08
2001-08
Date
2002-10
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Country
Canada
Peachland (BC)
Dryden (ON)
Dryden (ON)
Red Lake (ON)
Red Lake (ON)
Cochrane (ON)
Cochrane (ON)
Cochrane (ON)
Cochrane (ON)
Manitoulin I (ON)
Manitoulin I (ON)
Coaldale (AB)
Coaldale (AB)
Manitoulin I (ON)
Coaldale (AB)
Timmins (ON)
Timmins (ON)
Chelmsford (ON)
Sudbury (ON)
Sudbury (ON)
Manitoulin I (ON)
Manitoulin I (ON)
Red Lake (ON)
Red Lake (ON)
Red Lake (ON)
Timmins (ON)
Coaldale (AB)
Coaldale (AB)
Winfield (BC)
Winfield (BC)
Timmins (ON)
Timmins (ON)
Timmins (ON)
Timmins (ON)
Site (Province or Region)
Coaldale (AB)
Collection‡
JB, RGL, JDS
STO, JDS
STO, JDS
STO, JDS
STO, JDS
STO, JDS
STO, JDS
STO, JDS
STO, JDS
ADR, JDR, JDS
ADR, JDR, JDS
JDS, MRS
JDS, MRS
ADR, JDR, JDS
JDS, MRS
GL, JL
GL, JL
JDS
JDS
JDS
JDS
JDS
STO, JDS
STO, JDS
STO, JDS
GL, JL
JDS
JDS
RGL, JDS
RGL, JDS
JDS
JDS
JDS
JDS
Team
JDS
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
1
1
1
2
2
2
2
2
2
2
2
2
2
2
2
Voucher
2
177
JL
JL
JL
JL
JL
JL
JL
JL
JL
JL
JL
JL
619 P . sp.
620 P . sp.
621 P . sp.
622 P . sp.
623 P . sp.
624 P . sp.
625 P . sp.
626 P . sp.
627 P . sp.
628 P . sp.
629 P . sp.
JL
610 P . sp.
JL
JL
609 P . sp.
618 P . sp.
JL
608 P . sp.
617 P . sp.
JL
607 P . sp.
JL
JL
606 P . sp.
616 P . sp.
JL
605 P . sp.
JL
JL
604 P . sp.
615 P . sp.
JL
603 P . sp.
JL
JL
602 P . sp.
614 P . sp.
JL
601 P . sp.
JL
JL
600 P . sp.
JL
JL
599 P . sp.
613 P . sp.
JL
598 P . sp.
612 P . sp.
JL
597 P . sp.
JL
JL
596 P . sp.
611 P . sp.
Verified
JL
n Specimen designation
595 P . sp.
Identification†
DbOT32
DbOT32
DbOT32
DbOT32
DbOT32
DbOT32
DbOT32
DbOT32
DbOT32
DbOT32
DbOT32
DbOT32
DbOT32
DbOT32
DbOT32
DbOT32
DbOT32
DbOT32
DbOT32
DbOT32
DbOT32
DbOT32
DbOT32
DbOT32
DbOT32
DbOT32
DbOT32
DbOT32
DbOT32
DbOT32
DbOT32
DbOT32
DbOT32
DbOT32
DbOT32
DbOT ID
601
601
601
601
601
601
601
601
597
588
582
582
590
601
597
582
582
582
582
584
601
555
593
530
601
555
601
529
601
601
601
601
601
601
COI
601
699
699
699
699
ITS1
no. basepairs
Pipi515-09
Pipi513-09
Pipi511-09
Pipi509-09
Pipi507-09
Pipi505-09
Pipi503-09
Pipi500-09
Pipi177-09
Pipi173-09
Pipi171-09
Pipi170-09
Pipi168-09
Pipi166-09
Pipi165-09
Pipi164-09
Pipi163-09
Pipi162-09
Pipi160-09
Perna270-09
Perna269-09
Perna268-09
Perna262-09
Perna260-09
Perna259-09
Perna257-09
Perna226-09
Perna223-09
Perna167-09
Perna166-09
Perna165-09
Perna164-09
Perna163-09
Perna162-09
Perna161-09
Process ID
2002-05
2002-05
2002-05
2002-05
2002-05
2002-05
2002-05
2002-05
2008-09
2008-09
2008-09
2008-09
2008-09
2008-09
2008-09
2008-09
2008-09
2008-09
2008-09
2008-02
2008-02
2008-02
2002-05
2002-05
2002-05
2002-05
2004-10
2004-10
2008-02
2008-02
2008-02
2008-02
2008-02
2008-02
Date
2008-02
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Country
Canada
Red Lake (ON)
Red Lake (ON)
Red Lake (ON)
Red Lake (ON)
Cochrane (ON)
Cochrane (ON)
Cochrane (ON)
Cochrane (ON)
Sudbury (ON)
Sudbury (ON)
Sudbury (ON)
Sudbury (ON)
Sudbury (ON)
Sudbury (ON)
Sudbury (ON)
Sudbury (ON)
Sudbury (ON)
Sudbury (ON)
Sudbury (ON)
Peachland (BC)
Peachland (BC)
Peachland (BC)
Cochrane (ON)
Cochrane (ON)
Cochrane (ON)
Cochrane (ON)
Manitoulin I (ON)
Manitoulin I (ON)
Peachland (BC)
Peachland (BC)
Peachland (BC)
Peachland (BC)
Peachland (BC)
Peachland (BC)
Site (Province or Region)
Peachland (BC)
Collection‡
STO, JDS
STO, JDS
STO, JDS
STO, JDS
STO, JDS
STO, JDS
STO, JDS
STO, JDS
GL, JL
GL, JL
GL, JL
GL, JL
GL, JL
GL, JL
GL, JL
GL, JL
GL, JL
GL, JL
GL, JL
JB, RGL, JDS
JB, RGL, JDS
JB, RGL, JDS
STO, JDS
STO, JDS
STO, JDS
STO, JDS
ADR, JDR, JDS
ADR, JDR, JDS
JB, RGL, JDS
JB, RGL, JDS
JB, RGL, JDS
JB, RGL, JDS
JB, RGL, JDS
JB, RGL, JDS
Team
JB, RGL, JDS
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
Voucher
2
178
DbOT34
DbOT34
ADR
ADR
JL
JL
JL
JL
JL
JL
JL
JL
657 P . sp.
658 P . sp.
659 P . sp.
660 P . sp.
661 P . sp.
662 P . sp.
663 P . sp.
664 P . sp.
DbOT34
DbOT34
DbOT34
DbOT34
DbOT34
DbOT34
DbOT34
DbOT34
DbOT34
ADR
653 "P. fusicolus (nom . nud .)"§
655 "P. fusicolus (nom . nud .)"§
656 "P. fusicolus (nom . nud .)"§
DbOT33
DbOT33
DbOT33
DbOT33
DbOT34
DbOT33
DbOT33
DbOT34
JL
645 P . sp.
DbOT33
ADR
JL
644 P . sp.
DbOT33
ADR
JL
643 P . sp.
DbOT33
DbOT34
JL
642 P . sp.
DbOT33
ADR
JL
641 P . sp.
DbOT33
651 "P. fusicolus (nom . nud .)"§
652 "P. fusicolus (nom . nud .)"§
653 "P. fusicolus (nom . nud .)"§
JL
640 P . sp.
DbOT33
JL
JL
639 P . sp.
DbOT33
650 P . sp.
JL
638 P . sp.
DbOT33
DbOT32
JL
JL
637 P . sp.
649 P . sp.
JL
636 P . sp.
DbOT32
JL
JL
635 P . sp.
DbOT32
648 P . sp.
JL
634 P . sp.
DbOT32
JL
JL
633 P . sp.
DbOT32
DbOT32
647 P . sp.
JL
632 P . sp.
JL
JL
631 P . sp.
DbOT32
DbOT ID
646 P . sp.
Verified
JL
n Specimen designation
630 P . sp.
Identification†
601
601
601
601
601
599
599
599
367
367
367
367
367
599
601
601
537
558
601
584
575
601
601
601
599
601
601
601
599
601
601
601
601
601
COI
601
702
ITS1
no. basepairs
Pipi426-09
Pipi425-09
Pipi401-09
Pipi394-09
Pipi390-09
Perna048-09
Perna047-09
Perna041-09
Pipi221-09
Pipi220-09
Pipi219-09
Pipi218-09
Pipi214-09
Perna016-09
Pipi458-09
Pipi455-09
Pipi447-09
Perna285-09
Perna283-09
Perna222-09
Perna218-09
Perna188-09
Perna120-09
Perna115-09
Perna075-09
Hygen316-10
Hygen314-10
Hygen312-10
Vnmb771-09
Pipi559-09
Pipi557-09
Pipi555-09
Pipi553-09
Pipi550-09
Pipi533-09
Process ID
2003-05
2003-05
2002-10
2002-05
2002-05
2003-05
2003-05
2002-05
1979-05
1979-05
1979-05
1979-05
1981-10
1979-05
2007-05
2007-05
1999-09
2002-10
2002-10
2007-05
2003-05
1999-09
2002-10
2003-05
2002-10
2009-05
2009-05
2009-05
2008-09
2008-02
2008-02
2007-05
2007-05
2007-05
Date
2007-05
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Country
Canada
Coaldale (AB)
Coaldale (AB)
Coaldale (AB)
Coaldale (AB)
Coaldale (AB)
Coaldale (AB)
Coaldale (AB)
Coaldale (AB)
Manitoulin I (ON)
Manitoulin I (ON)
Manitoulin I (ON)
Manitoulin I (ON)
Macklin (SK)
Manitoulin I (ON)
Coaldale (AB)
Coaldale (AB)
Douglas P P (SK)
Coaldale (AB)
Coaldale (AB)
Coaldale (AB)
Coaldale (AB)
Douglas P P (SK)
Coaldale (AB)
Coaldale (AB)
Coaldale (AB)
Fort Macleod (AB)
Sudbury (ON)
Fort Macleod (AB)
Clute (ON)
Peachland (BC)
Peachland (BC)
Peachland (BC)
Peachland (BC)
Peachland (BC)
Site (Province or Region)
Waterton L N P (AB)
Collection‡
JDS, MRS
JDS, MRS
BE, JDS
JDS
JDS
JDS, MRS
JDS, MRS
JDS
JDS
JDS
JDS
JDS
RGL, JDS
JDS
JDS, MRS
JDS, MRS
JDS, MRS
JDS
JDS
JDS, MRS
JDS, MRS
JDS, MRS
JDS
JDS, MRS
JDS
JDS
JDS
JDS
GL, JL
JB, RGL, JDS
JB, RGL, JDS
JB, RGL, JDS
JB, RGL, JDS
JB, RGL, JDS
Team
JDS, MRS
2
2
2
2
2
2
2
2
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
Voucher
2
179
JL
JL
JL
JL
JL
JL
JL
JL
JL
JL
JL
JL
JL
687 P . sp.
688 P . sp.
689 P . sp.
690 P . sp.
691 P . sp.
692 P . sp.
693 P . sp.
694 P . sp.
695 P . sp.
696 P . sp.
697 P . sp.
698 P . sp.
699 P . sp.
JL
680 P . sp.
JL
JL
679 P . sp.
686 P . sp.
JL
678 P . sp.
JL
JL
677 P . sp.
685 P . sp.
JL
676 P . sp.
JL
JL
675 P . sp.
684 P . sp.
JL
674 P . sp.
JL
JL
673 P . sp.
683 P . sp.
JL
672 P . sp.
JL
JL
671 P . sp.
682 P . sp.
JL
670 P . sp.
JL
JL
669 P . sp.
681 P . sp.
DbOT35
JL
DbOT36
DbOT36
DbOT36
DbOT36
DbOT36
DbOT36
DbOT36
DbOT36
DbOT36
DbOT36
DbOT36
DbOT36
DbOT36
DbOT36
DbOT36
DbOT36
DbOT36
DbOT36
DbOT36
DbOT36
DbOT36
DbOT35
DbOT35
DbOT35
DbOT35
DbOT35
DbOT35
DbOT35
DbOT35
DbOT35
DbOT35
DbOT35
DbOT35
ADR
ADR
DbOT35
Verified
ADR
DbOT ID
667 "P. fusicolus (nom . nud .)"§
668 P . sp.
n Specimen designation
665 "P. fusicolus (nom . nud .)"§
666 "P. fusicolus (nom . nud .)"§
Identification†
601
601
601
601
601
601
601
601
601
601
599
599
599
599
599
599
599
599
601
601
601
601
601
601
601
601
576
579
601
601
601
598
599
599
COI
599
706
701
701
ITS1
no. basepairs
Perna185-09
Perna111-09
Perna110-09
Perna109-09
Perna108-09
Perna107-09
Perna106-09
Perna105-09
Perna104-09
Perna103-09
Perna064-09
Perna063-09
Perna062-09
Perna061-09
Perna060-09
Perna059-09
Perna058-09
Perna057-09
Hygen368-10
Hygen306-10
Hygen288-10
Pipi444-09
Pipi439-09
Pipi438-09
Pipi437-09
Pipi404-09
Pipi403-09
Pipi398-09
Perna102-09
Perna101-09
Perna100-09
Perna096-09
Perna014-09
Perna013-09
Perna012-09
Process ID
1999-09
1999-09
1999-09
1999-09
1999-09
1999-09
1999-09
1999-09
1999-09
2003-04
1999-09
1999-09
1999-09
1999-09
1999-09
1999-09
1999-09
1999-09
2009-05
2009-04
2009-05
2001-04
2003-04
2003-04
2003-04
2002-10
2002-10
2002-10
2003-04
2003-04
2003-04
2001-04
1977-05
1977-05
Date
1977-05
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Country
Canada
Saskatoon (SK)
Douglas P P (SK)
Douglas P P (SK)
Douglas P P (SK)
Douglas P P (SK)
Saskatoon (SK)
Saskatoon (SK)
Saskatoon (SK)
Saskatoon (SK)
Renfrew (ON)
Douglas P P (SK)
Douglas P P (SK)
Douglas P P (SK)
Saskatoon (SK)
Saskatoon (SK)
Saskatoon (SK)
Douglas P P (SK)
Douglas P P (SK)
Waterton L N P (AB)
Renfrew (ON)
Waterton L N P (AB)
Renfrew (ON)
Renfrew (ON)
Renfrew (ON)
Renfrew (ON)
Coaldale (AB)
Coaldale (AB)
Coaldale (AB)
Renfrew (ON)
Renfrew (ON)
Renfrew (ON)
Renfrew (ON)
Arnprior (ON)
Arnprior (ON)
Site (Province or Region)
Allumette I (QC)
Collection‡
JDS, MRS
JDS, MRS
JDS, MRS
JDS, MRS
JDS, MRS
JDS, MRS
JDS, MRS
JDS, MRS
JDS, MRS
JDS
JDS, MRS
JDS, MRS
JDS, MRS
JDS, MRS
JDS, MRS
JDS, MRS
JDS, MRS
JDS, MRS
JDS
MRS, JDS
JDS
JDS
JDS
JDS
JDS
BE, JDS
BE, JDS
BE, JDS
JDS
JDS
JDS
JDS
JDS
JDS
Team
JDS
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
1
1
Voucher
1
180
SR
SR
SR
SR
712 T. magnificus
713 T. magnificus
714 T. chrysochlorus
715 T. chrysochlorus
SR
JL
JL
JL
JL
JL
JL
JL
JL
JL
JL
JL
JL
722 T. chrysochlorus
723 T . sp.
724 T . sp.
725 T . sp.
726 T . sp.
727 T . sp.
728 T . sp.
729 T . sp.
730 T . sp.
731 T . sp.
732 T . sp.
733 T . sp.
734 T . sp.
SR
JL
711 T . sp.
721 T. chrysochlorus
JL
710 T . sp.
SR
JL
709 T . sp.
720 T. chrysochlorus
JL
708 T . sp.
SR
JL
707 T . sp.
719 T. chrysochlorus
JL
706 T . sp.
SR
SR
705 T. flavicoxa
718 T. chrysochlorus
SR
704 T. flavicoxa
SR
JL
703 P . sp.
717 T. chrysochlorus
JL
702 P . sp.
SR
JL
701 P . sp.
716 T. chrysochlorus
Verified
JL
n Specimen designation
700 P . sp.
Identification†
DbOT40
DbOT40
DbOT40
DbOT40
DbOT40
DbOT40
DbOT40
DbOT40
DbOT40
DbOT40
DbOT40
DbOT40
DbOT40
DbOT40
DbOT40
DbOT40
DbOT40
DbOT40
DbOT40
DbOT40
DbOT40
DbOT39
DbOT39
DbOT38
DbOT38
DbOT38
DbOT38
DbOT38
DbOT38
DbOT37
DbOT37
DbOT36
DbOT36
DbOT36
DbOT36
DbOT ID
381
465
465
381
381
381
307
464
305
464
367
601
367
367
367
318
367
367
367
367
367
367
367
464
464
367
601
367
367
367
367
601
601
601
COI
601
450
450
ITS1
no. basepairs
Torna172-10
Torna170-10
Torna168-10
Torna119-10
Torna118-10
Torna117-10
Torna116-10
Torna115-10
Torna024-10
Torna022-10
Hygen398-10
Hygen383-10
Pipi357-09
Pipi345-09
Pipi344-09
Pipi343-09
Pipi342-09
Pipi341-09
Pipi339-09
Pipi338-09
Pipi337-09
Pipi370-09
Pipi369-09
Torna035-10
Torna033-10
Hygen404-10
Hygen402-10
Hygen401-10
Hygen399-10
Pipi366-09
Pipi361-09
Pipi448-09
Perna190-09
Perna189-09
Perna187-09
Process ID
2004-10
2004-10
2004-10
2004-10
2004-10
2004-10
2004-10
2004-10
2004-10
2004-10
2009-10
2009-09
1999-09
1997-05
1997-05
1997-05
1997-05
1999-09
1999-09
1999-09
1999-09
1997-09
1992-10
2000-05
2000-05
2009-05
2009-05
2009-05
2009-05
1998-04
1996-05
1999-09
1999-09
1999-09
Date
1999-09
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Country
Canada
Manitoulin I (ON)
Manitoulin I (ON)
Manitoulin I (ON)
Manitoulin I (ON)
Manitoulin I (ON)
Manitoulin I (ON)
Manitoulin I (ON)
Manitoulin I (ON)
Manitoulin I (ON)
Manitoulin I (ON)
Sudbury (ON)
Deux Rivieres (ON)
Saskatoon (SK)
Manitoulin I (ON)
Manitoulin I (ON)
Manitoulin I (ON)
Manitoulin I (ON)
Douglas P P (SK)
Douglas P P (SK)
Douglas P P (SK)
Douglas P P (SK)
Kelowna (BC)
(SK)
Sudbury (ON)
Sudbury (ON)
Chelmsford (ON)
Chelmsford (ON)
Chelmsford (ON)
Chelmsford (ON)
Chelmsford (ON)
Manitoulin I (ON)
Douglas P P (SK)
Douglas P P (SK)
Douglas P P (SK)
Site (Province or Region)
Saskatoon (SK)
Collection‡
ADR, JDR, JDS
ADR, JDR, JDS
ADR, JDR, JDS
ADR, JDR, JDS
ADR, JDR, JDS
ADR, JDR, JDS
ADR, JDR, JDS
ADR, JDR, JDS
ADR, JDR, JDS
ADR, JDR, JDS
JDS
JDS
JDS, MRS
SEB, JDS
SEB, JDS
SEB, JDS
SEB, JDS
JDS, MRS
JDS, MRS
JDS, MRS
JDS, MRS
RGL
JDS
JLe
JLe
JL
JL
JL
JL
JDS, MSJ
JDS
JDS, MRS
JDS, MRS
JDS, MRS
Team
JDS, MRS
2
2
2
2
2
2
2
2
2
2
2
2
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
1
1
2
2
2
Voucher
2
181
JL
JL
JL
JL
JL
JL
JL
JL
JL
JL
JL
SR
759 T . sp.
760 T . sp.
761 T . sp.
762 T . sp.
763 T . sp.
764 T . sp.
765 T . sp.
766 T . sp.
767 T . sp.
768 T . sp.
769 T. bedeguaris
SR
750 T. chrysochlorus
JL
JL
749 T. sp.
758 T . sp.
JL
748 T . sp.
757 T . sp.
JL
747 T . sp.
SR
JL
746 T . sp.
756 T. chrysochlorus
JL
745 T . sp.
SR
JL
744 T . sp.
755 T. chrysochlorus
JL
743 T . sp.
SR
JL
742 T . sp.
753 T. chrysochlorus
JL
741 T . sp.
SR
JL
740 T . sp.
753 T. chrysochlorus
SR
739 T. chrysochlorus
SR
SR
738 T. chrysochlorus
752 T. chrysochlorus
JL
737 T . sp.
SR
JL
736 T . sp.
751 T. chrysochlorus
Verified
JL
n Specimen designation
735 T . sp.
Identification†
DbOT44
DbOT43
DbOT43
DbOT43
DbOT43
DbOT43
DbOT43
DbOT43
DbOT43
DbOT43
DbOT43
DbOT43
DbOT43
DbOT43
DbOT43
DbOT43
DbOT42
DbOT42
DbOT42
DbOT42
DbOT41
DbOT41
DbOT41
DbOT41
DbOT41
DbOT41
DbOT41
DbOT41
DbOT41
DbOT41
DbOT41
DbOT41
DbOT40
DbOT40
DbOT40
DbOT ID
364
319
341
367
381
381
381
381
421
464
464
601
367
367
367
367
367
367
367
367
367
601
367
367
367
367
367
381
464
464
367
367
367
465
COI
381
448
382
ITS1
no. basepairs
Pipi286-09
Torna204-10
Torna202-10
Torna200-10
Torna183-10
Torna182-10
Torna181-10
Torna180-10
Torna043-10
Torna011-10
Torna010-10
Hygen439-10
Hygen407-10
Pipi353-09
Pipi352-09
Pipi340-09
Pipi351-09
Pipi350-09
Pipi349-09
Pipi347-09
Torna232-10
Torna231-10
Torna228-10
Torna225-10
Torna220-10
Torna216-10
Torna215-10
Torna148-10
Torna146-10
Torna144-10
Pipi359-09
Pipi358-09
Torna198-10
Torna175-10
Torna173-10
Process ID
1998-05
2002-05
2002-05
2002-05
2002-05
2002-05
2002-05
2002-05
2002-05
2007-09
2007-09
2009-05
2009-05
2000-04
1999-08
1999-09
1997-09
1997-09
1997-09
1997-09
2008-01
2008-01
2005-05
2005-05
2005-05
2005-05
2005-05
2005-05
2005-05
2005-05
1998-05
1998-05
2004-10
2004-10
Date
2004-10
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Country
Canada
Cochrane (ON)
Dryden (ON)
Dryden (ON)
Dryden (ON)
Dryden (ON)
Dryden (ON)
Dryden (ON)
Dryden (ON)
Barber`s Bay (ON)
Waterton L N P (AB)
Waterton L N P (AB)
Chelmsford (ON)
Timmins (ON)
Manitoulin I (ON)
Timmins (ON)
Douglas P P (SK)
Queen Charlotte I (BC)
Queen Charlotte I (BC)
Queen Charlotte I (BC)
Queen Charlotte I (BC)
Sudbury (ON)
Sudbury (ON)
Fort Albany (ON)
Fort Albany (ON)
Fort Albany (ON)
Fort Albany (ON)
Fort Albany (ON)
Fort Albany (ON)
Fort Albany (ON)
Fort Albany (ON)
Moosonee (ON)
Moosonee (ON)
Manitoulin I (ON)
Manitoulin I (ON)
Site (Province or Region)
Manitoulin I (ON)
Collection‡
RGL, JDS
STO, JDS
STO, JDS
STO, JDS
STO, JDS
STO, JDS
STO, JDS
STO, JDS
STO, JDS
JDS, MRS
JDS, MRS
JDS
ADR, JDS
JB, JLe, SR
GB, JLe, JDS, JW
JDS, MRS
JDS
JDS
JDS
JDS
AJR, JDS
AJR, JDS
MJTB
MJTB
MJTB
MJTB
MJTB
MJTB
MJTB
MJTB
JDS, MSJ
JDS, MSJ
ADR, JDR, JDS
ADR, JDR, JDS
Team
ADR, JDR, JDS
1
2
2
2
2
2
2
2
2
2
2
2
2
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
1
1
2
2
Voucher
2
182
SR
SR
SR
SR
SR
778 T. bedeguaris
779 T. bedeguaris
780 T. bedeguaris
781 T. bedeguaris
782 T. bedeguaris
SR
SR
SR
SR
SR
SR
SR
SR
JL
JL
JL
JL
JL
JL
JL
JL
JL
JL
JL
786 T. bedeguaris
787 T. bedeguaris
788 T. bedeguaris
789 T. bedeguaris
790 T. bedeguaris
791 T. bedeguaris
792 T. bedeguaris
793 T. bedeguaris
794 T . sp.
795 T . sp.
796 T . sp.
797 T . sp.
798 T . sp.
799 T . sp.
800 T . sp.
801 T . sp.
802 T . sp.
803 T . sp.
804 T . sp.
SR
SR
777 T. bedeguaris
785 T. bedeguaris
SR
776 T. bedeguaris
SR
SR
775 T. bedeguaris
SR
SR
774 T. bedeguaris
783 T. bedeguaris
DbOT44
SR
773 T. bedeguaris
784 T. bedeguaris
DbOT44
SR
772 T. bedeguaris
DbOT44
DbOT44
DbOT44
DbOT44
DbOT44
DbOT44
DbOT44
DbOT44
DbOT44
DbOT44
DbOT44
DbOT44
DbOT44
DbOT44
DbOT44
DbOT44
DbOT44
DbOT44
DbOT44
DbOT44
DbOT44
DbOT44
DbOT44
DbOT44
DbOT44
DbOT44
DbOT44
DbOT44
DbOT44
DbOT44
DbOT44
DbOT44
SR
771 T. bedeguaris
DbOT44
Verified
SR
DbOT ID
n Specimen designation
770 T. bedeguaris
Identification†
367
367
367
367
367
367
367
601
367
367
367
367
367
367
367
367
367
367
367
367
367
367
367
367
367
367
367
367
367
367
367
367
367
367
COI
367
393
ITS1
no. basepairs
Hygen393-10
Hygen392-10
Hygen391-10
Hygen390-10
Hygen389-10
Hygen388-10
Hygen387-10
Hygen386-10
Hygen385-10
Hygen384-10
Hygen381-10
Pipi329-09
Pipi328-09
Pipi327-09
Pipi326-09
Pipi325-09
Pipi323-09
Pipi319-09
Pipi318-09
Pipi311-09
Pipi310-09
Pipi309-09
Pipi308-09
Pipi303-09
Pipi302-09
Pipi301-09
Pipi299-09
Pipi297-09
Pipi296-09
Pipi295-09
Pipi294-09
Pipi291-09
Pipi289-09
Pipi288-09
Pipi287-09
Process ID
2009-04
2009-04
2009-04
2006-05
2006-05
2009-05
2009-05
2009-05
2009-05
2006-05
2009-05
1999-10
1999-10
1999-06
1999-10
1999-10
2000-04
1999-09
1999-09
1997-10
1997-10
1995-10
1995-10
1997-05
1997-05
1997-05
1999-05
1999-05
1997-05
1997-05
1999-09
1999-09
2000-04
2000-04
Date
1998-05
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Country
Canada
Picton (ON)
Picton (ON)
Picton (ON)
Coaldale (AB)
Coaldale (AB)
Coaldale (AB)
Coaldale (AB)
Coaldale (AB)
Coaldale (AB)
Coaldale (AB)
Sudbury (ON)
Kelowna (BC)
Kelowna (BC)
Chelmsford (ON)
Oliver (BC)
Kelowna (BC)
Sudbury (ON)
Cypress Hills P P (SK)
Cypress Hills P P (SK)
Fort McMurray (AB)
Fort McMurray (AB)
Victoria (BC)
Sooke (BC)
Manitoulin I (ON)
Manitoulin I (ON)
Manitoulin I (ON)
H-S-I B J (AB)
H-S-I B J (AB)
Lethbridge (AB)
Lethbridge (AB)
Douglas P P (SK)
Douglas P P (SK)
Manitoulin I (ON)
Manitoulin I (ON)
Site (Province or Region)
South Porcupine (ON)
Collection‡
JDS
JDS
JDS
JDS
JDS
JDS
JDS
JDS
JDS
JDS
JDS
RGL, JDS
RGL, JDS
JLe, JDS
RGL, JDS
RGL, JDS
JDS
JDS, MRS
JDS, MRS
JDS
JDS
JDS
JDS
SEB, JDS
SEB, JDS
SEB, JDS
JDS, MRS
JDS, MRS
SEB, JDS
SEB, JDS
JDS, MRS
JDS, MRS
JB, JLe, SR
JB, JLe, SR
Team
JDS, MSJ
2
2
2
2
2
2
2
2
2
2
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
Voucher
1
183
JL
JL
JL
JL
JL
JL
JL
JL
JL
JL
JL
JL
829 T . sp.
830 T . sp.
831 T . sp.
832 T . sp.
833 T . sp.
834 T . sp.
835 T . sp.
836 T . sp.
837 T . sp.
838 T . sp.
839 T . sp.
JL
820 T . sp.
JL
JL
819 T . sp.
828 T . sp.
JL
818 T . sp.
827 T . sp.
JL
817 T . sp.
JL
JL
816 T . sp.
826 T . sp.
JL
815 T . sp.
JL
JL
814 T . sp.
825 T . sp.
JL
813 T . sp.
JL
JL
812 T . sp.
824 T . sp.
JL
811 T . sp.
JL
JL
810 T . sp.
823 T . sp.
JL
809 T . sp.
JL
JL
808 T . sp.
822 T . sp.
JL
807 T . sp.
JL
JL
806 T . sp.
821 T . sp.
Verified
JL
n Specimen designation
805 T . sp.
Identification†
DbOT44
DbOT44
DbOT44
DbOT44
DbOT44
DbOT44
DbOT44
DbOT44
DbOT44
DbOT44
DbOT44
DbOT44
DbOT44
DbOT44
DbOT44
DbOT44
DbOT44
DbOT44
DbOT44
DbOT44
DbOT44
DbOT44
DbOT44
DbOT44
DbOT44
DbOT44
DbOT44
DbOT44
DbOT44
DbOT44
DbOT44
DbOT44
DbOT44
DbOT44
DbOT44
DbOT ID
464
464
317
464
464
464
460
464
464
386
464
464
601
601
601
601
599
601
601
601
601
578
582
417
574
599
367
367
367
367
563
367
601
367
COI
601
ITS1
no. basepairs
Torna050-10
Torna049-10
Torna038-10
Torna023-10
Torna021-10
Torna020-10
Torna019-10
Torna018-10
Torna017-10
Torna015-10
Torna014-10
Torna008-10
Rose617-08
Rose613-08
Rose580-08
Rose579-08
Rose578-08
Rose577-08
Rose575-08
Rose574-08
Rose573-08
Pipi179-09
Pipi138-09
Pipi134-09
Pipi133-09
Lymmk190-09
Hygen424-10
Hygen423-10
Hygen421-10
Hygen417-10
Hygen409-10
Hygen397-10
Hygen396-10
Hygen395-10
Hygen394-10
Process ID
2007-05
2007-05
2003-05
2004-10
2002-10
2002-10
2002-10
2002-10
2002-10
2003-05
2003-05
2005-05
2007-05
2007-05
2007-05
2007-05
2007-05
2007-05
2007-05
2007-05
2007-05
2008-09
2008-09
2008-09
2008-09
2007-05
2009-05
2009-05
2009-05
2009-05
2009-05
2009-04
2009-04
2009-04
Date
2009-04
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Country
Canada
Waterton L N P (AB)
Waterton L N P (AB)
Sceptre (SK)
Manitoulin I (ON)
Coaldale (AB)
Coaldale (AB)
Coaldale (AB)
Coaldale (AB)
Coaldale (AB)
Coaldale (AB)
Coaldale (AB)
Fort Albany (ON)
Waterton L N P (AB)
Waterton L N P (AB)
Waterton L N P (AB)
Waterton L N P (AB)
Waterton L N P (AB)
Waterton L N P (AB)
Waterton L N P (AB)
Waterton L N P (AB)
Waterton L N P (AB)
Sudbury (ON)
Sudbury (ON)
Sudbury (ON)
Sudbury (ON)
Waterton L N P (AB)
Peachland (BC)
Peachland (BC)
Peachland (BC)
Timmins (ON)
Timmins (ON)
Picton (ON)
Picton (ON)
Picton (ON)
Site (Province or Region)
Picton (ON)
Collection‡
JDS, MRS
JDS, MRS
JDS, MRS
ADR, JDR, JDS
JDS
JDS
JDS
JDS
JDS
JDS, MRS
JDS, MRS
MJTB
JDS, MRS
JDS, MRS
JDS, MRS
JDS, MRS
JDS, MRS
JDS, MRS
JDS, MRS
JDS, MRS
JDS, MRS
GL, JL
GL, JL
GL, JL
GL, JL
JDS
RGL
RGL
RGL
ADR, JDS
ADR, JDS
JDS
JDS
JDS
Team
JDS
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
Voucher
2
184
JL
JL
JL
JL
JL
JL
JL
JL
JL
JL
JL
JL
864 T . sp.
865 T . sp.
866 T . sp.
867 T . sp.
868 T . sp.
869 T . sp.
870 T . sp.
871 T . sp.
872 T . sp.
873 T . sp.
874 T . sp.
JL
855 T . sp.
JL
JL
853 T . sp.
863 T . sp.
JL
853 T . sp.
862 T . sp.
JL
852 T . sp.
JL
JL
851 T . sp.
861 T . sp.
JL
850 T . sp.
JL
JL
849 T . sp.
860 T . sp.
JL
848 T . sp.
JL
JL
847 T . sp.
859 T . sp.
JL
846 T . sp.
JL
JL
845 T . sp.
858 T . sp.
JL
844 T . sp.
JL
JL
843 T . sp.
857 T . sp.
JL
842 T . sp.
JL
JL
841 T . sp.
856 T . sp.
Verified
JL
n Specimen designation
840 T . sp.
Identification†
DbOT44
DbOT44
DbOT44
DbOT44
DbOT44
DbOT44
DbOT44
DbOT44
DbOT44
DbOT44
DbOT44
DbOT44
DbOT44
DbOT44
DbOT44
DbOT44
DbOT44
DbOT44
DbOT44
DbOT44
DbOT44
DbOT44
DbOT44
DbOT44
DbOT44
DbOT44
DbOT44
DbOT44
DbOT44
DbOT44
DbOT44
DbOT44
DbOT44
DbOT44
DbOT44
DbOT ID
381
381
464
464
452
453
381
464
464
464
386
365
396
464
339
464
464
464
464
464
396
464
464
464
464
464
464
464
464
464
464
464
464
464
COI
464
ITS1
no. basepairs
Torna110-10
Torna109-10
Torna108-10
Torna107-10
Torna105-10
Torna104-10
Torna103-10
Torna097-10
Torna095-10
Torna094-10
Torna093-10
Torna091-10
Torna090-10
Torna089-10
Torna082-10
Torna081-10
Torna079-10
Torna076-10
Torna075-10
Torna074-10
Torna072-10
Torna071-10
Torna070-10
Torna069-10
Torna068-10
Torna067-10
Torna066-10
Torna065-10
Torna060-10
Torna056-10
Torna055-10
Torna053-10
Torna053-10
Torna052-10
Torna051-10
Process ID
2007-09
2007-09
2007-09
2007-09
2003-05
2003-05
2009-05
2005-05
2004-10
2004-10
2002-10
2002-10
2002-10
2002-10
2003-05
2003-05
2005-05
2005-05
2005-05
2005-05
2007-05
2007-05
2007-05
2007-05
2007-05
2007-05
2007-05
2007-05
2005-05
2007-05
2007-05
2007-05
2007-05
2007-05
Date
2007-05
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Country
Canada
Coaldale (AB)
Coaldale (AB)
Coaldale (AB)
Coaldale (AB)
Coaldale (AB)
Coaldale (AB)
Sudbury (ON)
Thunder Bay (ON)
Manitoulin I (ON)
Manitoulin I (ON)
Coaldale (AB)
Coaldale (AB)
Coaldale (AB)
Coaldale (AB)
Coaldale (AB)
Coaldale (AB)
Fort Albany (ON)
Fort Albany (ON)
Fort Albany (ON)
Fort Albany (ON)
Peachland (BC)
Peachland (BC)
Peachland (BC)
Peachland (BC)
Peachland (BC)
Peachland (BC)
Peachland (BC)
Peachland (BC)
Fort Albany (ON)
Waterton L N P (AB)
Waterton L N P (AB)
Waterton L N P (AB)
Waterton L N P (AB)
Waterton L N P (AB)
Site (Province or Region)
Waterton L N P (AB)
Collection‡
JDS, MRS
JDS, MRS
JDS, MRS
JDS, MRS
JDS, MRS
JDS, MRS
JDS
MJTB, JDS
ADR, JDR, JDS
ADR, JDR, JDS
JDS
JDS
JDS
JDS
JDS, MRS
JDS, MRS
MJTB
MJTB
MJTB
MJTB
RGL, JDS
RGL, JDS
RGL, JDS
RGL, JDS
RGL, JDS
RGL, JDS
RGL, JDS
RGL, JDS
MJTB
JDS, MRS
JDS, MRS
JDS, MRS
JDS, MRS
JDS, MRS
Team
JDS, MRS
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
Voucher
2
185
JL
JL
JL
JL
JL
JL
JL
JL
JL
JL
JL
JL
899 T . sp.
900 T . sp.
901 T . sp.
902 T . sp.
903 T . sp.
904 T . sp.
905 T . sp.
906 T . sp.
907 T . sp.
908 T . sp.
909 T . sp.
JL
890 T . sp.
JL
JL
889 T . sp.
898 T . sp.
JL
888 T . sp.
897 T . sp.
JL
887 T . sp.
JL
JL
886 T . sp.
896 T . sp.
JL
885 T . sp.
JL
JL
884 T . sp.
895 T . sp.
JL
883 T . sp.
JL
JL
882 T . sp.
894 T . sp.
JL
881 T . sp.
JL
JL
880 T . sp.
893 T . sp.
JL
879 T . sp.
JL
JL
878 T . sp.
892 T . sp.
JL
877 T . sp.
JL
JL
876 T . sp.
891 T . sp.
Verified
JL
n Specimen designation
875 T . sp.
Identification†
DbOT44
DbOT44
DbOT44
DbOT44
DbOT44
DbOT44
DbOT44
DbOT44
DbOT44
DbOT44
DbOT44
DbOT44
DbOT44
DbOT44
DbOT44
DbOT44
DbOT44
DbOT44
DbOT44
DbOT44
DbOT44
DbOT44
DbOT44
DbOT44
DbOT44
DbOT44
DbOT44
DbOT44
DbOT44
DbOT44
DbOT44
DbOT44
DbOT44
DbOT44
DbOT44
DbOT ID
352
367
367
367
465
381
465
381
381
381
381
464
464
464
464
381
381
381
381
464
464
464
437
381
381
381
381
464
464
464
464
464
464
464
COI
381
ITS1
no. basepairs
Torna196-10
Torna195-10
Torna193-10
Torna192-10
Torna184-10
Torna174-10
Torna169-10
Torna167-10
Torna166-10
Torna165-10
Torna164-10
Torna163-10
Torna162-10
Torna161-10
Torna160-10
Torna159-10
Torna158-10
Torna157-10
Torna156-10
Torna155-10
Torna153-10
Torna153-10
Torna152-10
Torna143-10
Torna142-10
Torna141-10
Torna140-10
Torna139-10
Torna138-10
Torna137-10
Torna136-10
Torna114-10
Torna113-10
Torna112-10
Torna111-10
Process ID
2007-05
2007-05
2007-05
2007-05
2007-05
2004-10
2004-10
2007-05
2007-05
2007-05
2007-05
2007-05
2007-05
2007-05
2007-05
2007-05
2007-05
2007-05
2007-05
2007-05
2007-05
2007-05
2007-05
2007-05
2007-05
2007-05
2007-05
2007-05
2007-05
2007-05
2007-05
2004-10
2004-10
2004-10
Date
2007-09
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Country
Canada
Coaldale (AB)
Coaldale (AB)
Coaldale (AB)
Coaldale (AB)
Waterton L N P (AB)
Manitoulin I (ON)
Manitoulin I (ON)
Coaldale (AB)
Coaldale (AB)
Coaldale (AB)
Coaldale (AB)
Coaldale (AB)
Coaldale (AB)
Coaldale (AB)
Coaldale (AB)
Peachland (BC)
Peachland (BC)
Peachland (BC)
Peachland (BC)
Peachland (BC)
Peachland (BC)
Peachland (BC)
Peachland (BC)
Waterton L N P (AB)
Waterton L N P (AB)
Waterton L N P (AB)
Waterton L N P (AB)
Waterton L N P (AB)
Waterton L N P (AB)
Waterton L N P (AB)
Waterton L N P (AB)
Manitoulin I (ON)
Manitoulin I (ON)
Manitoulin I (ON)
Site (Province or Region)
Coaldale (AB)
Collection‡
JDS, MRS
JDS, MRS
JDS, MRS
JDS, MRS
JDS, MRS
ADR, JDR, JDS
ADR, JDR, JDS
JDS, MRS
JDS, MRS
JDS, MRS
JDS, MRS
JDS, MRS
JDS, MRS
JDS, MRS
JDS, MRS
RGL, JDS
RGL, JDS
RGL, JDS
RGL, JDS
RGL, JDS
RGL, JDS
RGL, JDS
RGL, JDS
JDS, MRS
JDS, MRS
JDS, MRS
JDS, MRS
JDS, MRS
JDS, MRS
JDS, MRS
JDS, MRS
ADR, JDR, JDS
ADR, JDR, JDS
ADR, JDR, JDS
Team
JDS, MRS
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
Voucher
2
186
SR
SR
SR
SR
SR
SR
JL
JL
JL
JL
JL
JL
934 T. solitarius
935 T. solitarius
936 T. solitarius
937 T. solitarius
938 T. solitarius
939 T . sp.
940 T . sp.
941 T . sp.
942 T . sp.
943 T . sp.
944 T . sp.
JL
925 T . sp.
SR
JL
924 T . sp.
933 T. bedeguaris
JL
923 T . sp.
932 T. bedeguaris
JL
922 T . sp.
SR
JL
921 T . sp.
931 T. bedeguaris
JL
920 T . sp.
SR
JL
919 T . sp.
930 T. bedeguaris
JL
918 T . sp.
JL
JL
917 T . sp.
929 T . sp.
JL
916 T . sp.
JL
JL
915 T . sp.
928 T . sp.
JL
914 T . sp.
JL
JL
913 T . sp.
927 T . sp.
JL
912 T . sp.
JL
JL
911 T . sp.
926 T . sp.
Verified
JL
n Specimen designation
910 T . sp.
Identification†
DbOT45
DbOT45
DbOT45
DbOT45
DbOT45
DbOT45
DbOT45
DbOT45
DbOT45
DbOT45
DbOT45
DbOT45
DbOT45
DbOT45
DbOT45
DbOT44
DbOT44
DbOT44
DbOT44
DbOT44
DbOT44
DbOT44
DbOT44
DbOT44
DbOT44
DbOT44
DbOT44
DbOT44
DbOT44
DbOT44
DbOT44
DbOT44
DbOT44
DbOT44
DbOT44
DbOT ID
464
464
464
464
464
418
367
367
367
367
367
367
363
367
367
601
367
367
601
367
367
601
367
367
367
362
367
367
367
601
601
601
367
367
COI
367
ITS1
no. basepairs
Torna030-10
Torna007-10
Torna006-10
Torna005-10
Torna004-10
Torna002-10
Pipi379-09
Pipi377-09
Pipi376-09
Pipi375-09
Pipi371-09
Pipi324-09
Pipi322-09
Pipi320-09
Pipi304-09
Vnmb779-09
Torna241-10
Torna240-10
Torna239-10
Torna238-10
Torna237-10
Torna236-10
Torna235-10
Torna234-10
Torna233-10
Torna221-10
Torna214-10
Torna213-10
Torna212-10
Torna211-10
Torna210-10
Torna209-10
Torna208-10
Torna207-10
Torna197-10
Process ID
2002-05
2005-05
2005-05
2005-05
2005-05
2005-05
2000-04
1998-05
1998-04
1998-04
1998-04
2000-04
2000-04
1999-11
2000-04
2008-09
2009-04
2009-04
2009-04
2009-04
2009-04
2009-04
2009-04
2007-05
2007-05
2005-05
2007-05
2007-05
2007-05
2007-05
2007-05
2007-05
2007-05
2007-05
Date
2007-05
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Country
Canada
Timmins (ON)
Fort Albany (ON)
Fort Albany (ON)
Fort Albany (ON)
Fort Albany (ON)
Fort Albany (ON)
Sudbury (ON)
Timmins (ON)
Manitoulin I (ON)
Chelmsford (ON)
Chelmsford (ON)
Sudbury (ON)
Sudbury (ON)
Manitoulin I (ON)
Manitoulin I (ON)
Timmins (ON)
Picton (ON)
Picton (ON)
Picton (ON)
Picton (ON)
Picton (ON)
Picton (ON)
Picton (ON)
Peachland (BC)
Peachland (BC)
Fort Albany (ON)
Waterton L N P (AB)
Waterton L N P (AB)
Waterton L N P (AB)
Waterton L N P (AB)
Waterton L N P (AB)
Waterton L N P (AB)
Waterton L N P (AB)
Waterton L N P (AB)
Site (Province or Region)
Coaldale (AB)
Collection‡
JDS
MJTB
MJTB
MJTB
MJTB
MJTB
JDS
JDS, MSJ
JDS, MSJ
JDS, MSJ
JDS, MSJ
JDS
JDS
JLe, JDS
JB, JLe, SR
GL, JL
JDS
JDS
JDS
JDS
JDS
JDS
JDS
RGL, JDS
RGL, JDS
MJTB
JDS, MRS
JDS, MRS
JDS, MRS
JDS, MRS
JDS, MRS
JDS, MRS
JDS, MRS
JDS, MRS
Team
JDS, MRS
2
2
2
2
2
2
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
Voucher
2
187
JL
JL
JL
JL
JL
JL
JL
JL
SR
SR
SR
SR
969 T . sp.
970 T . sp.
971 T . sp.
972 T . sp.
973 T . sp.
974 T . sp.
975 T . sp.
976 T. bicoloratus
977 T. bicoloratus
978 T. bicoloratus
979 T. bicoloratus
JL
960 T . sp.
JL
JL
959 T . sp.
968 T . sp.
JL
958 T . sp.
967 T . sp.
JL
957 T . sp.
JL
JL
956 T . sp.
JL
JL
955 T . sp.
966 T . sp.
JL
953 T . sp.
965 T . sp.
JL
953 T . sp.
JL
SR
952 T. solitarius
964 T . sp.
SR
951 T. bedeguaris
JL
JL
950 T . sp.
963 T . sp.
JL
949 T . sp.
JL
JL
948 T . sp.
962 T . sp.
JL
947 T . sp.
JL
JL
946 T . sp.
961 T . sp.
Verified
JL
n Specimen designation
945 T . sp.
Identification†
DbOT48
DbOT47
DbOT47
DbOT47
DbOT46
DbOT46
DbOT46
DbOT46
DbOT46
DbOT45
DbOT45
DbOT45
DbOT45
DbOT45
DbOT45
DbOT45
DbOT45
DbOT45
DbOT45
DbOT45
DbOT45
DbOT45
DbOT45
DbOT45
DbOT45
DbOT45
DbOT45
DbOT45
DbOT45
DbOT45
DbOT45
DbOT45
DbOT45
DbOT45
DbOT45
DbOT ID
367
367
367
367
381
381
464
464
460
282
381
381
381
465
465
465
601
593
601
601
367
381
381
447
464
464
464
367
367
465
464
447
464
464
COI
464
378
378
378
ITS1
no. basepairs
Pipi332-09
Pipi335-09
Pipi331-09
Pipi330-09
Torna151-10
Torna149-10
Torna145-10
Torna063-10
Torna059-10
Torna206-10
Torna190-10
Torna189-10
Torna188-10
Torna187-10
Torna186-10
Torna185-10
Rose616-08
Rose615-08
Rose614-08
Rose576-08
Hygen413-10
Torna127-10
Torna126-10
Torna100-10
Torna080-10
Torna078-10
Torna003-10
Pipi374-09
Pipi306-09
Torna179-10
Torna147-10
Torna125-10
Torna077-10
Torna073-10
Torna032-10
Process ID
1997-04
1999-10
1997-04
1999-10
2005-05
2005-05
2005-05
2005-05
2005-05
2007-05
2007-05
2007-05
2007-05
2007-05
2007-05
2007-05
2007-05
2007-05
2007-05
2007-05
2009-05
2002-05
2002-05
2005-05
2005-05
2005-05
2005-05
1998-04
2000-04
2002-05
2005-05
2002-05
2005-05
2005-05
Date
2002-05
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Country
Canada
Kelowna (BC)
Kelowna (BC)
Kelowna (BC)
Kelowna (BC)
Fort Albany (ON)
Fort Albany (ON)
Fort Albany (ON)
Fort Albany (ON)
Fort Albany (ON)
Waterton L N P (AB)
Waterton L N P (AB)
Waterton L N P (AB)
Waterton L N P (AB)
Waterton L N P (AB)
Waterton L N P (AB)
Waterton L N P (AB)
Waterton L N P (AB)
Waterton L N P (AB)
Waterton L N P (AB)
Waterton L N P (AB)
Fort Macleod (AB)
Timmins (ON)
Timmins (ON)
Thunder Bay (ON)
Thunder Bay (ON)
Fort Albany (ON)
Fort Albany (ON)
Chelmsford (ON)
Manitoulin I (ON)
Timmins (ON)
Fort Albany (ON)
Timmins (ON)
Fort Albany (ON)
Fort Albany (ON)
Site (Province or Region)
Timmins (ON)
Collection‡
RGL
RGL, JDS
RGL
RGL, JDS
MJTB
MJTB
MJTB
MJTB
MJTB
JDS, MRS
JDS, MRS
JDS, MRS
JDS, MRS
JDS, MRS
JDS, MRS
JDS, MRS
JDS, MRS
JDS, MRS
JDS, MRS
JDS, MRS
JDS
JDS
JDS
MJTB, JDS
MJTB, JDS
MJTB
MJTB
JDS, MSJ
JB, JLe, SR
JDS
MJTB
JDS
MJTB
MJTB
Team
JDS
1
1
1
1
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
1
1
2
2
2
2
2
Voucher
2
188
JL
JL
JL
JL
JL
988 Eurytomidae
989 Eurytomidae
990 Eurytomidae
991 Eurytomidae
992 Eurytomidae
JL
JL
JL
JL
JL
JL
JL
JL
JL
JL
JL
JL
JL
JL
JL
JL
JL
JL
JL
996 Eurytomidae
997 Eurytomidae
998 Eurytomidae
999 Eurytomidae
1000 Eurytomidae
1001 Eurytomidae
1002 Eurytomidae
1003 Eurytomidae
1004 Eurytomidae
1005 Eurytomidae
1006 Eurytomidae
1007 Eurytomidae
1008 Eurytomidae
1009 Eurytomidae
1010 Eurytomidae
1011 Eurytomidae
1012 Eurytomidae
1013 Eurytomidae
1014 Eurytomidae
JL
JL
987 Eurytomidae
995 Eurytomidae
JL
986 Eurytomidae
JL
JL
985 Eurytomidae
JL
JL
984 Eurytomidae
993 Eurytomidae
DbOT50
JL
983 Eupelmidae
994 Eurytomidae
DbOT50
JL
982 Eupelmidae
DbOT50
DbOT50
DbOT50
DbOT50
DbOT50
DbOT50
DbOT50
DbOT50
DbOT50
DbOT50
DbOT50
DbOT50
DbOT50
DbOT50
DbOT50
DbOT50
DbOT50
DbOT50
DbOT50
DbOT50
DbOT50
DbOT50
DbOT50
DbOT50
DbOT50
DbOT50
DbOT50
DbOT50
DbOT50
DbOT49
DbOT49
DbOT49
JL
981 Eupelmidae
DbOT48
Verified
SR
DbOT ID
n Specimen designation
980 T. bicoloratus
Identification†
600
600
600
601
601
601
601
601
601
601
Pipi064-09
Pipi062-09
Pipi060-09
Pipi059-09
Pipi057-09
Pipi052-09
Pipi050-09
Pipi048-09
Pipi047-09
Pipi045-09
Pipi040-09
601
Pipi036-09
Pipi035-09
Pipi033-09
Pipi030-09
Pipi028-09
Pipi026-09
Pipi024-09
Pipi016-09
Pipi015-09
Pipi014-09
Pipi012-09
Pipi010-09
Pipi005-09
Pipi004-09
Pipi002-09
Pipi001-09
Hygen490-10
Hygen489-10
Hygen488-10
Hygen458-10
Hygen462-10
Hygen464-10
Pipi334-09
Pipi038-09
ITS1
Process ID
601
601
596
601
579
601
601
601
601
601
601
601
601
601
601
601
601
601
601
601
518
518
518
COI
367
no. basepairs
2008-09
2008-09
2008-09
2008-09
2008-09
2008-09
2008-09
2008-09
2008-09
2008-09
2008-09
2008-09
2008-09
2008-09
2008-09
2008-09
2008-09
2008-09
2008-09
2008-09
2008-09
2008-09
2008-09
2008-09
2008-09
2008-09
2008-09
2008-09
2009-05
2009-05
2009-05
2009-05
2009-05
2009-05
Date
1999-10
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Country
Canada
Sudbury (ON)
Sudbury (ON)
Sudbury (ON)
Sudbury (ON)
Sudbury (ON)
Sudbury (ON)
Sudbury (ON)
Sudbury (ON)
Sudbury (ON)
Sudbury (ON)
Sudbury (ON)
Sudbury (ON)
Sudbury (ON)
Sudbury (ON)
Sudbury (ON)
Sudbury (ON)
Sudbury (ON)
Sudbury (ON)
Sudbury (ON)
Sudbury (ON)
Sudbury (ON)
Sudbury (ON)
Sudbury (ON)
Sudbury (ON)
Sudbury (ON)
Sudbury (ON)
Sudbury (ON)
Sudbury (ON)
Chelmsford (ON)
Timmins (ON)
Chelmsford (ON)
Fort Macleod (AB)
Lethbridge (AB)
Lethbridge (AB)
Site (Province or Region)
Kelowna (BC)
Collection‡
GL, JL
GL, JL
GL, JL
GL, JL
GL, JL
GL, JL
GL, JL
GL, JL
GL, JL
GL, JL
GL, JL
GL, JL
GL, JL
GL, JL
GL, JL
GL, JL
GL, JL
GL, JL
GL, JL
GL, JL
GL, JL
GL, JL
GL, JL
GL, JL
GL, JL
GL, JL
GL, JL
GL, JL
JDS
ADR, JDS
JDS
JDS
JDS
JDS
Team
RGL, JDS
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
Voucher
1
189
JL
JL
JL
JL
JL
JL
JL
JL
JL
JL
JL
JL
JL
1038 Eurytomidae
1039 Eurytomidae
1040 Eurytomidae
1041 Eurytomidae
1042 Eurytomidae
1043 Eurytomidae
1044 Eurytomidae
1045 Eurytomidae
1046 Eurytomidae
1047 Eurytomidae
1048 Eurytomidae
1049 Eurytomidae
JL
1030 Eurytomidae
1037 Eurytomidae
JL
1029 Eurytomidae
JL
JL
1028 Eurytomidae
1036 Eurytomidae
JL
1027 Eurytomidae
JL
JL
1026 Eurytomidae
1035 Eurytomidae
JL
1025 Eurytomidae
JL
JL
1024 Eurytomidae
1034 Eurytomidae
JL
1023 Eurytomidae
JL
JL
1022 Eurytomidae
1033 Eurytomidae
JL
1021 Eurytomidae
JL
JL
1020 Eurytomidae
1032 Eurytomidae
JL
1019 Eurytomidae
JL
DbOT51
JL
1018 Eurytomidae
1031 Eurytomidae
DbOT51
JL
1017 Eurytomidae
DbOT52
DbOT52
DbOT52
DbOT52
DbOT52
DbOT52
DbOT52
DbOT52
DbOT52
DbOT51
DbOT51
DbOT51
DbOT51
DbOT51
DbOT51
DbOT51
DbOT51
DbOT51
DbOT51
DbOT51
DbOT51
DbOT51
DbOT51
DbOT50
DbOT50
DbOT50
DbOT50
DbOT50
DbOT50
DbOT50
DbOT50
DbOT50
JL
1016 Eurytomidae
DbOT50
Verified
JL
DbOT ID
n Specimen designation
1015 Eurytomidae
Identification†
469
469
469
469
469
469
463
469
565
538
Pipi093-09
Pipi091-09
Pipi081-09
Pipi069-09
Pipi067-09
Pipi055-09
Pipi021-09
Pipi018-09
Pipi007-09
Vnmb780-09
Pipi073-09
586
Pipi061-09
Pipi056-09
Pipi044-09
Pipi043-09
Pipi037-09
Pipi034-09
Pipi031-09
Pipi029-09
Pipi025-09
Pipi022-09
Pipi013-09
Pipi003-09
Hygen494-10
Pipi095-09
Pipi089-09
Pipi088-09
Pipi084-09
Pipi082-09
Pipi079-09
Pipi077-09
Pipi076-09
Pipi072-09
Pipi070-09
Pipi065-09
ITS1
Process ID
574
597
469
456
521
574
469
525
517
601
469
589
583
409
600
600
600
600
589
600
579
586
596
COI
586
no. basepairs
2008-09
2008-09
2008-09
2008-09
2008-09
2008-09
2008-09
2008-09
2008-09
2008-09
2008-09
2008-09
2008-09
2008-09
2008-09
2008-09
2008-09
2008-09
2008-09
2008-09
2008-09
2008-09
2008-09
2008-09
2008-09
2008-09
2008-09
2008-09
2008-09
2008-09
2008-09
2008-09
2008-09
2008-09
Date
2008-09
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Country
Canada
Sudbury (ON)
Sudbury (ON)
Sudbury (ON)
Sudbury (ON)
Sudbury (ON)
Sudbury (ON)
Sudbury (ON)
Sudbury (ON)
Sudbury (ON)
Timmins (ON)
Sudbury (ON)
Sudbury (ON)
Sudbury (ON)
Sudbury (ON)
Sudbury (ON)
Sudbury (ON)
Sudbury (ON)
Sudbury (ON)
Sudbury (ON)
Sudbury (ON)
Sudbury (ON)
Sudbury (ON)
Sudbury (ON)
Sudbury (ON)
Timmins (ON)
Sudbury (ON)
Sudbury (ON)
Sudbury (ON)
Sudbury (ON)
Sudbury (ON)
Sudbury (ON)
Sudbury (ON)
Sudbury (ON)
Sudbury (ON)
Site (Province or Region)
Sudbury (ON)
Collection‡
GL, JL
GL, JL
GL, JL
GL, JL
GL, JL
GL, JL
GL, JL
GL, JL
GL, JL
GL, JL
GL, JL
GL, JL
GL, JL
GL, JL
GL, JL
GL, JL
GL, JL
GL, JL
GL, JL
GL, JL
GL, JL
GL, JL
GL, JL
GL, JL
GL, JL
GL, JL
GL, JL
GL, JL
GL, JL
GL, JL
GL, JL
GL, JL
GL, JL
GL, JL
Team
GL, JL
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
Voucher
2
190
JL
JL
JL
JL
JL
JL
JL
JL
JL
JL
JL
JL
JL
1073 Eulophidae
1074 Eulophidae
1075 Eulophidae
1076 Eulophidae
1077 Eulophidae
1078 Pteromalidae
1079 Pteromalidae
1080 Pteromalidae
1081 Pteromalidae
1082 Pteromalidae
1083 Pteromalidae
1084 Pteromalidae
JL
1065 Eulophidae
1072 Eulophidae
JL
1064 Eulophidae
JL
JL
1063 Eulophidae
1071 Eulophidae
JL
1062 Eulophidae
JL
JL
1061 Eulophidae
1070 Eulophidae
JL
1060 Eulophidae
JL
JL
1059 Eulophidae
1069 Eulophidae
JL
1058 Eulophidae
JL
JL
1057 Eulophidae
1068 Eulophidae
JL
1056 Eulophidae
JL
JL
1055 Eulophidae
1067 Eulophidae
JL
1054 Eurytomidae
JL
DbOT60
JL
1053 Eurytomidae
1066 Eulophidae
DbOT59
JL
1052 Eurytomidae
DbOT65
DbOT65
DbOT65
DbOT65
DbOT64
DbOT63
DbOT62
DbOT61
DbOT61
DbOT61
DbOT61
DbOT61
DbOT61
DbOT61
DbOT61
DbOT61
DbOT61
DbOT61
DbOT61
DbOT61
DbOT60
DbOT60
DbOT58
DbOT58
DbOT57
DbOT57
DbOT56
DbOT55
DbOT54
DbOT54
DbOT54
DbOT54
JL
1051 Eurytomidae
DbOT53
Verified
JL
DbOT ID
n Specimen designation
1050 Eurytomidae
Identification†
469
469
469
459
469
469
469
469
469
469
Pipi156-09
Pipi154-09
Hygen515-10
Hygen499-10
Hygen502-10
Pipi140-09
Hygen506-10
Rose596-08
Rose595-08
Rose594-08
Rose593-08
469
Rose591-08
Rose590-08
Rose589-08
Lymmk185-09
Lymmk184-09
Hygen519-10
Hygen510-10
Hygen508-10
Hygen514-10
Hygen512-10
Hygen511-10
Vnmb767-09
Hygen517-10
Hygen516-10
Pipi141-09
Pipi094-09
Hygen498-10
Hygen497-10
Vnmb788-09
Vnmb787-09
Pipi051-09
Pipi011-09
Hygen486-10
Rose592-08
ITS1
Process ID
469
469
469
469
467
467
601
468
469
601
601
601
601
601
601
596
601
601
601
601
601
601
601
COI
580
no. basepairs
2008-09
2008-09
2009-05
2009-05
2009-05
2008-09
2009-05
2007-05
2007-05
2007-05
2007-05
2007-05
2007-05
2007-05
2007-05
2007-05
2007-05
2009-05
2009-05
2009-05
2009-05
2009-05
2009-05
2008-09
2009-05
2009-05
2008-09
2008-09
2009-05
2009-05
2008-09
2008-09
2008-09
2008-09
Date
2009-05
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Country
Canada
Sudbury (ON)
Sudbury (ON)
Chelmsford (ON)
Lethbridge (AB)
Waterton L N P (AB)
Sudbury (ON)
Timmins (ON)
Waterton L N P (AB)
Waterton L N P (AB)
Waterton L N P (AB)
Waterton L N P (AB)
Waterton L N P (AB)
Waterton L N P (AB)
Waterton L N P (AB)
Waterton L N P (AB)
Waterton L N P (AB)
Waterton L N P (AB)
Manitoulin I (ON)
Manitoulin I (ON)
Manitoulin I (ON)
Manitoulin I (ON)
Manitoulin I (ON)
Manitoulin I (ON)
Clute (ON)
Peachland (BC)
Peachland (BC)
Sudbury (ON)
Sudbury (ON)
Fort Macleod (AB)
Fort Macleod (AB)
Barber`s Bay (ON)
Barber`s Bay (ON)
Sudbury (ON)
Sudbury (ON)
Site (Province or Region)
Chelmsford (ON)
Collection‡
GL, JL
GL, JL
JDS
JDS
JDS
GL, JL
ADR, JDS
JDS, MRS
JDS, MRS
JDS, MRS
JDS, MRS
JDS, MRS
JDS, MRS
JDS, MRS
JDS, MRS
JDS
JDS
JDR, JDS
JDR, JDS
JDR, JDS
JDR, JDS
JDR, JDS
JDR, JDS
GL, JL
RGL
RGL
GL, JL
GL, JL
JDS
JDS
GL, JL
GL, JL
GL, JL
GL, JL
Team
JL
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
Voucher
2
191
JL
JL
JL
JL
JL
JL
JL
JL
JL
JL
JL
JL
JL
1108 Ormyridae
1109 Ormyridae
1110 Ormyridae
1111 Ormyridae
1112 Ormyridae
1113 Ormyridae
1114 Ormyridae
1115 Ormyridae
1116 Ichneumonidae
1117 Ichneumonidae
1118 Ichneumonidae
1119 Ichneumonidae
JL
1100 Ormyridae
1107 Ormyridae
JL
1099 Ormyridae
JL
JL
1098 Ormyridae
1106 Ormyridae
JL
1097 Ormyridae
JL
JL
1096 Ormyridae
1105 Ormyridae
JL
1095 Ormyridae
JL
JL
1094 Pteromalidae
1104 Ormyridae
JL
1093 Pteromalidae
JL
JL
1092 Pteromalidae
1103 Ormyridae
JL
1091 Pteromalidae
JL
JL
1090 Pteromalidae
1102 Ormyridae
JL
1089 Pteromalidae
JL
DbOT67
JL
1088 Pteromalidae
1101 Ormyridae
DbOT67
JL
1087 Pteromalidae
DbOT69
DbOT69
DbOT69
DbOT69
DbOT68
DbOT68
DbOT68
DbOT68
DbOT68
DbOT68
DbOT68
DbOT68
DbOT68
DbOT68
DbOT68
DbOT68
DbOT68
DbOT68
DbOT68
DbOT68
DbOT68
DbOT68
DbOT67
DbOT66
DbOT66
DbOT66
DbOT66
DbOT66
DbOT66
DbOT66
DbOT66
DbOT66
JL
1086 Pteromalidae
DbOT65
Verified
JL
DbOT ID
n Specimen designation
1085 Pteromalidae
Identification†
597
601
601
601
598
581
601
601
592
601
Pipi120-09
Hygen457-10
Hygen456-10
Hygen446-10
Pipi153-09
Pipi139-09
Pipi131-09
Pipi130-09
Pipi129-09
Pipi128-09
Pipi127-09
600
Hygen477-10
Hygen476-10
Hygen474-10
Hygen472-10
Hygen471-10
Hygen470-10
Hygen469-10
Hygen468-10
Hygen467-10
Hygen465-10
Pipi180-09
Pipi132-09
Hygen475-10
Rose604-08
Rose603-08
Rose601-08
Rose600-08
Rose599-08
Rose598-08
Rose597-08
Lymmk183-09
Lymmk182-09
Rose602-08
Hygen478-10
ITS1
Process ID
601
601
591
601
601
601
601
601
591
591
601
601
601
601
442
445
469
469
469
445
469
467
469
COI
469
no. basepairs
2008-09
2009-05
2009-05
2008-09
2008-09
2008-09
2008-09
2008-09
2008-09
2008-09
2008-09
2009-09
2009-09
2008-09
2008-09
2009-05
2008-09
2008-09
2008-09
2009-04
2009-04
2009-04
2008-09
2008-09
2008-09
2007-05
2007-05
2007-05
2007-05
2007-05
2007-05
2007-05
2007-05
2007-05
Date
2007-05
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Country
Canada
Sudbury (ON)
Waterton L N P (AB)
Waterton L N P (AB)
Timmins (ON)
Sudbury (ON)
Sudbury (ON)
Sudbury (ON)
Sudbury (ON)
Sudbury (ON)
Sudbury (ON)
Sudbury (ON)
Deux Rivieres (ON)
Deux Rivieres (ON)
Timmins (ON)
Timmins (ON)
Chelmsford (ON)
Timmins (ON)
Timmins (ON)
Timmins (ON)
Renfrew (ON)
Renfrew (ON)
Renfrew (ON)
Sudbury (ON)
Sudbury (ON)
Timmins (ON)
Waterton L N P (AB)
Waterton L N P (AB)
Waterton L N P (AB)
Waterton L N P (AB)
Waterton L N P (AB)
Waterton L N P (AB)
Waterton L N P (AB)
Waterton L N P (AB)
Waterton L N P (AB)
Site (Province or Region)
Waterton L N P (AB)
Collection‡
GL, JL
JDS
JDS
GL, JL
GL, JL
GL, JL
GL, JL
GL, JL
GL, JL
GL, JL
GL, JL
JDS
JDS
GL, JL
GL, JL
JDS
GL, JL
GL, JL
GL, JL
MRS, JDS
MRS, JDS
MRS, JDS
GL, JL
GL, JL
GL, JL
JDS, MRS
JDS, MRS
JDS, MRS
JDS, MRS
JDS, MRS
JDS, MRS
JDS, MRS
JDS
JDS
Team
JDS, MRS
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
Voucher
2
192
JL
JL
JL
JL
JL
JL
JL
JL
JL
JL
JL
JL
JL
1143 Ichneumonidae
1144 Ichneumonidae
1145 Ichneumonidae
1146 Ichneumonidae
1147 Ichneumonidae
1148 Ichneumonidae
1149 Ichneumonidae
1150 Ichneumonidae
1151 Ichneumonidae
1152 Ichneumonidae
1153 Ichneumonidae
1154 Ichneumonidae
JL
1135 Ichneumonidae
1142 Ichneumonidae
JL
1134 Ichneumonidae
JL
JL
1133 Ichneumonidae
1141 Ichneumonidae
JL
1132 Ichneumonidae
JL
JL
1131 Ichneumonidae
1140 Ichneumonidae
JL
1130 Ichneumonidae
JL
JL
1129 Ichneumonidae
1139 Ichneumonidae
JL
1128 Ichneumonidae
JL
JL
1127 Ichneumonidae
1138 Ichneumonidae
JL
1126 Ichneumonidae
JL
JL
1125 Ichneumonidae
1137 Ichneumonidae
JL
1124 Ichneumonidae
JL
DbOT72
JL
1123 Ichneumonidae
1136 Ichneumonidae
DbOT72
JL
1122 Ichneumonidae
DbOT72
DbOT72
DbOT72
DbOT72
DbOT72
DbOT72
DbOT72
DbOT72
DbOT72
DbOT72
DbOT72
DbOT72
DbOT72
DbOT72
DbOT72
DbOT72
DbOT72
DbOT72
DbOT72
DbOT72
DbOT72
DbOT72
DbOT71
DbOT71
DbOT71
DbOT70
DbOT70
DbOT69
DbOT69
DbOT69
DbOT69
DbOT69
JL
1121 Ichneumonidae
DbOT69
Verified
JL
DbOT ID
n Specimen designation
1120 Ichneumonidae
Identification†
601
601
601
601
601
597
597
597
601
576
Pipi110-09
Pipi109-09
Pipi108-09
Pipi107-09
Pipi106-09
Pipi105-09
Pipi104-09
Pipi103-09
Pipi102-09
Pipi101-09
Pipi100-09
601
Pipi098-09
Pipi097-09
Pipi096-09
Hygen450-10
Hygen449-10
Hygen448-10
Hygen445-10
Hygen444-10
Hygen443-10
Hygen442-10
Hygen441-10
Hygen440-10
Hygen455-10
Hygen454-10
Hygen451-10
Hygen453-10
Hygen452-10
Rose628-08
Rose626-08
Rose608-08
Rose606-08
Rose605-08
Pipi121-09
Pipi099-09
ITS1
Process ID
601
601
600
601
601
601
601
601
601
601
601
601
601
601
601
601
601
601
601
601
601
601
601
COI
601
no. basepairs
2008-09
2008-09
2008-09
2008-09
2008-09
2008-09
2008-09
2008-09
2008-09
2008-09
2008-09
2008-09
2008-09
2008-09
2008-09
2009-04
2009-05
2009-05
2009-05
2009-09
2008-09
2009-05
2008-09
2008-09
2009-05
2009-05
2009-04
2009-05
2009-05
2007-05
2007-05
2007-05
2007-05
2007-05
Date
2008-09
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Country
Canada
Sudbury (ON)
Sudbury (ON)
Sudbury (ON)
Sudbury (ON)
Sudbury (ON)
Sudbury (ON)
Sudbury (ON)
Sudbury (ON)
Sudbury (ON)
Sudbury (ON)
Sudbury (ON)
Sudbury (ON)
Sudbury (ON)
Sudbury (ON)
Sudbury (ON)
Picton (ON)
Coaldale (AB)
Coaldale (AB)
Peachland (BC)
Deux Rivieres (ON)
Timmins (ON)
Chelmsford (ON)
Timmins (ON)
Timmins (ON)
Manitoulin I (ON)
Manitoulin I (ON)
Picton (ON)
Chelmsford (ON)
Chelmsford (ON)
Waterton L N P (AB)
Waterton L N P (AB)
Waterton L N P (AB)
Waterton L N P (AB)
Waterton L N P (AB)
Site (Province or Region)
Sudbury (ON)
Collection‡
GL, JL
GL, JL
GL, JL
GL, JL
GL, JL
GL, JL
GL, JL
GL, JL
GL, JL
GL, JL
GL, JL
GL, JL
GL, JL
GL, JL
GL, JL
JDS
JDS
JDS
RGL
JDS
GL, JL
JDS
GL, JL
GL, JL
JDR, JDS
JDR, JDS
JDS
JL
JL
JDS, MRS
JDS, MRS
JDS, MRS
JDS, MRS
JDS, MRS
Team
GL, JL
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
Voucher
2
193
DbOT72
DbOT72
JL
JL
JL
JL
JL
JL
JL
JL
JL
JL
JL
JL
1157 Ichneumonidae
1158 Ichneumonidae
1159 Ichneumonidae
1160 Ichneumonidae
1161 Ichneumonidae
1162 Ichneumonidae
1163 Ichneumonidae
1164 Ichneumonidae
1165 Ichneumonidae
1166 Ichneumonidae
1167 Ichneumonidae
1168 Ichneumonidae
DbOT72
DbOT72
DbOT72
DbOT72
DbOT72
DbOT72
DbOT72
DbOT72
DbOT72
DbOT72
DbOT72
JL
1156 Ichneumonidae
DbOT72
Verified
JL
DbOT ID
n Specimen designation
1155 Ichneumonidae
Identification†
600
601
595
600
601
601
601
601
584
597
597
599
597
COI
601
ITS1
no. basepairs
Pipi126-09
Pipi125-09
Pipi124-09
Pipi123-09
Pipi122-09
Pipi119-09
Pipi118-09
Pipi117-09
Pipi116-09
Pipi115-09
Pipi114-09
Pipi113-09
Pipi112-09
Pipi111-09
Process ID
2008-09
2008-09
2008-09
2008-09
2008-09
2008-09
2008-09
2008-09
2008-09
2008-09
2008-09
2008-09
2008-09
Date
2008-09
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Canada
Country
Canada
Sudbury (ON)
Sudbury (ON)
Sudbury (ON)
Sudbury (ON)
Sudbury (ON)
Sudbury (ON)
Sudbury (ON)
Sudbury (ON)
Sudbury (ON)
Sudbury (ON)
Sudbury (ON)
Sudbury (ON)
Sudbury (ON)
Site (Province or Region)
Sudbury (ON)
Collection‡
GL, JL
GL, JL
GL, JL
GL, JL
GL, JL
GL, JL
GL, JL
GL, JL
GL, JL
GL, JL
GL, JL
GL, JL
GL, JL
Team
GL, JL
2
2
2
2
2
2
2
2
2
2
2
2
2
Voucher
2
194
volunteers: TE and GL.
curator = JL.
JLima collection (University of Guelph):
contributors and volunteers = ADR, AW, BE, CD, FGA, GB, JB, JDR, JLe, JS, JW, KNS, MJTB, MRS, MSJ, NS, RGL, RH, RWW, SEB, SG, and STO.
curators = AJR, JDS, and SR.
JDS reference collection:
Collection voucher: acronym of location is as follows: 1 = JDS reference collection and 2 = JLima collection (University of Guelph).
JDS = Shorthouse JD, MRS = Shorthouse MR, JS = J Smith, MSJ = St. John Mark, AW = West A, RWW = West RW, and JW = Williams J.
STO = Offman ST, SR = Rempel S, ADR = Renelli AD, JDR = Renelli JD, AJR = Ritchie AJ, KNS = Schick KN, NS = Sekita N,
SEB = Brooks SE, CD = Dailey C, TE = Elliott T, BE = Evans B, SG = Guclu S, RH = Hyat R, RGL = Lalonde RG, JLe = Leggo J, GL = Lima G, JL = Lima J,
Collection team: acronym of names is as follows: FGA = Andrews FG, JB = Babin J, GB = Bagatto G, JB = Bannerman J, MJTB = Bodnar MJT,
Waterton L N P = Waterton Lakes National Park, and Yolo C = Yolo County.
Smooth Rock F = Smooth Rock Falls, San Diego C = San Diego County, Solano C = Solano County,
Niagara F = Niagara Falls, Pacific Rim N P = Pacific Rim National Park, Prince Edward C = Prince Edward County, Queen Charlotte I = Queen Charlotte Island,
Douglas P P = Douglas Provincial Park,Great Sand H = Great Sand Hills, H-S-I B J = Head-Smashed-In Buffalo Jump, Mantoulin I = Mantoulin Island,
‡ Collection site: acronym of province and regions are as follows: Allumette I = Allumette Island, Cypress Hills P P = Cypress Hills Provincial Park,
§ Species names of Ritchie (1984) are considered nomina nuda (nom . nud .). However, those species names are retained in this thesis for comparison.
Identiication verified: acronym of names is as follows: JL = Lima J, SR = Rempel S, AJR = Ritchie AJ, JDS = Shorthouse JD.
Family identifications: Eulophidae, Eupelmidae, Eurytomidae, Ichneumonidae, Ormyridae, and Pteromalidae identified by JL (n = 188).
Specimens of Torymus identified by SR (n = 63) and JL (n = 214).
Specimens of Periclistus identified by AJR (n = 26) and JL (n = 275).
Specimens of Diplolepis identified by JDS (n = 259) and JL (n = 143).
† Specimen designation: acronym of species name is as follows: D . = Diplolepis , P . = Periclistus , and T . = Torymus .
195
Appendix 2. Genome size estimation of Hymenoptera with information on specimen identification.
Identification†
n
DbOT ID
Verified Superfamily
Family
Subfamily
Species
Apoidea
Apidae
Apinae
DbOT 77
A. mellifera
1 JL
Apoidea
Apidae
Apinae
DbOT 77
A. mellifera
2 JL
Apoidea
Apidae
Apinae
DbOT 77
A. mellifera
3 JL
Apoidea
Apidae
Apinae
DbOT 77
A. mellifera
4 JL
Apoidea
Apidae
Apinae
DbOT 77
A. mellifera
5 JL
Apoidea
Apidae
Apinae
DbOT 77
A. mellifera
6 JL
Apoidea
Apidae
Apinae
DbOT 77
A. mellifera
7 JL
Apoidea
Apidae
Apinae
DbOT 78
B. balteatus
8 JL
Apoidea
Apidae
Apinae
DbOT 79
B. rufocinctus
9 JL
Apoidea
Apidae
Apinae
DbOT 79
B. rufocinctus
10 JL
Apoidea
Apidae
Apinae
DbOT 80
B. sylvicola
11 JL
Apoidea
Apidae
Apinae
DbOT 80
B. sylvicola
12 JL
Apoidea
Apidae
Apinae
DbOT 80
B. sylvicola
13 JL
Apoidea
Apidae
Apinae
DbOT 81
B. impatiens
14 JL
Apoidea
Apidae
Apinae
DbOT 81
B. impatiens
15 JL
Apoidea
Apidae
Apinae
DbOT 81
B.
impatiens
16 JL
Apoidea
Apidae
Apinae
DbOT 81
B.
impatiens
17 JL
Apoidea
Apidae
Apinae
DbOT 81
B.
impatiens
18 JL
Apoidea
Apidae
Apinae
DbOT 81
B. impatiens
19 JL
Apoidea
Apidae
Apinae
DbOT 82
M. desponsa
20 JL
Apoidea
Apidae
Apinae
DbOT 83
N. perplexa
21 JL
Apoidea
Apidae
Colletinae
DbOT 84
H. affinis
22 JL
Apoidea
Apidae
Colletinae
DbOT 85
H. modestus
23 JL
Apoidea
Apidae
Colletinae
DbOT 86
H. mesillae
24 JL
Apoidea
Apidae
Halictinae
DbOT 87
A. virescens
25 JL
Apoidea
Apidae
Halictinae
DbOT 88
H. rubicundus
26 JL
Apoidea
Apidae
Halictinae
DbOT 91
L. lineatulum
27 JL
Apoidea
Apidae
Halictinae
DbOT 91
L. lineatulum
28 JL
Apoidea
Apidae
Halictinae
DbOT 91
L. lineatulum
29 JL
Apoidea
Crabronidae
DbOT 92
•
R. clavipes
30 JL
Apoidea
Crabronidae
DbOT 92
•
R. clavipes
31 JL
Apoidea
Crabronidae
DbOT350
•
P.
gracilis
32 JL
Apoidea
Sphecidae
DbOT 93
•
•
33 JL
Apoidea
Sphecidae
DbOT 94
•
S.
caementarium
34 JL
HYGEN700-10
HYGEN280-10
HYGEN946-10
HYGEN621-10
HYGEN567-10
HYGEN642-10
HYGEN600-10
HYGEN586-10
HYGEN614-10
HYGEN644-10
HYGEN908-10
HYGEN640-10
HYGEN641-10
HYGEN542-10
HYGEN639-10
HYGEN637-10
HYGEN565-10
HYGEN636-10
HYGEN635-10
HYGEN634-10
HYGEN560-10
HYGEN125-10
HYGEN121-10
HYGEN070-10
HYGEN576-10
HYGEN575-10
HYGEN071-10
HYGEN651-10
HYGEN650-10
HYGEN648-10
HYGEN647-10
HYGEN554-10
HYGEN553-10
HYGEN552-10
f
f
f
f
f
f
f
f
m
m
f
f
f
f
f
f
f
m
m
f
m
f
f
f
m
m
m
m
m
m
m
f
m
f
Process ID sex
size (pg)∆
0.24
0.24
0.23
0.24
0.24
0.24
0.24
0.43
0.46
0.47
0.45
0.49
0.46
0.51
0.49
0.50
0.50
0.49
0.50
0.57
0.27
0.65
0.67
0.38
0.80
0.70
0.70
0.63
0.68
0.33
0.35
0.29
0.58
1.15
Cytometer§
FACS
FACS
FACS
FACS
FACS
FACS
FACS
FACS
FACS
FACS
FACS
FACS
FACS
FACS
FACS
FACS
FACS
FACS
FACS
FACS
FACS
FACS
FACS
CyAn
FACS
FACS
FACS
FACS
FACS
FACS
FACS
CyAn
FACS
CyAn
Genome Flow
196
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
n
Verified Superfamily
Apoidea
JL
Ceraphronoidea
JL
Ceraphronoidea
JL
Chalcidoidea
BBCL
Chalcidoidea
BBCL
Chalcidoidea
BBCL
Chalcidoidea
BBCL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
BBCL
Chalcidoidea
BBCL
Chalcidoidea
BBCL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
•
•
•
•
•
•
•
•
•
•
•
•
Encyrtidae
Encyrtidae
Encyrtidae
Encyrtidae
Encyrtidae
Encyrtidae
Encyrtidae
Encyrtidae
Encyrtidae
Encyrtidae
Encyrtidae
•
Encyrtidae
Encyrtidae
•
Encyrtidae
•
•
Chalcididae
Encyrtidae
•
Chalcididae
•
•
Chalcididae
•
•
Chalcididae
Encyrtidae
•
Chalcididae
Encyrtidae
•
Chalcididae
•
•
Chalcididae
•
•
Aphelinidae
Encyrtidae
•
Aphelinidae
Encyrtidae
•
Aphelinidae
•
•
Aphelinidae
Encyrtidae
•
Megaspilidae
•
•
Ceraphronidae
Encyrtidae
•
Sphecidae
Identification†
Family
Subfamily
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
L. dactylopii
L. dactylopii
L. dactylopii
•
•
•
•
•
•
•
E. formosa
E. formosa
E. eremicus
E. eremicus
•
•
C. californicus
Species
DbOT122
DbOT122
DbOT122
DbOT122
DbOT121
DbOT121
DbOT121
DbOT120
DbOT120
DbOT120
DbOT120
DbOT120
DbOT120
DbOT120
DbOT120
DbOT120
DbOT119
DbOT119
•
•
•
DbOT127
DbOT127
DbOT127
DbOT127
DbOT127
DbOT127
DbOT127
DbOT133
DbOT133
•
•
•
•
DbOT351
DbOT ID
HYGEN785-10
HYGEN766-10
HYGEN765-10
HYGEN764-10
HYGEN709-10
HYGEN708-10
HYGEN707-10
HYGEN782-10
HYGEN781-10
HYGEN774-10
HYGEN768-10
HYGEN784-10
HYGEN783-10
HYGEN779-10
HYGEN778-10
HYGEN767-10
HYGEN780-10
HYGEN775-10
•
•
•
HYGEN813-10
HYGEN812-10
HYGEN794-10
HYGEN793-10
HYGEN740-10
HYGEN733-10
HYGEN687-10
VNMB450-08
VNMB356-08
•
•
•
•
HYGEN725-10
m
f
f
f
f
f
f
m
m
m
m
m
m
m
f
f
f
f
f
f
f
f
f
f
m
m
m
m
f
m
m
f
f
f
f
Process ID sex
size (pg)∆
0.56
0.27
0.42
0.60
0.58
0.39
0.38
0.41
0.44
0.45
0.39
0.40
0.41
0.42
0.56
0.57
0.58
0.30
0.30
0.60
0.63
0.63
0.65
0.63
0.62
0.62
0.64
0.63
0.29
0.30
0.28
0.52
0.53
0.54
0.52
Cytometer§
CyAn
CyAn
CyAn
Quanta
Quanta
Quanta
Quanta
CyAn
CyAn
CyAn
CyAn
CyAn
CyAn
CyAn
Quanta
Quanta
Quanta
CyAn
CyAn
CyAn
CyAn
CyAn
CyAn
CyAn
CyAn
CyAn
CyAn
CyAn
CyAn
CyAn
CyAn
CyAn
CyAn
CyAn
CyAn
Genome Flow
197
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
n
Verified Superfamily
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
BBCL
Chalcidoidea
BBCL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
•
•
•
•
•
•
•
•
•
•
•
•
Eulophidae
Eulophidae
Eulophidae
Eulophidae
Eulophidae
Eulophidae
Eulophidae
Eulophidae
Eulophidae
Eulophidae
Eulophidae
•
Eulophidae
Eulophidae
•
Eulophidae
•
•
Eulophidae
Eulophidae
•
Eulophidae
•
•
Eulophidae
•
•
Eulophidae
Eulophidae
•
Eulophidae
Eulophidae
•
Eucharitidae
•
•
Encyrtidae
Eulophidae
•
Encyrtidae
•
•
Encyrtidae
Eulophidae
•
Encyrtidae
•
•
Encyrtidae
Eulophidae
•
Encyrtidae
•
•
Encyrtidae
Eulophidae
•
Encyrtidae
Identification†
Family
Subfamily
•
•
•
•
•
•
•
D. isaea
D. isaea
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
Species
DbOT109
DbOT109
DbOT108
DbOT108
DbOT108
DbOT108
DbOT108
DbOT107
DbOT107
DbOT106
DbOT105
DbOT105
DbOT105
DbOT105
DbOT105
DbOT 61
DbOT 61
DbOT 61
DbOT 60
DbOT 60
DbOT 60
DbOT 58
DbOT 58
DbOT 57
DbOT 56
DbOT 55
•
DbOT124
DbOT124
DbOT124
DbOT124
DbOT124
DbOT123
DbOT122
DbOT122
DbOT ID
HYGEN932-10
HYGEN931-10
HYGEN901-10
HYGEN900-10
HYGEN899-10
HYGEN898-10
HYGEN572-10
ROSE643-08
ROSE642-08
HYGEN738-10
HYGEN679-10
HYGEN678-10
HYGEN677-10
HYGEN704-10
HYGEN703-10
HYGEN510-10
HYGEN519-10
HYGEN508-10
HYGEN514-10
HYGEN512-10
HYGEN511-10
HYGEN517-10
HYGEN516-10
PIPI141-09
HYGEN498-10
HYGEN497-10
•
HYGEN770-10
HYGEN769-10
HYGEN761-10
HYGEN702-10
HYGEN762-10
HYGEN777-10
HYGEN787-10
HYGEN786-10
f
f
m
f
m
m
m
m
f
f
f
f
f
f
f
f
f
f
f
f
f
f
m
m
m
m
f
f
f
m
m
m
m
f
f
Process ID sex
size (pg)∆
0.53
0.53
0.35
0.29
0.29
0.28
0.28
0.30
0.45
0.43
0.43
0.54
0.55
0.54
0.49
0.48
0.50
0.59
0.60
0.58
0.51
0.50
0.47
0.50
0.50
0.44
0.23
0.23
0.91
0.91
0.88
0.88
0.91
0.92
0.93
Cytometer§
CyAn
CyAn
CyAn
CyAn
CyAn
CyAn
CyAn
CyAn
CyAn
FACS
FACS
Quanta
FACS
FACS
FACS
FACS
FACS
FACS
FACS
FACS
CyAn
CyAn
CyAn
CyAn
CyAn
CyAn
Quanta
Quanta
FACS
CyAn
CyAn
CyAn
CyAn
CyAn
CyAn
Genome Flow
198
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
n
Verified Superfamily
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
•
•
•
•
•
•
•
•
•
•
•
•
Eurytomidae
Eurytomidae
Eurytomidae
Eurytomidae
Eurytomidae
Eurytomidae
Eurytomidae
Eurytomidae
Eurytomidae
Eurytomidae
Eurytomidae
•
Eurytomidae
Eurytomidae
•
Eurytomidae
•
•
Eurytomidae
Eurytomidae
•
Eurytomidae
•
•
Eupelmidae
•
•
Eupelmidae
Eurytomidae
•
Eupelmidae
Eurytomidae
•
Eupelmidae
•
•
Eupelmidae
Eurytomidae
•
Eupelmidae
•
•
Eupelmidae
Eurytomidae
•
Eupelmidae
•
•
Eupelmidae
Eurytomidae
•
Eupelmidae
•
•
Eupelmidae
Eurytomidae
•
Eulophidae
Identification†
Family
Subfamily
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
Species
DbOT 50
DbOT 50
DbOT 50
DbOT 50
DbOT 50
DbOT 50
DbOT 50
DbOT 50
DbOT 50
DbOT 50
DbOT 50
DbOT 50
DbOT 50
DbOT 50
DbOT 50
DbOT 50
DbOT 50
DbOT 50
DbOT 50
DbOT 50
DbOT 50
DbOT 50
DbOT 50
DbOT126
DbOT125
DbOT125
DbOT125
DbOT125
DbOT125
DbOT125
DbOT125
DbOT 49
DbOT 49
DbOT 49
DbOT109
DbOT ID
PIPI033-09
PIPI045-09
PIPI079-09
PIPI030-09
PIPI077-09
PIPI089-09
PIPI005-09
PIPI016-09
PIPI028-09
PIPI040-09
PIPI064-09
PIPI050-09
PIPI038-09
PIPI026-09
PIPI014-09
PIPI002-09
PIPI001-09
PIPI024-09
PIPI036-09
PIPI048-09
PIPI060-09
PIPI072-09
PIPI084-09
HYGEN607-10
HYGEN937-10
HYGEN818-10
HYGEN817-10
HYGEN816-10
HYGEN797-10
HYGEN796-10
HYGEN795-10
HYGEN458-10
HYGEN464-10
HYGEN462-10
HYGEN933-10
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
Process ID sex
size (pg)∆
0.95
0.71
0.68
0.65
0.46
0.54
0.53
0.50
0.51
0.53
0.56
0.29
0.51
0.56
0.57
0.56
0.55
0.56
0.52
0.55
0.51
0.50
0.55
0.57
0.53
0.55
0.51
0.55
0.57
0.47
0.53
0.51
0.49
0.55
0.50
Cytometer§
CyAn
FACS
FACS
FACS
CyAn
CyAn
CyAn
CyAn
CyAn
CyAn
CyAn
FACS
Quanta
Quanta
Quanta
Quanta
Quanta
Quanta
Quanta
Quanta
Quanta
Quanta
Quanta
Quanta
Quanta
Quanta
Quanta
Quanta
Quanta
Quanta
Quanta
Quanta
Quanta
Quanta
Quanta
Genome Flow
199
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
n
Verified Superfamily
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
•
•
•
•
•
•
•
•
•
•
•
•
Eurytomidae
Eurytomidae
Eurytomidae
Eurytomidae
Eurytomidae
Eurytomidae
Eurytomidae
Eurytomidae
Eurytomidae
Eurytomidae
Eurytomidae
•
Eurytomidae
Eurytomidae
•
Eurytomidae
•
•
Eurytomidae
Eurytomidae
•
Eurytomidae
•
•
Eurytomidae
•
•
Eurytomidae
Eurytomidae
•
Eurytomidae
Eurytomidae
•
Eurytomidae
•
•
Eurytomidae
Eurytomidae
•
Eurytomidae
•
•
Eurytomidae
Eurytomidae
•
Eurytomidae
•
•
Eurytomidae
Eurytomidae
•
Eurytomidae
•
•
Eurytomidae
Eurytomidae
•
Eurytomidae
Identification†
Family
Subfamily
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
Species
DbOT113
DbOT112
DbOT111
DbOT 54
DbOT 54
DbOT 53
DbOT 52
DbOT 52
DbOT 52
DbOT 52
DbOT 52
DbOT 52
DbOT 52
DbOT 52
DbOT 52
DbOT 51
DbOT 51
DbOT 51
DbOT 51
DbOT 51
DbOT 51
DbOT 51
DbOT 51
DbOT 51
DbOT 51
DbOT 51
DbOT 51
DbOT 51
DbOT 51
DbOT 50
DbOT 50
DbOT 50
DbOT 50
DbOT 50
DbOT 50
DbOT ID
HYGEN938-10
HYGEN839-10
HYGEN274-10
PIPI011-09
PIPI051-09
HYGEN486-10
PIPI021-09
PIPI069-09
PIPI055-09
PIPI091-09
PIPI007-09
PIPI081-09
PIPI093-09
PIPI067-09
PIPI018-09
PIPI022-09
PIPI056-09
PIPI043-09
PIPI029-09
PIPI065-09
PIPI025-09
PIPI061-09
PIPI073-09
HYGEN494-10
PIPI034-09
PIPI044-09
PIPI031-09
PIPI003-09
PIPI037-09
PIPI057-09
HYGEN489-10
HYGEN488-10
PIPI070-09
PIPI082-09
PIPI010-09
f
f
f
f
f
m
f
f
f
f
f
f
m
m
m
m
m
m
m
m
f
f
f
f
m
m
m
m
m
f
f
f
f
f
f
Process ID sex
size (pg)∆
0.50
0.50
0.50
0.53
0.50
0.52
0.69
0.71
0.68
0.72
0.68
0.71
0.72
0.72
0.74
0.75
0.76
0.67
0.69
0.77
0.53
0.50
0.49
0.52
0.50
0.51
0.53
0.48
0.49
0.77
0.55
0.52
0.55
0.67
0.60
Cytometer§
Quanta
Quanta
Quanta
FACS
FACS
Quanta
Quanta
Quanta
Quanta
Quanta
Quanta
FACS
Quanta
Quanta
Quanta
Quanta
Quanta
Quanta
Quanta
Quanta
Quanta
Quanta
Quanta
Quanta
Quanta
Quanta
Quanta
Quanta
Quanta
FACS
Quanta
Quanta
FACS
CyAn
CyAn
Genome Flow
200
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
n
Verified Superfamily
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
•
•
•
•
•
•
•
•
•
•
•
•
Ormyridae
Ormyridae
Ormyridae
Ormyridae
Ormyridae
Ormyridae
Ormyridae
Ormyridae
Ormyridae
Ormyridae
Ormyridae
•
Mymaridae
Ormyridae
•
Mymaridae
•
•
Mymaridae
Mymaridae
•
Mymaridae
•
•
Mymaridae
•
•
Mymaridae
Mymaridae
•
Mymaridae
Mymaridae
•
Eurytomidae
•
•
Eurytomidae
Mymaridae
•
Eurytomidae
•
•
Eurytomidae
Mymaridae
•
Eurytomidae
•
•
Eurytomidae
Mymaridae
•
Eurytomidae
•
•
Eurytomidae
Mymaridae
•
Eurytomidae
Identification†
Family
Subfamily
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
Species
DbOT 68
DbOT 68
DbOT 68
DbOT 68
DbOT 68
DbOT 68
DbOT 68
DbOT 68
DbOT 68
DbOT 68
DbOT 67
DbOT 67
DbOT129
DbOT129
DbOT129
DbOT129
DbOT129
DbOT128
DbOT128
DbOT128
DbOT128
DbOT128
DbOT128
DbOT128
DbOT128
DbOT128
DbOT118
DbOT117
DbOT116
DbOT116
DbOT115
DbOT115
DbOT115
DbOT115
DbOT114
DbOT ID
HYGEN472-10
HYGEN469-10
HYGEN471-10
HYGEN467-10
HYGEN474-10
PIPI128-09
PIPI129-09
PIPI131-09
PIPI130-09
PIPI127-09
HYGEN475-10
PIPI132-09
HYGEN884-10
HYGEN868-10
HYGEN867-10
HYGEN866-10
HYGEN849-10
HYGEN874-10
HYGEN873-10
HYGEN872-10
HYGEN821-10
HYGEN820-10
HYGEN819-10
HYGEN801-10
HYGEN800-10
HYGEN799-10
HYGEN909-10
HYGEN960-10
HYGEN973-10
HYGEN954-10
HYGEN804-10
HYGEN803-10
HYGEN802-10
HYGEN747-10
HYGEN939-10
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
m
f
f
f
f
f
f
f
f
f
f
f
f
Process ID sex
size (pg)∆
0.57
0.43
0.41
0.41
0.40
0.36
0.36
0.42
0.47
1.31
1.42
1.40
1.22
1.26
1.26
1.27
1.28
1.27
0.27
0.25
0.24
0.25
0.26
0.29
0.25
0.34
0.33
0.33
0.33
0.33
0.31
0.31
0.30
0.30
0.32
Cytometer§
CyAn
CyAn
CyAn
CyAn
CyAn
CyAn
CyAn
CyAn
CyAn
CyAn
CyAn
CyAn
CyAn
CyAn
CyAn
CyAn
CyAn
CyAn
CyAn
CyAn
CyAn
CyAn
CyAn
Quanta
FACS
Quanta
Quanta
Quanta
Quanta
Quanta
FACS
FACS
FACS
FACS
FACS
Genome Flow
201
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
n
Verified Superfamily
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
•
•
•
•
•
•
•
•
•
•
•
•
Pteromalidae
Pteromalidae
Pteromalidae
Pteromalidae
Pteromalidae
Pteromalidae
Pteromalidae
Pteromalidae
Pteromalidae
Pteromalidae
Pteromalidae
•
Pteromalidae
Pteromalidae
•
Perilampidae
•
•
Perilampidae
Pteromalidae
•
Perilampidae
•
•
Perilampidae
•
•
Perilampidae
Pteromalidae
•
Ormyridae
Pteromalidae
•
Ormyridae
•
•
Ormyridae
•
•
Ormyridae
Pteromalidae
•
Ormyridae
Pteromalidae
•
Ormyridae
•
•
Ormyridae
Pteromalidae
•
Ormyridae
•
•
Ormyridae
Pteromalidae
•
Ormyridae
Identification†
Family
Subfamily
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
Species
DbOT110
DbOT110
DbOT110
DbOT110
DbOT104
DbOT103
DbOT101
DbOT101
DbOT101
DbOT100
DbOT100
DbOT 99
DbOT 99
DbOT 99
DbOT 98
DbOT 65
DbOT 65
DbOT 64
DbOT 63
DbOT 62
DbOT 97
DbOT 96
DbOT 95
DbOT 95
DbOT 95
DbOT132
DbOT131
DbOT131
DbOT131
DbOT130
DbOT 68
DbOT 68
DbOT 68
DbOT 68
DbOT 68
DbOT ID
HYGEN685-10
HYGEN684-10
HYGEN682-10
HYGEN681-10
HYGEN082-10
HYGEN276-10
HYGEN231-10
HYGEN199-10
HYGEN197-10
HYGEN176-10
HYGEN141-10
HYGEN549-10
HYGEN547-10
HYGEN284-10
HYGEN273-10
HYGEN515-10
HYGEN499-10
HYGEN502-10
PIPI140-09
HYGEN506-10
HYGEN792-10
HYGEN616-10
HYGEN645-10
HYGEN617-10
HYGEN596-10
HYGEN940-10
HYGEN955-10
HYGEN951-10
HYGEN950-10
HYGEN805-10
PIPI139-09
HYGEN476-10
HYGEN470-10
HYGEN465-10
HYGEN468-10
f
f
f
f
m
f
f
f
f
f
f
f
f
f
m
f
f
f
f
f
f
f
m
m
f
f
f
f
m
f
m
f
f
f
f
Process ID sex
size (pg)∆
0.34
0.35
0.33
0.33
0.31
0.32
0.34
0.34
0.35
0.35
0.37
0.37
0.36
0.36
0.25
0.35
0.32
0.41
0.40
0.38
0.31
0.37
0.34
0.34
0.38
0.38
0.73
0.78
0.74
0.80
0.78
0.26
0.26
0.26
0.28
Cytometer§
FACS
FACS
FACS
FACS
Quanta
CyAn
CyAn
CyAn
CyAn
CyAn
FACS
FACS
FACS
FACS
CyAn
FACS
Quanta
FACS
FACS
FACS
FACS
FACS
FACS
FACS
FACS
FACS
FACS
FACS
FACS
FACS
FACS
CyAn
CyAn
CyAn
CyAn
Genome Flow
202
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
n
Verified Superfamily
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
•
•
•
•
•
•
•
•
•
•
•
•
Torymidae
Torymidae
Torymidae
Torymidae
Torymidae
Torymidae
Torymidae
Torymidae
Torymidae
Torymidae
Torymidae
•
Torymidae
Torymidae
•
Torymidae
•
•
Torymidae
Torymidae
•
Torymidae
•
•
Torymidae
•
•
Torymidae
Torymidae
•
Torymidae
Torymidae
•
Torymidae
•
•
Torymidae
Torymidae
•
Torymidae
•
•
Torymidae
Torymidae
•
Torymidae
•
•
Pteromalidae
Torymidae
•
Pteromalidae
•
•
Pteromalidae
Torymidae
•
Pteromalidae
Identification†
Family
Subfamily
T . bedeguaris
T . bedeguaris
T . bedeguaris
T . bedeguaris
T . bedeguaris
T . bedeguaris
T . bedeguaris
T . bedeguaris
T . bedeguaris
T . bedeguaris
T . bedeguaris
T . bedeguaris
T . bedeguaris
T . bedeguaris
T . bedeguaris
T . bedeguaris
T . bedeguaris
T . bedeguaris
T . bedeguaris
T . bedeguaris
T . bedeguaris
T . bedeguaris
T . bedeguaris
T . chrysochlorus
T . chrysochlorus
T . chrysochlorus
T . chrysochlorus
T . sp.
T . sp.
T . sp.
T . sp.
•
•
•
•
Species
DbOT 44
DbOT 44
DbOT 44
DbOT 44
DbOT 44
DbOT 44
DbOT 44
DbOT 44
DbOT 44
DbOT 44
DbOT 44
DbOT 44
DbOT 44
DbOT 44
DbOT 44
DbOT 44
DbOT 44
DbOT 44
DbOT 44
DbOT 44
DbOT 44
DbOT 44
DbOT 44
DbOT 43
DbOT 43
DbOT 40
DbOT 40
DbOT 38
DbOT 38
DbOT 38
DbOT 38
DbOT110
DbOT110
DbOT110
DbOT110
DbOT ID
PIPI134-09
PIPI133-09
PIPI179-09
HYGEN381-10
HYGEN386-10
HYGEN385-10
HYGEN397-10
HYGEN392-10
HYGEN395-10
HYGEN393-10
HYGEN394-10
HYGEN388-10
HYGEN389-10
HYGEN390-10
HYGEN384-10
HYGEN387-10
HYGEN409-10
HYGEN417-10
HYGEN396-10
HYGEN391-10
HYGEN423-10
HYGEN424-10
TORNA103-10
HYGEN407-10
HYGEN439-10
HYGEN383-10
HYGEN398-10
HYGEN401-10
HYGEN404-10
HYGEN399-10
HYGEN402-10
HYGEN718-10
HYGEN717-10
HYGEN716-10
HYGEN686-10
f
f
f
f
f
f
f
f
m
m
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
m
m
m
Process ID sex
size (pg)∆
0.27
0.26
0.26
0.26
0.99
1.00
0.94
0.94
0.91
0.90
0.70
0.70
0.76
0.77
0.76
0.79
0.81
0.79
0.76
0.80
0.77
0.78
0.80
0.79
0.71
0.75
0.75
0.74
0.78
0.79
0.78
0.75
0.78
0.77
0.80
Cytometer§
CyAn
CyAn
CyAn
CyAn
FACS
FACS
FACS
FACS
FACS
FACS
FACS
FACS
FACS
FACS
FACS
FACS
FACS
FACS
FACS
FACS
FACS
FACS
FACS
FACS
FACS
FACS
FACS
FACS
FACS
FACS
FACS
FACS
Quanta
Quanta
Quanta
Genome Flow
203
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
n
Verified Superfamily
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
JL
Chalcidoidea
BIC
Chalcidoidea
BIC
Chalcidoidea
BIC
Chalcidoidea
BIC
Chalcidoidea
BIC
Chalcidoidea
BIC
Chrysidoidea
JL
Chrysidoidea
JL
Chrysidoidea
JL
Chrysidoidea
JL
Cynipoidea
JL
Cynipoidea
JL
Cynipoidea
JL
Cynipoidea
JL
Cynipoidea
JL
Cynipoidea
JL
Cynipoidea
JL
Cynipoidea
JL
Cynipoidea
JL
Cynipoidea
JL
Cynipoidea
JL
Cynipoidea
JL
Cynipoidea
JL
Cynipoidea
JL
•
•
•
•
•
•
•
•
•
•
•
•
Cynipidae
Cynipidae
Cynipidae
Cynipidae
Cynipidae
Cynipidae
Cynipidae
Cynipidae
Cynipidae
Cynipidae
Cynipidae
•
Trichogrammatidae
•
•
Trichogrammatidae
Cynipidae
•
Trichogrammatidae
Cynipidae
•
Trichogrammatidae
•
•
Trichogrammatidae
•
•
Torymidae
Cynipidae
•
Torymidae
Dryinidae
•
Torymidae
•
•
Torymidae
•
•
Torymidae
Bethylidae
•
Torymidae
Chrysididae
•
Torymidae
•
•
Torymidae
Chrysididae
•
Torymidae
•
•
Torymidae
Trichogrammatidae
•
Torymidae
Identification†
Family
Subfamily
D. rosae
D. rosae
D. rosae
D. rosae
D. rosae
D. sp.
D. sp.
D. bassetti
D. bassetti
D. bicolor
D. eglanteriae
D. eglanteriae
D. eglanteriae
D. eglanteriae
•
•
•
•
T. platneri
T. platneri
T. platneri
T. brassicae
T. brassicae
T. brassicae
•
•
•
•
•
•
•
•
T. bedeguaris /solitarius
T . bedeguaris
T . bedeguaris
Species
DbOT 11
DbOT 11
DbOT 11
DbOT 11
DbOT 11
DbOT 10
DbOT 10
•
•
•
DbOT 01
DbOT 01
DbOT 01
DbOT 01
•
•
DbOT141
DbOT140
DbOT135
DbOT135
DbOT135
DbOT134
DbOT134
DbOT134
DbOT139
DbOT138
DbOT137
DbOT137
DbOT137
DbOT137
DbOT136
DbOT136
DbOT 45
DbOT 44
DbOT 44
DbOT ID
HYGEN342-10
HYGEN347-10
HYGEN341-10
HYGEN348-10
HYGEN343-10
HYGEN340-10
HYGEN339-10
•
•
•
HYGEN983-10
HYGEN982-10
HYGEN981-10
HYGEN980-10
•
•
HYGEN695-10
HYGEN734-10
ROSE658-08
ROSE657-08
ROSE656-08
ROSE655-08
ROSE654-08
ROSE653-08
HYGEN806-10
HYGEN623-10
HYGEN828-10
HYGEN807-10
HYGEN976-10
HYGEN943-10
HYGEN923-10
HYGEN924-10
HYGEN413-10
HYGEN421-10
PIPI138-09
m
m
f
f
m
f
f
m
m
f
m
f
f
f
f
f
f
f
f
f
m
f
f
f
f
f
m
m
f
f
f
f
f
f
f
Process ID sex
size (pg)∆
0.78
0.73
0.74
0.50
0.51
0.61
0.58
0.60
0.55
0.59
0.57
0.25
0.24
0.23
0.20
0.20
0.20
0.27
0.24
0.29
0.26
0.48
0.48
0.48
0.49
0.62
0.56
0.72
0.61
0.63
0.62
0.62
0.66
0.67
0.67
Cytometer§
Quanta
FACS
FACS
CyAn
CyAn
CyAn
CyAn
CyAn
CyAn
FACS
CyAn
Quanta
Quanta
Quanta
Quanta
Quanta
Quanta
CyAn
CyAn
CyAn
CyAn
CyAn
CyAn
CyAn
CyAn
Quanta
Quanta
Quanta
Quanta
Quanta
Quanta
Quanta
Quanta
Quanta
Quanta
Genome Flow
204
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
n
Verified Superfamily
Cynipoidea
JL
Cynipoidea
JL
Cynipoidea
JL
Cynipoidea
JL
Cynipoidea
JL
Cynipoidea
JL
Cynipoidea
JL
Cynipoidea
JL
Cynipoidea
JL
Cynipoidea
JL
Cynipoidea
JL
Cynipoidea
JL
Cynipoidea
JL
Cynipoidea
JL
Cynipoidea
JL
Cynipoidea
JL
Cynipoidea
JL
Cynipoidea
JL
Cynipoidea
JL
Cynipoidea
JL
Cynipoidea
JL
Cynipoidea
JL
Cynipoidea
JL
Cynipoidea
JL
Cynipoidea
JL
Cynipoidea
JL
Cynipoidea
JL
Cynipoidea
JL
Cynipoidea
JL
Cynipoidea
JL
Cynipoidea
JL
Cynipoidea
JL
Cynipoidea
JL
Cynipoidea
JL
Cynipoidea
JL
•
•
•
•
•
•
•
•
•
•
•
•
Cynipidae
Cynipidae
Cynipidae
Cynipidae
Cynipidae
Cynipidae
Cynipidae
Cynipidae
Cynipidae
Cynipidae
Cynipidae
•
Cynipidae
Cynipidae
•
Cynipidae
•
•
Cynipidae
Cynipidae
•
Cynipidae
•
•
Cynipidae
•
•
Cynipidae
Cynipidae
•
Cynipidae
Cynipidae
•
Cynipidae
•
•
Cynipidae
Cynipidae
•
Cynipidae
•
•
Cynipidae
Cynipidae
•
Cynipidae
•
•
Cynipidae
Cynipidae
•
Cynipidae
•
•
Cynipidae
Cynipidae
•
Cynipidae
Identification†
Family
Subfamily
D. triforma
D. triforma
D. triforma
D. triforma
D. triforma
D. triforma
D. triforma
D. triforma
D. triforma
D. triforma
D. triforma
D. triforma
D. triforma
D. nodulosa
D. gracilis
D. ignota /nebulosa /variabilis
D. ignota /nebulosa /variabilis
D. ignota /nebulosa /variabilis
D. ignota /nebulosa /variabilis
D. ignota /nebulosa /variabilis
D. ignota /nebulosa /variabilis
D. ignota /nebulosa /variabilis
D. ignota /nebulosa /variabilis
D. ignota /nebulosa /variabilis
D. fusiformans
D. fusiformans
D. rosaefolii
D. rosaefolii
D. rosaefolii
D. rosaefolii
D. rosaefolii
D. rosaefolii
D. rosaefolii
D. rosaefolii
D. rosae
Species
DbOT 18
DbOT 18
DbOT 18
DbOT 18
DbOT 18
DbOT 18
DbOT 18
DbOT 18
DbOT 18
DbOT 18
DbOT 18
DbOT 18
DbOT 18
•
DbOT 16
DbOT 15
DbOT 15
DbOT 15
DbOT 15
DbOT 15
DbOT 15
DbOT 15
DbOT 15
DbOT 15
DbOT 14
DbOT 14
DbOT 13
DbOT 13
DbOT 13
DbOT 13
DbOT 13
DbOT 13
DbOT 13
DbOT 13
DbOT 11
DbOT ID
PIPI185-09
PIPI183-09
HYGEN991-10
HYGEN989-10
HYGEN984-10
HYGEN324-10
HYGEN323-10
HYGEN326-10
HYGEN327-10
PIPI187-09
PIPI186-09
PIPI181-09
PIPI189-09
•
HYGEN308-10
HYGEN378-10
HYGEN310-10
HYGEN318-10
HYGEN377-10
HYGEN320-10
HYGEN375-10
HYGEN317-10
HYGEN376-10
HYGEN322-10
HYGEN302-10
HYGEN299-10
PIPI169-09
PIPI167-09
HYGEN355-10
HYGEN351-10
HYGEN354-10
HYGEN350-10
HYGEN349-10
PIPI158-09
HYGEN344-10
f
f
f
f
f
f
f
m
m
f
f
f
f
f
f
f
f
f
f
m
f
f
f
f
f
f
f
f
f
f
f
f
f
m
m
Process ID sex
size (pg)∆
0.63
0.42
0.41
0.42
0.42
0.43
0.40
0.42
0.43
0.41
0.41
0.61
0.57
0.58
0.57
0.61
0.59
0.61
0.57
0.59
0.61
0.63
0.63
0.63
0.63
0.63
0.63
0.63
0.65
0.65
0.62
0.63
0.65
0.57
0.62
Cytometer§
Quanta
Quanta
Quanta
Quanta
Quanta
FACS
FACS
Quanta
Quanta
Quanta
Quanta
Quanta
Quanta
Quanta
Quanta
Quanta
Quanta
Quanta
FACS
Quanta
FACS
Quanta
Quanta
Quanta
Quanta
Quanta
Quanta
Quanta
Quanta
Quanta
CyAn
CyAn
CyAn
Quanta
Quanta
Genome Flow
205
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
n
Verified Superfamily
Cynipoidea
JL
Cynipoidea
JL
Cynipoidea
JL
Cynipoidea
JL
Cynipoidea
JL
Cynipoidea
JL
Cynipoidea
JL
Cynipoidea
JL
Cynipoidea
JL
Cynipoidea
JL
Cynipoidea
JL
Cynipoidea
JL
Cynipoidea
JL
Cynipoidea
JL
Cynipoidea
JL
Cynipoidea
JL
Cynipoidea
JL
Cynipoidea
JL
Cynipoidea
JL
Cynipoidea
JL
Cynipoidea
JL
Cynipoidea
JL
Cynipoidea
JL
Cynipoidea
JL
Cynipoidea
JL
Cynipoidea
JL
Cynipoidea
JL
Cynipoidea
JL
Cynipoidea
JL
Cynipoidea
JL
Cynipoidea
JL
Cynipoidea
JL
Cynipoidea
JL
Cynipoidea
JL
Cynipoidea
JL
•
•
•
•
•
•
•
•
•
•
•
•
Cynipidae
Cynipidae
Cynipidae
Cynipidae
Cynipidae
Cynipidae
Cynipidae
Cynipidae
Cynipidae
Cynipidae
Cynipidae
•
Cynipidae
Cynipidae
•
Cynipidae
•
•
Cynipidae
Cynipidae
•
Cynipidae
•
•
Cynipidae
•
•
Cynipidae
Cynipidae
•
Cynipidae
Cynipidae
•
Cynipidae
•
•
Cynipidae
Cynipidae
•
Cynipidae
•
•
Cynipidae
Cynipidae
•
Cynipidae
•
•
Cynipidae
Cynipidae
•
Cynipidae
•
•
Cynipidae
Cynipidae
•
Cynipidae
Identification†
Family
Subfamily
DbOT 30
DbOT 30
DbOT 30
DbOT 30
DbOT 30
DbOT 30
DbOT 30
DbOT 30
"P. weldi (nom . nud .)"‡
"P. weldi (nom . nud .)"‡
"P. weldi (nom . nud .)"‡
"P. weldi (nom . nud .)"‡
"P. weldi (nom . nud .)"‡
‡
‡
"P. weldi (nom . nud .)"‡
"P. weldi (nom . nud .)"
"P. weldi (nom . nud .)"
DbOT 28
DbOT 28
DbOT 28
DbOT 27
DbOT 26
DbOT 26
DbOT 26
DbOT 26
DbOT 26
DbOT 26
DbOT 23
DbOT 23
DbOT 20
DbOT 20
DbOT 20
DbOT 20
DbOT 20
DbOT 20
DbOT 20
DbOT 20
DbOT 20
DbOT 20
DbOT 20
DbOT 19
DbOT 19
DbOT 18
DbOT 18
P . sp.
P . sp.
P . sp.
P . pirata
P . pirata
P . pirata
P . pirata
P . pirata
P . pirata
P . pirata
D. radicum
D. radicum
D. spinosa
D. spinosa
D. spinosa
D. spinosa
D. spinosa
D. spinosa
D. spinosa
D. spinosa
D. spinosa
D. spinosa
D. spinosa
D. triforma
D. triforma
D. triforma
D. triforma
Species
DbOT ID
HYGEN370-10
HYGEN294-10
PIPI174-09
PIPI176-09
PIPI178-09
PIPI172-09
HYGEN295-10
PIPI175-09
HYGEN372-10
HYGEN371-10
HYGEN373-10
HYGEN436-10
HYGEN437-10
HYGEN435-10
HYGEN438-10
HYGEN332-10
HYGEN334-10
HYGEN331-10
HYGEN364-10
HYGEN363-10
HYGEN990-10
HYGEN988-10
HYGEN986-10
HYGEN985-10
HYGEN425-10
HYGEN427-10
HYGEN434-10
HYGEN426-10
HYGEN428-10
HYGEN433-10
HYGEN430-10
HYGEN325-10
PIPI190-09
HYGEN992-10
HYGEN987-10
m
m
f
f
f
f
f
f
f
f
m
m
m
m
m
f
f
f
f
f
m
m
m
f
m
m
m
f
f
m
m
m
m
m
m
Process ID sex
size (pg)∆
0.66
0.64
0.66
0.63
0.64
0.62
0.64
0.61
0.63
0.64
0.64
0.66
0.65
0.68
0.64
0.62
0.60
0.25
0.24
0.26
0.21
0.27
0.26
0.23
0.26
0.21
0.21
0.23
0.26
0.26
0.27
0.25
0.24
0.22
0.26
Cytometer§
CyAn
CyAn
Quanta
Quanta
Quanta
Quanta
Quanta
Quanta
Quanta
FACS
Quanta
CyAn
CyAn
CyAn
CyAn
Quanta
Quanta
Quanta
Quanta
Quanta
Quanta
Quanta
Quanta
Quanta
Quanta
FACS
FACS
Quanta
FACS
Quanta
Quanta
Quanta
Quanta
FACS
FACS
Genome Flow
206
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
n
Verified Superfamily
Cynipoidea
JL
Cynipoidea
JL
Cynipoidea
JL
Cynipoidea
JL
Cynipoidea
JL
Cynipoidea
JL
Cynipoidea
JL
Cynipoidea
JL
Cynipoidea
JL
Cynipoidea
JL
Cynipoidea
JL
Cynipoidea
JL
Cynipoidea
JL
Cynipoidea
JL
Cynipoidea
JL
Cynipoidea
JL
Cynipoidea
JL
Cynipoidea
JL
Cynipoidea
JL
Cynipoidea
JL
Cynipoidea
JL
Cynipoidea
JL
Cynipoidea
JL
Cynipoidea
JL
Cynipoidea
JL
Cynipoidea
JL
Cynipoidea
JL
Cynipoidea
JL
Cynipoidea
JL
Cynipoidea
JL
Cynipoidea
JL
Cynipoidea
JL
Cynipoidea
JL
Cynipoidea
JL
Cynipoidea
JL
•
•
•
•
•
•
•
•
•
•
•
•
Cynipidae
Cynipidae
Cynipidae
Cynipidae
Cynipidae
Cynipidae
Cynipidae
Cynipidae
Cynipidae
Cynipidae
Cynipidae
•
Cynipidae
Cynipidae
•
Cynipidae
•
•
Cynipidae
Cynipidae
•
Cynipidae
•
•
Cynipidae
•
•
Cynipidae
Cynipidae
•
Cynipidae
Cynipidae
•
Cynipidae
•
•
Cynipidae
Cynipidae
•
Cynipidae
•
•
Cynipidae
Cynipidae
•
Cynipidae
•
•
Cynipidae
Cynipidae
•
Cynipidae
•
•
Cynipidae
Cynipidae
•
Cynipidae
Identification†
Family
Subfamily
‡
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
P . sp.
P . sp.
P . sp.
P . sp.
P . sp.
P . sp.
"P. ashmeadi/ cataractans (nom . nud .)"‡
"P. ashmeadi/ cataractans (nom . nud .)"‡
"P. ashmeadi/ cataractans (nom . nud .)"‡
"P. ashmeadi/ cataractans (nom . nud .)"‡
"P. ashmeadi/ cataractans (nom . nud .)"‡
"P. ashmeadi/ cataractans (nom . nud .)"‡
"P. ashmeadi/ cataractans (nom . nud .)"‡
DbOT147
DbOT147
DbOT146
DbOT146
DbOT146
DbOT145
DbOT144
DbOT144
DbOT143
DbOT143
DbOT142
DbOT142
DbOT142
DbOT142
DbOT142
DbOT142
DbOT142
DbOT 36
DbOT 36
DbOT 36
DbOT 33
DbOT 33
DbOT 33
DbOT 32
DbOT 32
DbOT 32
DbOT 32
DbOT 32
DbOT 32
DbOT 32
HYGEN945-10
HYGEN942-10
NJCGS1164-11
HYGEN957-10
HYGEN956-10
HYGEN979-10
HYGEN978-10
HYGEN974-10
NJCGS1167-11
NJCGS1166-11
HYGEN811-10
HYGEN810-10
HYGEN809-10
HYGEN808-10
HYGEN730-10
HYGEN699-10
HYGEN748-10
HYGEN368-10
HYGEN288-10
HYGEN306-10
HYGEN316-10
HYGEN314-10
HYGEN312-10
HYGEN367-10
PIPI165-09
PIPI173-09
PIPI177-09
HYGEN358-10
HYGEN356-10
PIPI160-09
PIPI168-09
PIPI163-09
DbOT 32
DbOT 32
"P. ashmeadi/ cataractans (nom . nud .)"‡
"P. ashmeadi/ cataractans (nom . nud .)"
PIPI170-09
DbOT 32
PIPI162-09
HYGEN366-10
‡
DbOT 32
DbOT 30
m
f
f
f
f
f
f
f
m
m
m
m
f
f
f
f
m
m
f
m
m
m
m
m
m
f
f
f
f
f
f
f
f
f
f
Process ID sex
"P. ashmeadi/ cataractans (nom . nud .)"‡
"P. ashmeadi/ cataractans (nom . nud .)"
"P. weldi (nom . nud .)"‡
Species
DbOT ID
size (pg)∆
0.24
0.25
0.25
0.25
0.24
0.22
0.23
0.23
0.23
0.23
0.19
0.22
0.24
0.23
0.23
0.25
0.23
0.24
1.86
1.99
1.91
1.94
1.96
2.08
2.07
1.36
1.34
1.94
1.94
1.74
0.38
0.38
0.36
0.33
0.33
Cytometer§
FACS
Quanta
Quanta
Quanta
Quanta
Quanta
Quanta
FACS
Quanta
Quanta
Quanta
FACS
Quanta
Quanta
Quanta
Quanta
FACS
FACS
CyAn
CyAn
CyAn
CyAn
CyAn
CyAn
CyAn
Cytomics
Cytomics
CyAn
CyAn
CyAn
CyAn
CyAn
Cytomics
CyAn
CyAn
Genome Flow
207
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
n
Verified Superfamily
Cynipoidea
JL
Cynipoidea
JL
Cynipoidea
JL
Cynipoidea
JL
Cynipoidea
JL
Cynipoidea
JL
Cynipoidea
JL
Cynipoidea
JL
Cynipoidea
JL
Cynipoidea
JL
Cynipoidea
JL
Cynipoidea
JL
Cynipoidea
JL
Cynipoidea
JL
Cynipoidea
JL
Cynipoidea
JL
Cynipoidea
JL
Cynipoidea
JL
Cynipoidea
JL
Cynipoidea
JL
Cynipoidea
JL
Cynipoidea
JL
Cynipoidea
JL
Cynipoidea
JL
Cynipoidea
JL
Cynipoidea
JL
Diaprioidea
JL
Diaprioidea
JL
Diaprioidea
JL
Diaprioidea
JL
Diaprioidea
JL
Diaprioidea
JL
Diaprioidea
JL
Diaprioidea
JL
Diaprioidea
JL
•
•
•
•
•
•
•
•
•
•
•
•
Figitidae
Figitidae
Diapriidae
Diapriidae
Diapriidae
Diapriidae
Diapriidae
Diapriidae
Diapriidae
Diapriidae
Diapriidae
•
Cynipidae
Figitidae
•
Cynipidae
•
•
Cynipidae
Figitidae
•
Cynipidae
•
•
Cynipidae
•
•
Cynipidae
Figitidae
•
Cynipidae
Figitidae
•
Cynipidae
•
•
Cynipidae
Figitidae
•
Cynipidae
•
•
Cynipidae
Figitidae
•
Cynipidae
•
•
Cynipidae
Cynipidae
•
Cynipidae
•
•
Cynipidae
Cynipidae
•
Cynipidae
Identification†
Family
Subfamily
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
Species
DbOT161
DbOT161
DbOT159
DbOT158
DbOT158
DbOT158
DbOT158
DbOT158
DbOT158
DbOT154
DbOT153
DbOT152
DbOT151
DbOT150
DbOT149
DbOT148
DbOT148
DbOT157
DbOT157
DbOT156
DbOT156
DbOT155
DbOT155
DbOT155
DbOT147
DbOT147
DbOT147
DbOT147
DbOT147
DbOT147
DbOT147
DbOT147
DbOT147
DbOT147
DbOT147
DbOT ID
HYGEN758-10
HYGEN756-10
HYGEN751-10
HYGEN772-10
HYGEN771-10
HYGEN760-10
HYGEN759-10
HYGEN755-10
HYGEN757-10
HYGEN815-10
HYGEN745-10
HYGEN754-10
HYGEN691-10
HYGEN735-10
HYGEN540-10
HYGEN994-10
HYGEN993-10
HYGEN971-10
HYGEN970-10
HYGEN959-10
HYGEN958-10
HYGEN977-10
HYGEN975-10
HYGEN972-10
HYGEN831-10
HYGEN969-10
HYGEN968-10
HYGEN967-10
HYGEN966-10
HYGEN965-10
HYGEN964-10
HYGEN963-10
HYGEN952-10
HYGEN948-10
HYGEN947-10
f
f
f
f
f
f
f
f
f
f
m
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
m
m
m
m
m
m
f
f
Process ID sex
size (pg)∆
0.34
0.34
0.31
0.32
0.34
0.33
0.30
0.27
0.29
0.29
0.30
0.27
0.28
0.28
0.36
0.36
0.36
0.37
0.47
0.37
0.59
0.42
0.33
0.43
0.53
0.78
0.70
0.64
0.70
0.77
0.61
0.82
0.60
0.79
0.71
Cytometer§
CyAn
CyAn
CyAn
CyAn
CyAn
CyAn
CyAn
CyAn
CyAn
CyAn
CyAn
CyAn
CyAn
CyAn
CyAn
CyAn
CyAn
CyAn
Quanta
Quanta
FACS
CyAn
CyAn
CyAn
CyAn
CyAn
CyAn
CyAn
CyAn
CyAn
CyAn
CyAn
CyAn
CyAn
CyAn
Genome Flow
208
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
n
Verified Superfamily
Evanioidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
BBCL
Ichneumonoidea
BBCL
Ichneumonoidea
BBCL
Ichneumonoidea
BBCL
Ichneumonoidea
BBCL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Rhyssalinae
Rhyssalinae
Rhyssalinae
Rhyssalinae
Hormiinae
Rogadinae
Rogadinae
Rogadinae
Rogadinae
Rogadinae
Rogadinae
Braconinae
Braconidae
Braconidae
Braconidae
Braconidae
Braconidae
Braconidae
Braconidae
Braconidae
Braconidae
Braconidae
Braconidae
Aphidiinae
Braconidae
Braconidae
Meteorinae
Braconidae
Rhyssalinae
Meteorinae
Braconidae
Braconidae
Meteorinae
Braconidae
Aphidiinae
Meteorinae
Braconidae
Aphidiinae
Euphorinae
Braconidae
Braconidae
Euphorinae
Braconidae
Braconidae
Macrocentrinae
Braconidae
Aphidiinae
Macrocentrinae
Braconidae
Braconidae
Macrocentrinae
Braconidae
Aphidiinae
Macrocentrinae
Braconidae
Braconidae
Macrocentrinae
Braconidae
Aphidiinae
Macrocentrinae
Braconidae
Braconidae
Helconinae
Braconidae
Aphidiinae
Brachistinae
Braconidae
Braconidae
•
Gasteruptiidae
Identification†
Family
Subfamily
•
C. fumiferanae
•
•
•
•
•
•
•
•
•
•
•
A. ervi
A. ervi
A. ervi
A. colemani
A. colemani
•
•
•
•
•
•
P. braynae
P. braynae
•
•
•
•
•
•
W. ligator
•
•
Species
DbOT190
DbOT189
DbOT188
DbOT187
DbOT187
DbOT187
DbOT187
DbOT186
DbOT185
DbOT185
DbOT185
DbOT185
DbOT184
DbOT183
DbOT183
DbOT183
DbOT182
DbOT182
DbOT181
DbOT181
DbOT180
DbOT179
DbOT178
DbOT177
DbOT176
DbOT176
DbOT175
DbOT175
DbOT175
DbOT174
DbOT174
DbOT174
DbOT173
DbOT172
DbOT162
DbOT ID
HYGEN220-10
HYGEN887-10
HYGEN587-10
HYGEN711-10
HYGEN710-10
HYGEN693-10
HYGEN673-10
HYGEN229-10
HYGEN906-10
HYGEN905-10
HYGEN904-10
HYGEN903-10
HYGEN072-10
ROSE637-08
ROSE636-08
ROSE635-08
ROSE634-08
ROSE633-08
HYGEN527-10
HYGEN528-10
HYGEN582-10
HYGEN562-10
HYGEN263-10
HYGEN918-10
HYGEN207-10
HYGEN195-10
HYGEN927-10
HYGEN926-10
HYGEN925-10
HYGEN914-10
HYGEN913-10
HYGEN912-10
HYGEN624-10
HYGEN921-10
HYGEN698-10
f
m
f
f
f
f
f
f
f
f
f
m
f
f
f
f
m
f
f
m
m
m
f
f
f
f
f
m
f
f
f
f
f
m
f
Process ID sex
size (pg)∆
0.29
0.15
0.13
0.14
0.15
0.14
0.14
0.15
0.15
0.18
0.18
0.16
0.13
0.14
0.13
0.15
0.13
0.11
0.11
0.16
0.16
0.14
0.13
0.12
0.12
0.12
0.12
0.17
0.27
0.27
0.27
0.27
0.26
0.20
0.23
Cytometer§
CyAn
CyAn
FACS
CyAn
CyAn
CyAn
CyAn
CyAn
CyAn
FACS
FACS
CyAn
FACS
FACS
FACS
FACS
FACS
Quanta
Quanta
Quanta
Quanta
Quanta
FACS
CyAn
CyAn
CyAn
CyAn
FACS
CyAn
CyAn
CyAn
CyAn
FACS
CyAn
FACS
Genome Flow
209
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
n
Verified Superfamily
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
BBCL
Ichneumonoidea
BBCL
Ichneumonoidea
BBCL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Meteorinae
Meteorinae
Meteorinae
Cheloninae
Cheloninae
Cheloninae
Cheloninae
Ichneutinae
Ichneutinae
Ichneutinae
Orthopelmatinae
Orthopelmatinae
Braconidae
Braconidae
Braconidae
Braconidae
Braconidae
Braconidae
Braconidae
Braconidae
Braconidae
Ichneumonidae
Ichneumonidae
Microgastrinae
Braconidae
Braconidae
Alysiinae
Braconidae
Microgastrinae
Alysiinae
Braconidae
Braconidae
Alysiinae
Braconidae
Microgastrinae
Alysiinae
Braconidae
Microgastrinae
Alysiinae
Braconidae
Braconidae
Alysiinae
Braconidae
Braconidae
Alysiinae
Braconidae
Microgastrinae
Alysiinae
Braconidae
Braconidae
Alysiinae
Braconidae
Microgastrinae
Alysiinae
Braconidae
Braconidae
Alysiinae
Braconidae
Microgastrinae
Alysiinae
Braconidae
Microgastrinae
Alysiinae
Braconidae
Braconidae
Alysiinae
Braconidae
Braconidae
Alysiinae
Braconidae
Identification†
Family
Subfamily
•
•
•
•
•
C. inanitus
C. inanitus
C. inanitus
C. inanitus
M. trachynotus
M. trachynotus
M. trachynotus
•
•
•
•
•
•
•
•
D. sibirica
D. sibirica
D. sibirica
•
•
•
•
•
•
•
•
•
•
•
•
Species
DbOT 69
DbOT 69
DbOT210
DbOT210
DbOT210
DbOT209
DbOT209
DbOT209
DbOT209
DbOT208
DbOT208
DbOT208
DbOT207
DbOT207
DbOT206
DbOT205
DbOT205
DbOT204
DbOT203
DbOT202
DbOT200
DbOT200
DbOT200
DbOT199
DbOT198
DbOT198
DbOT197
DbOT197
DbOT196
DbOT195
DbOT194
DbOT193
DbOT192
DbOT191
DbOT191
DbOT ID
HYGEN457-10
HYGEN456-10
HYGEN127-10
HYGEN075-10
HYGEN045-10
HYGEN035-10
HYGEN021-10
HYGEN020-10
HYGEN017-10
HYGEN870-10
HYGEN893-10
HYGEN891-10
HYGEN869-10
HYGEN895-10
HYGEN936-10
HYGEN882-10
HYGEN860-10
HYGEN136-10
HYGEN185-10
HYGEN023-10
ROSE640-08
ROSE638-08
ROSE639-08
HYGEN568-10
HYGEN563-10
HYGEN561-10
HYGEN278-10
HYGEN275-10
HYGEN598-10
HYGEN618-10
HYGEN583-10
HYGEN222-10
HYGEN196-10
HYGEN223-10
HYGEN200-10
f
m
f
f
f
f
f
f
f
f
m
f
f
m
m
m
f
f
f
f
f
f
m
f
f
m
f
f
f
f
f
f
f
f
f
Process ID sex
size (pg)∆
0.18
0.18
0.35
0.40
0.57
0.47
0.13
0.28
0.29
0.20
0.19
0.13
0.16
0.17
0.17
0.17
0.51
0.27
0.23
0.23
0.24
0.23
0.22
0.14
0.14
0.14
0.15
0.15
0.15
0.15
0.18
0.18
0.18
0.42
0.43
Cytometer§
FACS
FACS
FACS
FACS
FACS
FACS
FACS
FACS
FACS
FACS
FACS
FACS
Quanta
Quanta
Quanta
FACS
FACS
FACS
CyAn
CyAn
CyAn
CyAn
CyAn
CyAn
CyAn
CyAn
FACS
FACS
FACS
FACS
FACS
FACS
FACS
FACS
FACS
Genome Flow
210
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
n
Verified Superfamily
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Orthopelmatinae
Orthopelmatinae
Orthopelmatinae
Orthopelmatinae
Orthopelmatinae
Orthopelmatinae
Orthopelmatinae
Orthopelmatinae
Orthopelmatinae
Orthopelmatinae
•
•
Ichneumonidae
Ichneumonidae
Ichneumonidae
Ichneumonidae
Ichneumonidae
Ichneumonidae
Ichneumonidae
Ichneumonidae
Ichneumonidae
Ichneumonidae
Ichneumonidae
Orthopelmatinae
Ichneumonidae
Orthopelmatinae
Orthopelmatinae
Ichneumonidae
Ichneumonidae
Orthopelmatinae
Ichneumonidae
Ichneumonidae
Orthopelmatinae
Ichneumonidae
Orthopelmatinae
Orthopelmatinae
Ichneumonidae
Orthopelmatinae
Orthopelmatinae
Ichneumonidae
Ichneumonidae
Orthopelmatinae
Ichneumonidae
Ichneumonidae
Orthopelmatinae
Ichneumonidae
Orthopelmatinae
Orthopelmatinae
Ichneumonidae
Ichneumonidae
Orthopelmatinae
Ichneumonidae
Orthopelmatinae
Orthopelmatinae
Ichneumonidae
Ichneumonidae
Orthopelmatinae
Ichneumonidae
Orthopelmatinae
Orthopelmatinae
Ichneumonidae
Ichneumonidae
Orthopelmatinae
Ichneumonidae
Orthopelmatinae
Orthopelmatinae
Ichneumonidae
Ichneumonidae
Orthopelmatinae
Ichneumonidae
Identification†
Family
Subfamily
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
Species
DbOT212
DbOT211
DbOT 72
DbOT 72
DbOT 72
DbOT 72
DbOT 72
DbOT 72
DbOT 72
DbOT 72
DbOT 72
DbOT 72
DbOT 72
DbOT 72
DbOT 72
DbOT 72
DbOT 72
DbOT 72
DbOT 72
DbOT 72
DbOT 72
DbOT 72
DbOT 72
DbOT 72
DbOT 72
DbOT 72
DbOT 72
DbOT 72
DbOT 72
DbOT 71
DbOT 71
DbOT 71
DbOT 70
DbOT 70
DbOT 69
DbOT ID
HYGEN175-10
HYGEN019-10
HYGEN443-10
PIPI125-09
PIPI126-09
PIPI098-09
PIPI097-09
HYGEN445-10
HYGEN442-10
HYGEN450-10
HYGEN441-10
HYGEN440-10
HYGEN449-10
HYGEN448-10
PIPI124-09
PIPI123-09
PIPI101-09
PIPI100-09
PIPI102-09
PIPI103-09
PIPI105-09
PIPI106-09
PIPI108-09
PIPI109-09
PIPI115-09
PIPI116-09
PIPI117-09
PIPI118-09
PIPI119-09
HYGEN451-10
HYGEN455-10
HYGEN454-10
HYGEN453-10
HYGEN452-10
HYGEN446-10
m
m
m
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
m
m
m
m
m
f
f
Process ID sex
size (pg)∆
0.44
0.44
0.38
0.47
0.48
0.45
0.41
0.40
0.41
0.41
0.41
0.43
0.40
0.39
0.42
0.35
0.41
0.38
0.43
0.40
0.40
0.38
0.43
0.42
0.40
0.42
0.41
0.42
0.46
0.45
0.40
0.40
0.41
0.27
0.42
Cytometer§
FACS
FACS
FACS
FACS
FACS
FACS
Quanta
Quanta
Quanta
Quanta
Quanta
Quanta
Quanta
Quanta
Quanta
Quanta
Quanta
Quanta
Quanta
Quanta
Quanta
FACS
FACS
FACS
FACS
FACS
FACS
FACS
Quanta
Quanta
Quanta
Quanta
FACS
FACS
FACS
Genome Flow
211
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
n
Verified Superfamily
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Campopleginae
Campopleginae
Campopleginae
Campopleginae
Campopleginae
Campopleginae
Campopleginae
Campopleginae
Anomaloninae
Anomaloninae
•
•
Ichneumonidae
Ichneumonidae
Ichneumonidae
Ichneumonidae
Ichneumonidae
Ichneumonidae
Ichneumonidae
Ichneumonidae
Ichneumonidae
Ichneumonidae
Ichneumonidae
Campopleginae
Ichneumonidae
Ichneumonidae
Campopleginae
Ichneumonidae
Campopleginae
Campopleginae
Ichneumonidae
Ichneumonidae
Campopleginae
Ichneumonidae
Campopleginae
Campopleginae
Ichneumonidae
Campopleginae
Campopleginae
Ichneumonidae
Ichneumonidae
Cryptinae
Ichneumonidae
Ichneumonidae
Cryptinae
Ichneumonidae
Campopleginae
Cryptinae
Ichneumonidae
Ichneumonidae
Ichneumoninae
Ichneumonidae
Campopleginae
Ichneumoninae
Ichneumonidae
Ichneumonidae
Ichneumoninae
Ichneumonidae
Campopleginae
Cryptinae
Ichneumonidae
Ichneumonidae
Cryptinae
Ichneumonidae
Campopleginae
Ichneumoninae
Ichneumonidae
Ichneumonidae
Ichneumoninae
Ichneumonidae
Identification†
Family
Subfamily
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
V. canescens
V. canescens
•
•
•
•
•
•
•
•
•
•
Species
DbOT238
DbOT238
DbOT237
DbOT236
DbOT235
DbOT234
DbOT234
DbOT234
DbOT234
DbOT233
DbOT232
DbOT231
DbOT230
DbOT229
DbOT228
DbOT228
DbOT227
DbOT226
DbOT225
DbOT225
DbOT224
DbOT223
DbOT223
DbOT222
DbOT222
DbOT221
DbOT220
DbOT220
DbOT219
DbOT218
DbOT217
DbOT215
DbOT214
DbOT213
DbOT213
DbOT ID
HYGEN883-10
HYGEN934-10
HYGEN922-10
HYGEN120-10
HYGEN050-10
HYGEN156-10
HYGEN149-10
HYGEN147-10
HYGEN146-10
HYGEN215-10
HYGEN131-10
HYGEN092-10
HYGEN174-10
HYGEN159-10
HYGEN033-10
HYGEN032-10
HYGEN148-10
HYGEN270-10
HYGEN935-10
HYGEN858-10
HYGEN221-10
HYGEN611-10
HYGEN262-10
HYGEN610-10
HYGEN608-10
HYGEN091-10
HYGEN203-10
HYGEN186-10
HYGEN057-10
HYGEN059-10
HYGEN078-10
HYGEN727-10
HYGEN090-10
HYGEN281-10
HYGEN272-10
m
m
m
f
f
f
m
m
m
m
f
f
m
m
f
f
m
f
f
m
m
m
m
m
m
m
f
m
m
m
f
f
f
f
m
Process ID sex
size (pg)∆
0.42
0.43
0.29
0.34
0.37
0.40
0.36
0.30
0.29
0.30
0.29
0.30
0.24
0.24
0.28
0.21
0.20
0.24
0.26
0.22
0.21
0.24
0.23
0.22
0.22
0.23
0.28
0.25
0.24
0.24
0.23
0.33
0.26
0.28
0.28
Cytometer§
FACS
FACS
FACS
CyAn
FACS
FACS
FACS
FACS
FACS
FACS
FACS
FACS
FACS
FACS
FACS
CyAn
CyAn
FACS
FACS
FACS
FACS
FACS
FACS
FACS
FACS
FACS
FACS
FACS
FACS
FACS
FACS
FACS
CyAn
CyAn
CyAn
Genome Flow
212
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
n
Verified Superfamily
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
•
•
•
•
•
•
•
•
•
•
•
•
Ichneumonidae
Ichneumonidae
Ichneumonidae
Ichneumonidae
Ichneumonidae
Ichneumonidae
Ichneumonidae
Ichneumonidae
Ichneumonidae
Ichneumonidae
Ichneumonidae
Mesochorinae
Ichneumonidae
Ichneumonidae
Mesochorinae
Ichneumonidae
•
Mesochorinae
Ichneumonidae
Ichneumonidae
Mesochorinae
Ichneumonidae
•
Mesochorinae
Ichneumonidae
Tryphoninae
Mesochorinae
Ichneumonidae
Ichneumonidae
Orthocentrinae
Ichneumonidae
Ichneumonidae
Orthocentrinae
Ichneumonidae
Tryphoninae
•
Ichneumonidae
Ichneumonidae
•
Ichneumonidae
Mesochorinae
•
Ichneumonidae
Ichneumonidae
•
Ichneumonidae
Mesochorinae
•
Ichneumonidae
Ichneumonidae
•
Ichneumonidae
Mesochorinae
•
Ichneumonidae
Ichneumonidae
•
Ichneumonidae
Identification†
Family
Subfamily
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
Species
DbOT254
DbOT253
DbOT253
DbOT252
DbOT251
DbOT251
DbOT251
DbOT250
DbOT249
DbOT248
DbOT247
DbOT247
DbOT247
DbOT246
DbOT245
DbOT244
DbOT243
DbOT243
DbOT243
DbOT243
DbOT243
DbOT243
DbOT243
DbOT243
DbOT243
DbOT242
DbOT241
DbOT240
DbOT240
DbOT240
DbOT239
DbOT239
DbOT239
DbOT239
DbOT238
DbOT ID
HYGEN063-10
HYGEN225-10
HYGEN254-10
HYGEN168-10
HYGEN187-10
HYGEN191-10
HYGEN069-10
HYGEN213-10
HYGEN034-10
HYGEN205-10
HYGEN894-10
HYGEN889-10
HYGEN888-10
HYGEN155-10
HYGEN253-10
HYGEN051-10
HYGEN854-10
HYGEN853-10
HYGEN266-10
HYGEN929-10
HYGEN920-10
HYGEN876-10
HYGEN875-10
HYGEN855-10
HYGEN851-10
HYGEN079-10
HYGEN047-10
HYGEN880-10
HYGEN879-10
HYGEN863-10
HYGEN902-10
HYGEN897-10
HYGEN890-10
HYGEN871-10
HYGEN892-10
m
m
m
m
m
f
m
m
f
m
f
f
f
f
f
f
m
m
m
f
f
f
m
m
m
f
m
f
f
f
m
f
f
m
f
Process ID sex
size (pg)∆
0.27
0.27
0.25
0.25
0.25
0.27
0.27
0.27
0.41
0.36
0.25
0.23
0.23
0.24
0.25
0.24
0.22
0.24
0.26
0.28
0.70
0.18
0.21
0.21
0.21
0.26
0.26
0.14
0.26
0.27
0.26
0.44
0.30
0.29
0.36
Cytometer§
CyAn
CyAn
CyAn
CyAn
CyAn
CyAn
CyAn
CyAn
FACS
FACS
CyAn
CyAn
CyAn
CyAn
CyAn
CyAn
FACS
CyAn
CyAn
FACS
FACS
FACS
CyAn
CyAn
CyAn
FACS
FACS
FACS
FACS
FACS
FACS
FACS
FACS
FACS
FACS
Genome Flow
213
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
n
Verified Superfamily
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
•
•
Cryptinae
Cryptinae
Cryptinae
Cryptinae
Cryptinae
Cryptinae
•
Ctenopelmatinae
Ctenopelmatinae
Ctenopelmatinae
Ichneumonidae
Ichneumonidae
Ichneumonidae
Ichneumonidae
Ichneumonidae
Ichneumonidae
Ichneumonidae
Ichneumonidae
Ichneumonidae
Ichneumonidae
Ichneumonidae
Pimplinae
Ichneumonidae
Ichneumonidae
Pimplinae
Ichneumonidae
•
Pimplinae
Ichneumonidae
Ichneumonidae
Pimplinae
Ichneumonidae
•
Pimplinae
Ichneumonidae
Orthocentrinae
Pimplinae
Ichneumonidae
Ichneumonidae
Pimplinae
Ichneumonidae
Ichneumonidae
Diplazontinae
Ichneumonidae
Pimplinae
Diplazontinae
Ichneumonidae
Ichneumonidae
Diplazontinae
Ichneumonidae
Pimplinae
Diplazontinae
Ichneumonidae
Ichneumonidae
Tryphoninae
Ichneumonidae
Pimplinae
Tryphoninae
Ichneumonidae
Ichneumonidae
Tryphoninae
Ichneumonidae
Pimplinae
Diplazontinae
Ichneumonidae
Ichneumonidae
•
Ichneumonidae
Identification†
Family
Subfamily
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
A. annulicornis
A. ontario
•
•
•
•
•
•
I. conquisitor
I. conquisitor
I. conquisitor
•
•
•
D. laetorius
•
•
T. seminiger
P. sulcator
•
Species
DbOT274
DbOT273
DbOT273
DbOT272
DbOT271
DbOT271
DbOT271
DbOT270
DbOT269
DbOT269
DbOT268
DbOT268
DbOT268
DbOT268
DbOT267
DbOT266
DbOT265
DbOT264
DbOT264
DbOT264
DbOT263
DbOT263
DbOT262
DbOT261
DbOT261
DbOT261
DbOT260
DbOT260
DbOT259
DbOT258
DbOT257
DbOT257
DbOT256
DbOT255
DbOT254
DbOT ID
HYGEN163-10
HYGEN531-10
HYGEN530-10
HYGEN152-10
HYGEN750-10
HYGEN741-10
HYGEN739-10
HYGEN829-10
HYGEN609-10
HYGEN597-10
HYGEN715-10
HYGEN713-10
HYGEN712-10
HYGEN680-10
HYGEN061-10
HYGEN627-10
HYGEN619-10
HYGEN878-10
HYGEN864-10
HYGEN859-10
HYGEN885-10
HYGEN881-10
HYGEN031-10
HYGEN896-10
HYGEN862-10
HYGEN714-10
HYGEN138-10
HYGEN134-10
HYGEN173-10
HYGEN588-10
HYGEN533-10
HYGEN532-10
HYGEN534-10
HYGEN116-10
HYGEN073-10
f
f
m
m
m
f
f
f
f
f
m
m
m
f
m
f
f
m
f
m
f
f
f
f
f
m
m
f
f
f
f
m
f
f
m
Process ID sex
size (pg)∆
0.37
0.31
0.23
0.22
0.22
0.45
0.37
0.36
0.33
0.28
0.29
0.28
0.46
0.39
0.37
0.45
0.44
0.45
0.38
0.30
0.28
0.28
0.28
0.28
0.29
0.24
0.23
0.21
0.26
0.25
0.27
0.36
0.35
0.35
0.36
Cytometer§
FACS
FACS
FACS
FACS
FACS
FACS
FACS
FACS
FACS
CyAn
CyAn
CyAn
FACS
CyAn
CyAn
CyAn
CyAn
CyAn
FACS
FACS
FACS
CyAn
CyAn
CyAn
CyAn
FACS
FACS
CyAn
CyAn
CyAn
CyAn
FACS
FACS
FACS
FACS
Genome Flow
214
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
n
Verified Superfamily
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Ichneumonoidea
JL
Platygastroidea
JL
Cryptinae
Cryptinae
Cryptinae
Cryptinae
Tryphoninae
Tryphoninae
Tryphoninae
Tryphoninae
Tryphoninae
Tryphoninae
Ichneumoninae
•
Ichneumonidae
Ichneumonidae
Ichneumonidae
Ichneumonidae
Ichneumonidae
Ichneumonidae
Ichneumonidae
Ichneumonidae
Ichneumonidae
Ichneumonidae
Platygastridae
Banchinae
Ichneumonidae
Ichneumonidae
Banchinae
Ichneumonidae
•
Banchinae
Ichneumonidae
Ichneumonidae
Banchinae
Ichneumonidae
Cryptinae
Banchinae
Ichneumonidae
Cryptinae
Banchinae
Ichneumonidae
Ichneumonidae
Banchinae
Ichneumonidae
Ichneumonidae
Banchinae
Ichneumonidae
Cryptinae
Banchinae
Ichneumonidae
Ichneumonidae
Banchinae
Ichneumonidae
Cryptinae
Banchinae
Ichneumonidae
Ichneumonidae
Banchinae
Ichneumonidae
Cryptinae
Banchinae
Ichneumonidae
Ichneumonidae
Ophioninae
Ichneumonidae
Banchinae
Anomaloninae
Ichneumonidae
Ichneumonidae
•
Ichneumonidae
Identification†
Family
Subfamily
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
G. fumiferanae
•
•
•
•
•
•
•
•
•
•
•
Species
DbOT163
DbOT352
DbOT297
DbOT297
DbOT297
DbOT297
DbOT296
DbOT295
DbOT294
DbOT293
DbOT292
DbOT291
DbOT290
DbOT289
DbOT288
DbOT287
DbOT286
DbOT285
DbOT284
DbOT284
DbOT284
DbOT284
DbOT283
DbOT282
DbOT281
DbOT280
DbOT280
DbOT280
DbOT279
DbOT279
DbOT279
DbOT278
DbOT277
DbOT276
DbOT275
DbOT ID
HYGEN110-10
HYGEN257-10
HYGEN865-10
HYGEN944-10
HYGEN877-10
HYGEN850-10
HYGEN852-10
HYGEN886-10
HYGEN060-10
HYGEN271-10
HYGEN164-10
HYGEN595-10
HYGEN605-10
HYGEN150-10
HYGEN201-10
HYGEN058-10
HYGEN184-10
HYGEN077-10
HYGEN217-10
HYGEN144-10
HYGEN062-10
HYGEN208-10
HYGEN081-10
HYGEN602-10
HYGEN193-10
HYGEN192-10
HYGEN183-10
HYGEN182-10
HYGEN227-10
HYGEN135-10
HYGEN209-10
HYGEN857-10
HYGEN726-10
HYGEN559-10
HYGEN018-10
f
f
m
f
f
m
m
m
m
m
m
f
m
f
m
m
m
m
f
m
m
m
f
f
m
f
m
m
f
f
f
f
m
f
f
Process ID sex
size (pg)∆
0.90
0.20
0.65
0.41
0.51
0.50
0.52
0.57
0.57
0.56
0.36
0.46
0.47
0.48
0.47
0.43
0.48
0.26
0.27
0.24
0.36
0.29
0.32
0.21
0.36
0.27
0.36
0.50
0.48
0.48
0.50
0.50
0.52
0.39
0.21
Cytometer§
FACS
FACS
CyAn
CyAn
FACS
FACS
FACS
FACS
FACS
FACS
FACS
FACS
FACS
FACS
FACS
FACS
FACS
FACS
FACS
FACS
FACS
FACS
FACS
FACS
FACS
FACS
FACS
CyAn
CyAn
CyAn
CyAn
CyAn
CyAn
FACS
FACS
Genome Flow
215
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
n
Verified Superfamily
Platygastroidea
JL
Platygastroidea
JL
Platygastroidea
JL
Platygastroidea
JL
Platygastroidea
JL
Platygastroidea
JL
Platygastroidea
JL
Platygastroidea
JL
Platygastroidea
JL
Platygastroidea
JL
Platygastroidea
JL
Platygastroidea
JL
Platygastroidea
JL
Platygastroidea
JL
Platygastroidea
JL
Platygastroidea
JL
Platygastroidea
JL
Platygastroidea
JL
Platygastroidea
JL
Platygastroidea
JL
Platygastroidea
JL
Platygastroidea
JL
Platygastroidea
JL
Platygastroidea
JL
Platygastroidea
JL
Platygastroidea
JL
Platygastroidea
JL
Proctotrupoidea
JL
Tenthredinoidea
JL
Tenthredinoidea
JL
Tenthredinoidea
JL
Tenthredinoidea
JL
Tenthredinoidea
JL
Tenthredinoidea
JL
Tenthredinoidea
JL
•
•
•
•
•
•
•
•
•
•
•
•
Platygastridae
Platygastridae
Platygastridae
Proctotrupidae
Argidae
Tenthredinidae
Tenthredinidae
Tenthredinidae
Tenthredinidae
Tenthredinidae
Tenthredinidae
•
Platygastridae
Platygastridae
•
Platygastridae
•
•
Platygastridae
Platygastridae
•
Platygastridae
•
•
Platygastridae
•
•
Platygastridae
Platygastridae
•
Platygastridae
Platygastridae
•
Platygastridae
•
•
Platygastridae
Platygastridae
•
Platygastridae
•
•
Platygastridae
Platygastridae
•
Platygastridae
•
•
Platygastridae
Platygastridae
•
Platygastridae
•
•
Platygastridae
Platygastridae
•
Platygastridae
Identification†
Family
Subfamily
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
Species
DbOT303
DbOT302
DbOT301
DbOT300
DbOT299
DbOT298
DbOT328
•
DbOT171
DbOT171
DbOT171
DbOT171
DbOT171
DbOT170
DbOT170
DbOT170
DbOT170
DbOT170
DbOT169
DbOT169
DbOT169
DbOT169
DbOT168
DbOT168
DbOT168
DbOT168
DbOT167
DbOT167
DbOT167
DbOT166
DbOT165
DbOT164
DbOT164
DbOT164
DbOT164
DbOT ID
HYGEN013-10
HYGEN181-10
HYGEN840-10
HYGEN551-10
HYGEN189-10
HYGEN277-10
HYGEN526-10
•
HYGEN706-10
HYGEN705-10
HYGEN676-10
HYGEN675-10
HYGEN674-10
HYGEN928-10
HYGEN721-10
HYGEN720-10
HYGEN719-10
HYGEN697-10
HYGEN722-10
HYGEN724-10
HYGEN723-10
HYGEN696-10
HYGEN672-10
HYGEN671-10
HYGEN670-10
HYGEN669-10
HYGEN791-10
HYGEN790-10
HYGEN728-10
HYGEN827-10
HYGEN822-10
HYGEN823-10
HYGEN826-10
HYGEN825-10
HYGEN824-10
f
f
f
m
f
m
f
f
f
f
f
f
f
f
f
f
m
f
f
m
m
m
f
f
f
f
f
f
f
f
f
f
f
f
f
Process ID sex
size (pg)∆
0.27
0.30
0.30
0.28
0.22
0.29
0.32
0.35
0.36
0.19
0.19
0.20
0.20
0.15
0.14
0.15
0.14
0.15
0.15
0.15
0.14
0.16
0.24
0.24
0.24
0.26
0.25
0.50
0.41
0.38
0.29
0.24
0.22
0.32
0.31
Cytometer§
CyAn
CyAn
CyAn
CyAn
CyAn
CyAn
CyAn
CyAn
CyAn
FACS
FACS
FACS
FACS
CyAn
CyAn
CyAn
CyAn
CyAn
CyAn
CyAn
CyAn
CyAn
CyAn
CyAn
CyAn
CyAn
CyAn
FACS
FACS
FACS
FACS
FACS
CyAn
FACS
FACS
Genome Flow
216
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
n
Verified Superfamily
Tenthredinoidea
JL
Tenthredinoidea
JL
Tenthredinoidea
JL
Tenthredinoidea
JL
Tenthredinoidea
JL
Tenthredinoidea
JL
Tenthredinoidea
JL
Tenthredinoidea
JL
Tenthredinoidea
JL
Tenthredinoidea
JL
Tenthredinoidea
JL
Tenthredinoidea
JL
Tenthredinoidea
JL
Tenthredinoidea
JL
Tenthredinoidea
JL
Tenthredinoidea
JL
Tenthredinoidea
JL
Tenthredinoidea
JL
Tenthredinoidea
JL
Tenthredinoidea
JL
Tenthredinoidea
JL
Tenthredinoidea
JL
Tenthredinoidea
JL
Tenthredinoidea
JL
Tenthredinoidea
JL
Tenthredinoidea
JL
Tenthredinoidea
JL
Tenthredinoidea
JL
Tenthredinoidea
JL
Tenthredinoidea
JL
Tenthredinoidea
JL
Tenthredinoidea
JL
Tenthredinoidea
JL
Tenthredinoidea
JL
Tenthredinoidea
JL
•
•
•
•
•
•
•
•
•
•
•
•
Tenthredinidae
Tenthredinidae
Tenthredinidae
Tenthredinidae
Tenthredinidae
Tenthredinidae
Tenthredinidae
Tenthredinidae
Tenthredinidae
Tenthredinidae
Tenthredinidae
•
Tenthredinidae
Tenthredinidae
•
Tenthredinidae
•
•
Tenthredinidae
Tenthredinidae
•
Tenthredinidae
•
•
Tenthredinidae
•
•
Tenthredinidae
Tenthredinidae
•
Tenthredinidae
Tenthredinidae
•
Tenthredinidae
•
•
Tenthredinidae
Tenthredinidae
•
Tenthredinidae
•
•
Tenthredinidae
Tenthredinidae
•
Tenthredinidae
•
•
Tenthredinidae
Tenthredinidae
•
Tenthredinidae
•
•
Tenthredinidae
Tenthredinidae
•
Tenthredinidae
Identification†
Family
Subfamily
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
Species
DbOT318
DbOT317
DbOT317
DbOT317
DbOT317
DbOT316
DbOT315
DbOT314
DbOT313
DbOT313
DbOT312
DbOT312
DbOT312
DbOT312
DbOT312
DbOT312
DbOT312
DbOT312
DbOT311
DbOT311
DbOT311
DbOT311
DbOT311
DbOT310
DbOT310
DbOT310
DbOT309
DbOT308
DbOT308
DbOT308
DbOT307
DbOT306
DbOT305
DbOT305
DbOT304
DbOT ID
HYGEN143-10
HYGEN206-10
HYGEN157-10
HYGEN096-10
HYGEN055-10
HYGEN620-10
HYGEN655-10
HYGEN167-10
HYGEN180-10
HYGEN010-10
HYGEN539-10
HYGEN538-10
HYGEN537-10
HYGEN536-10
HYGEN535-10
HYGEN529-10
HYGEN522-10
HYGEN521-10
HYGEN162-10
HYGEN219-10
HYGEN211-10
HYGEN154-10
HYGEN128-10
HYGEN838-10
HYGEN835-10
HYGEN832-10
HYGEN039-10
HYGEN545-10
HYGEN544-10
HYGEN524-10
HYGEN523-10
HYGEN151-10
HYGEN837-10
HYGEN834-10
HYGEN218-10
f
f
f
m
f
f
f
f
m
f
f
f
f
f
f
f
m
f
f
f
f
f
f
f
f
f
f
m
f
m
f
f
f
f
f
Process ID sex
size (pg)∆
0.22
0.22
0.23
0.24
0.27
0.28
0.32
0.30
0.26
0.29
0.29
0.29
0.61
0.57
0.58
0.59
0.56
0.23
0.22
0.23
0.23
0.23
0.23
0.23
0.23
0.49
0.51
0.36
0.39
0.22
0.21
0.21
0.22
0.19
0.24
Cytometer§
FACS
CyAn
CyAn
FACS
FACS
FACS
FACS
FACS
FACS
CyAn
CyAn
CyAn
FACS
FACS
FACS
FACS
FACS
FACS
FACS
FACS
FACS
FACS
FACS
FACS
FACS
FACS
FACS
FACS
FACS
FACS
FACS
FACS
FACS
FACS
FACS
Genome Flow
217
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
n
Verified Superfamily
Tenthredinoidea
JL
Tenthredinoidea
JL
Tenthredinoidea
JL
Tenthredinoidea
JL
Tenthredinoidea
JL
Tenthredinoidea
JL
Tenthredinoidea
JL
Tenthredinoidea
JL
Tenthredinoidea
JL
Tenthredinoidea
JL
Tenthredinoidea
JL
Tenthredinoidea
JL
Tenthredinoidea
JL
Tenthredinoidea
JL
Tenthredinoidea
JL
Tenthredinoidea
JL
Tenthredinoidea
JL
Tenthredinoidea
JL
Tenthredinoidea
JL
Tenthredinoidea
JL
Tenthredinoidea
JL
Tenthredinoidea
JL
Tenthredinoidea
JL
Tenthredinoidea
JL
Tenthredinoidea
JL
Tenthredinoidea
JL
Tenthredinoidea
JL
Tenthredinoidea
JL
Vespoidea
JL
Vespoidea
JL
Vespoidea
JL
Vespoidea
JL
Vespoidea
JL
Vespoidea
JL
Vespoidea
JL
•
•
•
•
•
•
•
•
•
•
•
•
Tenthredinidae
Tenthredinidae
Tenthredinidae
Tenthredinidae
Formicidae
Formicidae
Formicidae
Formicidae
Formicidae
Formicidae
Formicidae
•
Tenthredinidae
Tenthredinidae
•
Tenthredinidae
•
•
Tenthredinidae
Tenthredinidae
•
Tenthredinidae
•
•
Tenthredinidae
•
•
Tenthredinidae
Tenthredinidae
•
Tenthredinidae
Tenthredinidae
•
Tenthredinidae
•
•
Tenthredinidae
Tenthredinidae
•
Tenthredinidae
•
•
Tenthredinidae
Tenthredinidae
•
Tenthredinidae
•
•
Tenthredinidae
Tenthredinidae
•
Tenthredinidae
•
•
Tenthredinidae
Tenthredinidae
•
Tenthredinidae
Identification†
Family
Subfamily
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
Species
DbOT344
DbOT344
DbOT343
DbOT342
DbOT342
DbOT342
DbOT341
DbOT327
DbOT327
DbOT327
DbOT327
DbOT326
DbOT324
DbOT323
DbOT323
DbOT322
DbOT321
DbOT320
DbOT319
DbOT318
DbOT318
DbOT318
DbOT318
DbOT318
DbOT318
DbOT318
DbOT318
DbOT318
DbOT318
DbOT318
DbOT318
DbOT318
DbOT318
DbOT318
DbOT318
DbOT ID
HYGEN667-10
HYGEN593-10
HYGEN660-10
HYGEN666-10
HYGEN658-10
HYGEN577-10
HYGEN628-10
HYGEN145-10
HYGEN249-10
HYGEN166-10
HYGEN165-10
HYGEN083-10
HYGEN843-10
HYGEN919-10
HYGEN916-10
HYGEN543-10
HYGEN105-10
HYGEN247-10
HYGEN520-10
HYGEN246-10
HYGEN243-10
HYGEN241-10
HYGEN240-10
HYGEN239-10
HYGEN238-10
HYGEN235-10
HYGEN228-10
HYGEN224-10
HYGEN210-10
HYGEN179-10
HYGEN178-10
HYGEN172-10
HYGEN171-10
HYGEN170-10
HYGEN132-10
m
m
m
m
m
m
m
m
m
m
m
m
m
m
m
m
f
m
f
f
f
m
f
m
f
f
f
m
f
f
f
f
f
f
f
Process ID sex
size (pg)∆
0.23
0.24
0.24
0.23
0.23
0.23
0.23
0.23
0.24
0.22
0.23
0.24
0.23
0.20
0.24
0.24
0.28
0.27
0.29
0.25
0.30
0.29
0.24
0.36
0.30
0.29
0.28
0.26
0.48
0.51
0.48
0.48
0.36
0.32
0.31
Cytometer§
FACS
FACS
FACS
FACS
FACS
FACS
FACS
FACS
FACS
FACS
FACS
FACS
FACS
FACS
FACS
FACS
FACS
FACS
FACS
FACS
CyAn
CyAn
CyAn
FACS
FACS
FACS
FACS
FACS
FACS
FACS
FACS
FACS
FACS
FACS
FACS
Genome Flow
218
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
n
Verified Superfamily
Vespoidea
JL
Vespoidea
JL
Vespoidea
JL
Vespoidea
JL
Vespoidea
JL
Vespoidea
JL
Vespoidea
JL
Vespoidea
JL
Vespoidea
JL
Vespoidea
JL
Vespoidea
JL
Vespoidea
JL
Vespoidea
JL
Vespoidea
JL
Vespoidea
JL
Vespoidea
JL
Vespoidea
JL
Vespoidea
JL
Vespoidea
JL
Vespoidea
JL
Vespoidea
JL
Vespoidea
JL
Vespoidea
JL
Vespoidea
JL
Vespoidea
JL
Vespoidea
JL
Vespoidea
JL
Vespoidea
JL
Vespoidea
JL
Vespoidea
JL
Vespoidea
JL
Vespoidea
JL
Vespoidea
JL
Vespoidea
JL
Vespoidea
JL
•
•
•
•
•
•
•
•
•
•
•
•
Vespidae
Vespidae
Vespidae
Vespidae
Vespidae
Vespidae
Vespidae
Vespidae
Vespidae
Vespidae
Vespidae
•
Formicidae
Vespidae
•
Formicidae
•
•
Formicidae
Vespidae
•
Formicidae
•
•
Formicidae
•
•
Formicidae
Vespidae
•
Formicidae
Formicidae
•
Formicidae
•
•
Formicidae
Formicidae
•
Formicidae
•
•
Formicidae
Formicidae
•
Formicidae
•
•
Formicidae
Formicidae
•
Formicidae
•
•
Formicidae
Formicidae
•
Formicidae
Identification†
Family
Subfamily
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
Species
DbOT334
DbOT334
DbOT334
DbOT334
DbOT334
DbOT334
DbOT334
DbOT334
DbOT333
DbOT331
DbOT330
DbOT329
DbOT329
DbOT329
DbOT349
DbOT348
DbOT348
DbOT348
DbOT347
DbOT346
DbOT346
DbOT346
DbOT346
DbOT346
DbOT346
DbOT346
DbOT346
DbOT345
DbOT345
DbOT345
DbOT345
DbOT345
DbOT345
DbOT345
DbOT345
DbOT ID
HYGEN633-10
HYGEN632-10
HYGEN631-10
HYGEN630-10
HYGEN629-10
HYGEN590-10
HYGEN556-10
HYGEN594-10
HYGEN848-10
HYGEN265-10
HYGEN581-10
HYGEN591-10
HYGEN573-10
HYGEN569-10
HYGEN564-10
HYGEN113-10
HYGEN056-10
HYGEN044-10
HYGEN664-10
HYGEN668-10
HYGEN665-10
HYGEN663-10
HYGEN657-10
HYGEN584-10
HYGEN579-10
HYGEN578-10
HYGEN571-10
HYGEN261-10
HYGEN260-10
HYGEN259-10
HYGEN258-10
HYGEN098-10
HYGEN052-10
HYGEN007-10
HYGEN006-10
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
f
m
f
f
m
m
m
m
m
m
m
Process ID sex
size (pg)∆
0.36
0.36
0.37
0.36
0.36
0.35
0.35
0.35
0.64
0.65
0.65
0.70
0.66
0.70
0.67
0.65
0.30
0.31
0.30
0.29
0.34
0.27
0.29
0.28
0.38
0.24
0.11
0.29
0.27
0.29
0.28
0.28
0.27
0.27
0.27
Cytometer§
FACS
FACS
FACS
FACS
FACS
FACS
FACS
FACS
FACS
FACS
FACS
FACS
FACS
FACS
FACS
FACS
FACS
FACS
FACS
FACS
FACS
FACS
FACS
FACS
FACS
FACS
CyAn
FACS
FACS
FACS
FACS
FACS
FACS
FACS
FACS
Genome Flow
219
Verified Superfamily
Vespoidea
JL
Vespoidea
JL
Vespoidea
JL
Vespoidea
JL
Vespoidea
JL
Vespoidea
JL
Vespoidea
JL
Vespoidea
JL
Vespoidea
JL
Vespoidea
JL
Vespoidea
JL
Vespoidea
JL
Vespoidea
JL
Vespoidea
JL
•
•
•
•
•
•
•
•
•
•
•
•
•
•
Vespidae
Vespidae
Vespidae
Vespidae
Vespidae
Vespidae
Vespidae
Vespidae
Vespidae
Vespidae
Vespidae
Vespidae
Vespidae
Vespidae
Identification†
Family
Subfamily
•
•
•
•
•
•
•
•
•
•
•
•
•
•
Species
DbOT340
DbOT340
DbOT340
DbOT340
DbOT340
DbOT340
DbOT339
DbOT338
DbOT337
DbOT337
DbOT337
DbOT336
DbOT335
DbOT335
DbOT ID
HYGEN661-10
HYGEN656-10
HYGEN653-10
HYGEN652-10
HYGEN570-10
HYGEN558-10
HYGEN557-10
HYGEN122-10
HYGEN662-10
HYGEN589-10
HYGEN574-10
HYGEN654-10
HYGEN555-10
HYGEN566-10
f
m
f
f
f
f
f
m
f
m
m
m
m
m
Process ID sex
size (pg)∆
0.28
0.27
0.19
0.19
0.22
0.19
0.26
0.23
0.27
0.27
0.27
0.26
0.27
0.26
Cytometer§
FACS
FACS
FACS
FACS
FACS
FACS
FACS
FACS
FACS
FACS
FACS
FACS
FACS
FACS
Genome Flow
§ Flow cytometer: acronyms of model of flow cytometer are as follows:
CyAn = CyAn ADP,
Cytomics = Cytomics FC 500,
FACS = BD FACSCalibur flow cytometer,
Quanta = Beckman Coulter Cell Lab Quanta SC MPL flow cytometer.
∆ Genome size estimation values of haploid males has been multiplied by two.
‡ Species names of Ritchie (1984) are considered nomina nuda (nom . nud .).
However, those species names are retained in this thesis for comparison.
† Identification verified: acronyms of names are as follows: BBCL = BioBest Canada Limited, BIC = Beneficial Insectary Canada, JL = Lima J.
Family identifications by JL (n = 830).
840
841
842
843
844
845
846
847
848
849
850
851
852
853
n
Appendix 3. Genome size estimation of Hymenoptera with information on specimen collection and biology.
Collection‡
Parasitoid¶
n
Guild#
Date
Site (Province)
Team
Voucher
Placement Syndrome Host taxa Host stage
GL, JL, JJW
2
1 2009-08 Guelph (ON)
Phyto •
•
•
•
GL, JL, JJW
2
2 2009-08 Guelph (ON)
Phyto •
•
•
•
GL, JL, JJW
2
3 2009-08 Guelph (ON)
Phyto •
•
•
•
GL, JL, JJW
2
4 2009-08 Guelph (ON)
Phyto •
•
•
•
GL, JL, JJW
2
5 2009-08 Guelph (ON)
Phyto •
•
•
•
GL, JL, JJW
2
6 2009-08 Guelph (ON)
Phyto •
•
•
•
GL, JL, JJW
2
7 2009-08 Guelph (ON)
Phyto •
•
•
•
JL
2
8 2009-07 Churchill (MB)
Phyto •
•
•
•
GL, JL, JJW
2
9 2009-08 Guelph (ON)
Phyto •
•
•
•
GL, JL, JJW
2
10 2009-08 Guelph (ON)
Phyto •
•
•
•
2009-07
Churchill
(MB)
JL
2
11
Phyto •
•
•
•
JL
2
12 2009-07 Churchill (MB)
Phyto •
•
•
•
JL
2
13 2009-07 Churchill (MB)
Phyto •
•
•
•
GL, JL, JJW
2
14 2009-08 Guelph (ON)
Phyto •
•
•
•
GL, JL, JJW
2
15 2009-08 Guelph (ON)
Phyto •
•
•
•
GL, JL, JJW
2
16 2009-08 Guelph (ON)
Phyto •
•
•
•
GL, JL, JJW
2
17 2009-08 Guelph (ON)
Phyto •
•
•
•
GL, JL, JJW
2
18 2009-08 Guelph (ON)
Phyto •
•
•
•
GL, JL, JJW
2
19 2009-08 Guelph (ON)
Phyto •
•
•
•
GL, JL, JJW
2
20 2009-08 Guelph (ON)
Phyto •
•
•
•
JL
2
21 2009-05 Sudbury (ON)
Clepto eCto
iDio
Hym
Egg
GL, JL, JJW
2
22 2009-08 Guelph (ON)
Phyto •
•
•
•
GL, JL, JJW
2
23 2009-08 Guelph (ON)
Phyto •
•
•
•
GL, JL, TE
2
24 2010-08 Guelph (ON)
Phyto •
•
•
•
GL, JL, JJW
2
25 2009-08 Guelph (ON)
Phyto •
•
•
•
GL, JL, JJW
2
26 2009-08 Guelph (ON)
Phyto •
•
•
•
GL, JL, JJW
2
27 2009-08 Guelph (ON)
Phyto •
•
•
•
2009-08
Guelph
(ON)
GL,
JL,
JJW
2
28
Phyto •
•
•
•
GL, JL, JJW
2
29 2009-08 Guelph (ON)
Phyto •
•
•
•
GL, JL, JJW
2
30 2009-08 Guelph (ON)
Pred •
•
•
•
GL, JL, JJW
2
31 2009-08 Guelph (ON)
Pred •
•
•
•
GL, JL, TE
2
32 2010-08 Guelph (ON)
Pred •
•
•
•
GL, JL, JJW
2
33 2009-08 Guelph (ON)
Pred •
•
•
•
GL, JL, TE
2
34 2010-08 Guelph (ON)
Pred •
•
•
•
GL, JL, TE
2
35 2010-08 Guelph (ON)
Pred •
•
•
•
GL, JL, TE
2
36 2010-08 Guelph (ON)
Par
Endo
Koino
•
•
GL, JL, TE
2
37 2010-08 Guelph (ON)
Par
eCto
iDio
•
•
BBCL
2
38 2008-06 Leamington (ON)
Par
Endo
iDio
Hemi
Nym, Ad
BBCL
2
39 2008-06 Leamington (ON)
Par
Endo
iDio
Hemi
Nym, Ad
BBCL
2
40 2008-06 Leamington (ON)
Par
Endo
iDio
Hemi
Nym, Ad
BBCL
2
41 2008-06 Leamington (ON)
Par
Endo
iDio
Hemi
Nym, Ad
GL, JL, TE
2
42 2010-08 Guelph (ON)
Par
•
•
•
•
GL, JL, TE
2
43 2010-08 Guelph (ON)
Par
•
•
•
•
GL, JL, TE
2
44 2010-08 Guelph (ON)
Par
•
•
•
•
2010-08
Guelph
(ON)
GL,
JL,
TE
2
45
Par
•
•
•
•
GL, JL, TE
2
46 2010-08 Guelph (ON)
Par
•
•
•
•
GL, JL, TE
2
47 2010-08 Guelph (ON)
Par
•
•
•
•
GL, JL, TE
2
48 2010-08 Guelph (ON)
Par
•
•
•
•
BBCL
2
49 2008-06 Leamington (ON)
Par
•
•
•
•
220
‡
Date
Collection
Site (Province)
Team
2008-06
Leamington (ON)
BBCL
2008-06
Leamington (ON)
BBCL
2
2010-08
Guelph (ON)
GL, JL, TE
2
2010-08
Guelph (ON)
GL, JL, TE
2
2010-08
Guelph (ON)
GL, JL, TE
2
2010-08
Guelph (ON)
GL, JL, TE
2
2010-08
Guelph (ON)
GL, JL, TE
2
2010-08
Guelph (ON)
GL, JL, TE
2
2010-08
Guelph (ON)
GL, JL, TE
2
2010-08
Guelph (ON)
GL, JL, TE
2
2010-08
Guelph (ON)
GL, JL, TE
2
2010-08
Guelph (ON)
GL, JL, TE
2
2010-08
Guelph (ON)
GL, JL, TE
2
2010-08
Guelph (ON)
GL, JL, TE
2
2010-08
Guelph (ON)
GL, JL, TE
2
2010-08
Guelph (ON)
GL, JL, TE
2
2010-08
Guelph (ON)
GL, JL, TE
2
2010-08
Guelph (ON)
GL, JL, TE
2
2010-08
Guelph (ON)
GL, JL, TE
2
2010-08
Guelph (ON)
GL, JL, TE
2
2010-08
Guelph (ON)
GL, JL, TE
2
2010-08
Guelph (ON)
GL, JL, TE
2
2010-08
Guelph (ON)
GL, JL, TE
2
2010-08
Guelph (ON)
GL, JL, TE
2
2010-08
Guelph (ON)
GL, JL, TE
2
2010-08
Guelph (ON)
GL, JL, TE
2
2010-08
Guelph (ON)
GL, JL, TE
2
2010-08
Guelph (ON)
GL, JL, TE
2
2010-08
Guelph (ON)
GL, JL, TE
2
2009-05
Fort Macleod (AB)
JDS
2
2009-05
Fort Macleod (AB)
JDS
2
2008-09
Sudbury (ON)
GL, JL
2
2009-05
Peachland (BC)
RGL
2
2009-05
Peachland (BC)
RGL
2
2009-05
Mantoulin I (ON)
JDR, JDS
2
2009-05
Mantoulin I (ON)
JDR, JDS
2
2009-05
Mantoulin I (ON)
JDR, JDS
2
2009-05
Mantoulin I (ON)
JDR, JDS
2
2009-05
Mantoulin I (ON)
JDR, JDS
2
2009-05
Mantoulin I (ON)
JDR, JDS
2
2010-08
Guelph (ON)
GL, JL, TE
2
2010-08
Guelph (ON)
GL, JL, TE
2
2010-08
Guelph (ON)
GL, JL, TE
2
2010-08
Guelph (ON)
GL, JL, TE
2
2010-08
Guelph (ON)
GL, JL, TE
2
2010-08
Guelph (ON)
GL, JL, TE
2
2008-06
Leamington (ON)
BBCL
2
2008-06
Leamington (ON)
BBCL
2
2009-08
Guelph (ON)
GL, JL, JJW
2
2010-08
Guelph (ON)
GL, JL, TE
2
n
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
#
Voucher
2
Guild
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
221
¶
Parasitoid
Placement Syndrome Host taxa
•
•
•
•
•
•
•
•
Hemi
•
•
Hemi
•
•
Hemi
•
•
Hemi
•
•
Hemi
•
•
Hemi
•
•
Hemi
•
•
Hemi
•
•
Hemi
•
•
Hemi
•
•
Hemi
Endo
iDio
Lep
Endo
iDio
Lep
Endo
iDio
Lep
Endo
Koino
Lep
Endo
Koino
Lep
Endo
Koino
Lep
Endo
Koino
Lep
Endo
Koino
Lep
Endo
Koino
Lep
•
•
Hemi
•
•
Hemi
•
•
Hemi
•
•
Hemi
•
•
Hemi
•
•
Hemi
•
Koino
Hym
Endo
Koino
Hym
Endo
Koino
Hym
Endo
Koino
Hym
Endo
Koino
Hym
Endo
Koino
Hym
Endo
Koino
Hym
Endo
Koino
Hym
Endo
Koino
Hym
Endo
Koino
Hym
Endo
Koino
Hym
Endo
Koino
Hym
Endo
iDio
Lep
Endo
iDio
Lep
Endo
iDio
Lep
Endo
iDio
Lep
Endo
iDio
Lep
•
•
•
eCto
iDio
Dip
eCto
iDio
Dip
eCto
iDio
Lep
eCto
iDio
Lep
Host stage
•
•
Nym, Ad
Nym, Ad
Nym, Ad
Nym, Ad
Nym, Ad
Nym, Ad
Nym, Ad
Nym, Ad
Nym, Ad
Nym, Ad
Nym, Ad
Egg
Egg
Egg
E-L
E-L
E-L
E-L
E-L
E-L
Nym, Ad
Nym, Ad
Nym, Ad
Nym, Ad
Nym, Ad
Nym, Ad
Larva
Larva
Larva
Larva
Larva
Larva
Larva
Larva
Larva
Larva
Larva
Larva
Egg
Egg
Egg
Egg
Egg
•
Larva
Larva
Larva
Larva
‡
Date
Collection
Site (Province)
Team
2010-08
Guelph (ON)
GL, JL, TE
2
2010-08
Guelph (ON)
GL, JL, TE
2
2010-08
Guelph (ON)
GL, JL, TE
2
2010-08
Guelph (ON)
GL, JL, TE
2
2010-08
Guelph (ON)
GL, JL, TE
2
2010-08
Guelph (ON)
GL, JL, TE
2
2009-05
Lethbridge (AB)
JDS
2
2009-05
Lethbridge (AB)
JDS
2
2009-05
Fort Macleod (AB)
JDS
2
2010-08
Guelph (ON)
GL, JL, TE
2
2010-08
Guelph (ON)
GL, JL, TE
2
2010-08
Guelph (ON)
GL, JL, TE
2
2010-08
Guelph (ON)
GL, JL, TE
2
2010-08
Guelph (ON)
GL, JL, TE
2
2010-08
Guelph (ON)
GL, JL, TE
2
2010-08
Guelph (ON)
GL, JL, TE
2
2009-08
Guelph (ON)
GL, JL, JJW
2
2008-09
Sudbury (ON)
GL, JL
2
2008-09
Sudbury (ON)
GL, JL
2
2008-09
Sudbury (ON)
GL, JL
2
2008-09
Sudbury (ON)
GL, JL
2
2008-09
Sudbury (ON)
GL, JL
2
2008-09
Sudbury (ON)
GL, JL
2
2008-09
Sudbury (ON)
GL, JL
2
2008-09
Sudbury (ON)
GL, JL
2
2008-09
Sudbury (ON)
GL, JL
2
2008-09
Sudbury (ON)
GL, JL
2
2008-09
Sudbury (ON)
GL, JL
2
2008-09
Sudbury (ON)
GL, JL
2
2008-09
Sudbury (ON)
GL, JL
2
2008-09
Sudbury (ON)
GL, JL
2
2008-09
Sudbury (ON)
GL, JL
2
2008-09
Sudbury (ON)
GL, JL
2
2008-09
Sudbury (ON)
GL, JL
2
2008-09
Sudbury (ON)
GL, JL
2
2008-09
Sudbury (ON)
GL, JL
2
2008-09
Sudbury (ON)
GL, JL
2
2008-09
Sudbury (ON)
GL, JL
2
2008-09
Sudbury (ON)
GL, JL
2
2008-09
Sudbury (ON)
GL, JL
2
2008-09
Sudbury (ON)
GL, JL
2
2008-09
Sudbury (ON)
GL, JL
2
2008-09
Sudbury (ON)
GL, JL
2
2009-05
Chelmsford (ON)
JDS
2
2009-05
Timmins (ON)
ADR, JDS
2
2008-09
Sudbury (ON)
GL, JL
2
2008-09
Sudbury (ON)
GL, JL
2
2008-09
Sudbury (ON)
GL, JL
2
2008-09
Sudbury (ON)
GL, JL
2
2008-09
Sudbury (ON)
GL, JL
2
n
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
#
Voucher
Guild
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
222
¶
Parasitoid
Placement Syndrome Host taxa
eCto
iDio
Lep
eCto
iDio
Lep
eCto
iDio
Lep
eCto
iDio
Lep
eCto
iDio
Lep
eCto
iDio
Lep
eCto
iDio
Hym
eCto
iDio
Hym
eCto
iDio
Hym
eCto
iDio
•
eCto
iDio
•
eCto
iDio
•
eCto
iDio
•
eCto
iDio
•
eCto
iDio
•
eCto
iDio
•
eCto
iDio
•
eCto
iDio
Hym
eCto
iDio
Hym
eCto
iDio
Hym
eCto
iDio
Hym
eCto
iDio
Hym
eCto
iDio
Hym
eCto
iDio
Hym
eCto
iDio
Hym
eCto
iDio
Hym
eCto
iDio
Hym
eCto
iDio
Hym
eCto
iDio
Hym
eCto
iDio
Hym
eCto
iDio
Hym
eCto
iDio
Hym
eCto
iDio
Hym
eCto
iDio
Hym
eCto
iDio
Hym
eCto
iDio
Hym
eCto
iDio
Hym
eCto
iDio
Hym
eCto
iDio
Hym
eCto
iDio
Hym
eCto
iDio
Hym
eCto
iDio
Hym
eCto
iDio
Hym
eCto
iDio
Hym
eCto
iDio
Hym
eCto
iDio
Hym
eCto
iDio
Hym
eCto
iDio
Hym
eCto
iDio
Hym
eCto
iDio
Hym
Host stage
Larva
Larva
Larva
Larva
Larva
Larva
Larva
Larva
Larva
•
•
•
•
•
•
•
•
Larva
Larva
Larva
Larva
Larva
Larva
Larva
Larva
Larva
Larva
Larva
Larva
Larva
Larva
Larva
Larva
Larva
Larva
Larva
Larva
Larva
Larva
Larva
Larva
Larva
Larva
Larva
Larva
Larva
Larva
Larva
Larva
Larva
‡
Date
Collection
Site (Province)
Team
2008-09
Sudbury (ON)
GL, JL
2
2008-09
Timmins (ON)
GL, JL
2
2008-09
Sudbury (ON)
GL, JL
2
2008-09
Sudbury (ON)
GL, JL
2
2008-09
Sudbury (ON)
GL, JL
2
2008-09
Sudbury (ON)
GL, JL
2
2008-09
Sudbury (ON)
GL, JL
2
2008-09
Sudbury (ON)
GL, JL
2
2008-09
Sudbury (ON)
GL, JL
2
2008-09
Sudbury (ON)
GL, JL
2
2008-09
Sudbury (ON)
GL, JL
2
2008-09
Sudbury (ON)
GL, JL
2
2008-09
Sudbury (ON)
GL, JL
2
2008-09
Sudbury (ON)
GL, JL
2
2008-09
Sudbury (ON)
GL, JL
2
2008-09
Sudbury (ON)
GL, JL
2
2008-09
Sudbury (ON)
GL, JL
2
2008-09
Sudbury (ON)
GL, JL
2
2008-09
Sudbury (ON)
GL, JL
2
2009-05
Chelmsford (ON)
JL
2
2008-09
Sudbury (ON)
GL, JL
2
2008-09
Sudbury (ON)
GL, JL
2
2009-08
Guelph (ON)
GL, JL, JJW
2
2010-08
Guelph (ON)
GL, JL, TE
2
2010-08
Guelph (ON)
GL, JL, TE
2
2010-08
Guelph (ON)
GL, JL, TE
2
2010-08
Guelph (ON)
GL, JL, TE
2
2010-08
Guelph (ON)
GL, JL, TE
2
2010-08
Guelph (ON)
GL, JL, TE
2
2010-08
Guelph (ON)
GL, JL, TE
2
2010-08
Guelph (ON)
GL, JL, TE
2
2010-08
Guelph (ON)
GL, JL, TE
2
2010-08
Guelph (ON)
GL, JL, TE
2
2010-08
Guelph (ON)
GL, JL, TE
2
2010-08
Guelph (ON)
GL, JL, TE
2
2010-08
Guelph (ON)
GL, JL, TE
2
2010-08
Guelph (ON)
GL, JL, TE
2
2010-08
Guelph (ON)
GL, JL, TE
2
2010-08
Guelph (ON)
GL, JL, TE
2
2010-08
Guelph (ON)
GL, JL, TE
2
2010-08
Guelph (ON)
GL, JL, TE
2
2010-08
Guelph (ON)
GL, JL, TE
2
2010-08
Guelph (ON)
GL, JL, TE
2
2010-08
Guelph (ON)
GL, JL, TE
2
2010-08
Guelph (ON)
GL, JL, TE
2
2010-08
Guelph (ON)
GL, JL, TE
2
2010-08
Guelph (ON)
GL, JL, TE
2
2010-08
Guelph (ON)
GL, JL, TE
2
2008-09
Sudbury (ON)
GL, JL
2
2008-09
Timmins (ON)
GL, JL
2
n
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
#
Voucher
Guild
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
223
¶
Parasitoid
Placement Syndrome Host taxa
eCto
iDio
Hym
eCto
iDio
Hym
eCto
iDio
Hym
eCto
iDio
Hym
eCto
iDio
Hym
eCto
iDio
Hym
eCto
iDio
Hym
eCto
iDio
Hym
eCto
iDio
Hym
eCto
iDio
Hym
eCto
iDio
Hym
eCto
iDio
Hym
eCto
iDio
Hym
eCto
iDio
Hym
eCto
iDio
Hym
eCto
iDio
Hym
eCto
iDio
Hym
eCto
iDio
Hym
eCto
iDio
Hym
eCto
iDio
Hym
eCto
iDio
Hym
eCto
iDio
Hym
eCto
iDio
•
eCto
iDio
Hym
eCto
iDio
Hym
eCto
iDio
Hym
eCto
iDio
Hym
eCto
iDio
Hym
eCto
iDio
Hym
eCto
iDio
Hym
eCto
iDio
Hym
eCto
iDio
Hym
eCto
iDio
Hym
eCto
iDio
Hym
Endo
iDio
•
Endo
iDio
•
Endo
iDio
•
Endo
iDio
•
Endo
iDio
•
Endo
iDio
•
Endo
iDio
•
Endo
iDio
•
Endo
iDio
•
Endo
iDio
•
Endo
iDio
•
Endo
iDio
•
Endo
iDio
•
Endo
iDio
•
eCto
iDio
Hym
eCto
iDio
Hym
Host stage
Larva
Larva
Larva
Larva
Larva
Larva
Larva
Larva
Larva
Larva
Larva
Larva
Larva
Larva
Larva
Larva
Larva
Larva
Larva
Larva
Larva
Larva
•
Larva
Larva
Larva
Larva
Larva
Larva
Larva
Larva
Larva
Larva
Larva
Egg
Egg
Egg
Egg
Egg
Egg
Egg
Egg
Egg
Egg
Egg
Egg
Egg
Egg
Larva
Larva
‡
Date
Collection
Site (Province)
Team
2008-09
Sudbury (ON)
GL, JL
2
2008-09
Sudbury (ON)
GL, JL
2
2008-09
Sudbury (ON)
GL, JL
2
2008-09
Sudbury (ON)
GL, JL
2
2008-09
Sudbury (ON)
GL, JL
2
2008-09
Timmins (ON)
GL, JL
2
2009-04
Renfrew (ON)
MRS, JDS
2
2008-09
Timmins (ON)
GL, JL
2
2008-09
Timmins (ON)
GL, JL
2
2009-05
Chelmsford (ON)
JDS
2
2009-04
Renfrew (ON)
MRS, JDS
2
2009-04
Renfrew (ON)
MRS, JDS
2
2008-09
Timmins (ON)
GL, JL
2
2008-09
Timmins (ON)
GL, JL
2
2008-09
Sudbury (ON)
GL, JL
2
2010-08
Guelph (ON)
GL, JL, TE
2
2010-08
Guelph (ON)
GL, JL, TE
2
2010-08
Guelph (ON)
GL, JL, TE
2
2010-08
Guelph (ON)
GL, JL, TE
2
2010-08
Guelph (ON)
GL, JL, TE
2
2009-08
Guelph (ON)
GL, JL, JJW
2
2009-08
Guelph (ON)
GL, JL, JJW
2
2009-08
Guelph (ON)
GL, JL, JJW
2
2009-08
Guelph (ON)
GL, JL, JJW
2
2010-08
Guelph (ON)
GL, JL, TE
2
2009-05
Timmins (ON)
ADR, JDS
2
2008-09
Sudbury (ON)
GL, JL
2
2009-05
Waterton L N P (AB)
JDS
2
2009-05
Lethbridge (AB)
JDS
2
2009-05
Chelmsford (ON)
JDS
2
2009-08
Guelph (ON)
GL, JL, JJW
2
2009-08
Guelph (ON)
GL, JL, JJW
2
2009-05
Sudbury (ON)
JL
2
2009-05
Sudbury (ON)
JL
2
2009-07
Churchill (MB)
JL
2
2009-07
Churchill (MB)
JL
2
2009-07
Churchill (MB)
JL
2
2009-07
Churchill (MB)
JL
2
2009-07
Churchill (MB)
JL
2
2009-08
Guelph (ON)
GL, JL, JJW
2
2009-07
Churchill (MB)
JL
2
2010-08
Guelph (ON)
GL, JL, TE
2
2010-08
Guelph (ON)
GL, JL, TE
2
2010-08
Guelph (ON)
GL, JL, TE
2
2010-08
Guelph (ON)
GL, JL, TE
2
2010-08
Guelph (ON)
GL, JL, TE
2
2010-08
Guelph (ON)
GL, JL, TE
2
2010-08
Guelph (ON)
GL, JL, TE
2
2010-08
Guelph (ON)
GL, JL, TE
2
2009-05
Chelmsford (ON)
JL
2
n
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
#
Voucher
Guild
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
224
¶
Parasitoid
Placement Syndrome Host taxa
eCto
iDio
Hym
eCto
iDio
Hym
eCto
iDio
Hym
eCto
iDio
Hym
eCto
iDio
Hym
eCto
iDio
Hym
eCto
iDio
Hym
eCto
iDio
Hym
eCto
iDio
Hym
eCto
iDio
Hym
eCto
iDio
Hym
eCto
iDio
Hym
eCto
iDio
Hym
eCto
iDio
Hym
eCto
iDio
Hym
eCto
iDio
Hym
eCto
iDio
Hym
eCto
iDio
Hym
eCto
iDio
Hym
eCto
iDio
Hym
Endo
Koino
Hym
Endo
Koino
Hym
Endo
Koino
Hym
Endo
Koino
Hym
Endo
Koino
Hym
eCto
iDio
Hym
eCto
iDio
Hym
eCto
iDio
Hym
eCto
iDio
Hym
eCto
iDio
Hym
eCto
iDio
Hym
eCto
iDio
Hym
eCto
iDio
Hym
eCto
iDio
Hym
eCto
iDio
•
eCto
iDio
•
eCto
iDio
•
eCto
iDio
•
eCto
iDio
•
eCto
iDio
Hym
eCto
iDio
•
Endo
iDio
Hym
Endo
iDio
Hym
Endo
iDio
Hym
Endo
iDio
Hym
Endo
iDio
Hym
Endo
iDio
Hym
Endo
iDio
Hym
Endo
iDio
Hym
eCto
iDio
Hym
Host stage
Larva
Larva
Larva
Larva
Larva
Larva
Larva
Larva
Larva
Larva
Larva
Larva
Larva
Larva
Larva
Larva
Larva
Larva
Larva
Larva
Larva
Larva
Larva
Larva
Larva
Larva
Larva
Larva
Larva
Larva
Larva
Larva
Larva
Larva
•
•
•
•
•
•
•
Pupa
Pupa
Pupa
Pupa
Pupa
Pupa
Pupa
Pupa
Larva
‡
Date
Collection
Site (Province)
Team
2009-05
Chelmsford (ON)
JL
2009-05
Chelmsford (ON)
JL
2009-05
Chelmsford (ON)
JL
2009-10
Sudbury (ON)
JDS
2009-09
Deux Rivieres (ON)
JDS
2009-05
Chelmsford (ON)
JDS
2009-05
Timmins (ON)
ADR, JDS
2009-05
Sudbury (ON)
JDS
2009-05
Peachland (BC)
RGL
2009-05
Peachland (BC)
RGL
2009-04
Picton (ON)
JDS
2009-04
Picton (ON)
JDS
2009-05
Timmins (ON)
ADR, JDS
2009-05
Timmins (ON)
ADR, JDS
2009-05
Coaldale (AB)
JDS
2006-05
Coaldale (AB)
JDS
2006-05
Coaldale (AB)
JDS
2006-05
Coaldale (AB)
JDS
2009-05
Coaldale (AB)
JDS
2009-04
Picton (ON)
JDS
2009-04
Picton (ON)
JDS
2009-04
Picton (ON)
JDS
2009-04
Picton (ON)
JDS
2009-04
Picton (ON)
JDS
2009-05
Coaldale (AB)
JDS
2009-05
Coaldale (AB)
JDS
2009-05
Sudbury (ON)
JDS
2008-09
Sudbury (ON)
GL, JL
2008-09
Sudbury (ON)
GL, JL
2008-09
Sudbury (ON)
GL, JL
2008-09
Sudbury (ON)
GL, JL
2009-05
Peachland (BC)
RGL
2009-05
Fort Macleod (AB)
JDS
2010-08
Guelph (ON)
GL, JL, TE
2010-08
Guelph (ON)
GL, JL, TE
2010-08
Guelph (ON)
GL, JL, TE
2010-08
Guelph (ON)
GL, JL, TE
2010-08
Guelph (ON)
GL, JL, TE
2010-08
Guelph (ON)
GL, JL, TE
2009-08
Guelph (ON)
GL, JL, JJW
2010-08
Guelph (ON)
GL, JL, TE
2008-06
Guelph (ON)
BIC
2008-06
Guelph (ON)
BIC
2008-06
Guelph (ON)
BIC
2008-06
Guelph (ON)
BIC
2008-06
Guelph (ON)
BIC
2008-06
Guelph (ON)
BIC
2010-08
Guelph (ON)
GL, JL, TE
2010-08
Guelph (ON)
GL, JL, TE
2010-08
Guelph (ON)
GL, JL, TE
n
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
¶
Parasitoid
Voucher
Placement Syndrome Host taxa
2
Par
eCto
iDio
Hym
2
Par
eCto
iDio
Hym
2
Par
eCto
iDio
Hym
2
Par
eCto
iDio
Hym
2
Par
eCto
iDio
Hym
2
Par
eCto
iDio
Hym
2
Par
eCto
iDio
Hym
2
Par
eCto
iDio
Hym
2
Par
eCto
iDio
Hym
2
Par
eCto
iDio
Hym
2
Par
eCto
iDio
Hym
2
Par
eCto
iDio
Hym
2
Par
eCto
iDio
Hym
2
Par
eCto
iDio
Hym
2
Par
eCto
iDio
Hym
2
Par
eCto
iDio
Hym
2
Par
eCto
iDio
Hym
2
Par
eCto
iDio
Hym
2
Par
eCto
iDio
Hym
2
Par
eCto
iDio
Hym
2
Par
eCto
iDio
Hym
2
Par
eCto
iDio
Hym
2
Par
eCto
iDio
Hym
2
Par
eCto
iDio
Hym
2
Par
eCto
iDio
Hym
2
Par
eCto
iDio
Hym
2
Par
eCto
iDio
Hym
2
Par
eCto
iDio
Hym
2
Par
eCto
iDio
Hym
2
Par
eCto
iDio
Hym
2
Par
eCto
iDio
Hym
2
Par
eCto
iDio
Hym
2
Par
eCto
iDio
Hym
2
Par
eCto
iDio
Lep
2
Par
eCto
iDio
Lep
2
Par
eCto
iDio
Hym
2
Par
eCto
iDio
Hym
2
Par
eCto
iDio
Hym
2
Par
eCto
iDio
Hym
2
Par
eCto
iDio
Hym
2
Par
eCto
iDio
Hym
2
Par
Endo
iDio
•
2
Par
Endo
iDio
•
2
Par
Endo
iDio
•
2
Par
Endo
iDio
•
2
Par
Endo
iDio
•
2
Par
Endo
iDio
•
2
Clepto eCto
iDio
Hym
2
Clepto eCto
iDio
Hym
2
Par
eCto
iDio
•
#
Guild
225
Host stage
Larva
Larva
Larva
Larva
Larva
Larva
Larva
Larva
Larva
Larva
Larva
Larva
Larva
Larva
Larva
Larva
Larva
Larva
Larva
Larva
Larva
Larva
Larva
Larva
Larva
Larva
Larva
Larva
Larva
Larva
Larva
Larva
Larva
Pupa
Pupa
Larva
Larva
Larva
Larva
Larva
Larva
Egg
Egg
Egg
Egg
Egg
Egg
Egg
Egg
•
‡
Date
Collection
Site (Province)
Team
2010-08
Guelph (ON)
GL, JL, TE
2010-08
Guelph (ON)
GL, JL, TE
2010-08
Guelph (ON)
GL, JL, TE
2010-08
Guelph (ON)
GL, JL, TE
2010-08
Guelph (ON)
GL, JL, TE
2009-05
Timmins (ON)
ADR, JDS
2009-05
Waterton L N P (AB)
JDS
2009-05
Waterton L N P (AB)
JDS
2009-04
Picton (ON)
JDS
2009-04
Picton (ON)
JDS
2009-05
Mantoulin I (ON)
JDR, JDS
2009-05
Mantoulin I (ON)
JDR, JDS
2009-05
Mantoulin I (ON)
JDR, JDS
2009-05
Mantoulin I (ON)
JDR, JDS
2009-05
Mantoulin I (ON)
JDR, JDS
2009-05
Mantoulin I (ON)
JDR, JDS
2008-09
Sudbury (ON)
GL, JL
2008-09
Timmins (AB)
GL, JL
2008-09
Timmins (AB)
GL, JL
2008-09
Timmins (AB)
GL, JL
2009-05
Timmins (ON)
ADR, JDS
2009-05
Timmins (ON)
ADR, JDS
2008-09
Sudbury (ON)
GL, JL
2008-09
Sudbury (ON)
GL, JL
2009-05
Chelmsford (ON)
JDS
2009-04
Renfrew (ON)
MRS, JDS
2009-05
Fort Macleod (AB)
JDS
2009-05
Peachland (BC)
RGL
2009-05
Fort Macleod (AB)
JDS
2009-05
Peachland (BC)
RGL
2009-05
Fort Macleod (AB)
JDS
2009-05
Peachland (BC)
RGL
2009-05
Fort Macleod (AB)
JDS
2009-10
Sudbury (ON)
JDS
2009-05
Peachland (BC)
RGL
2009-09
Deux Rivieres (ON)
JDS
2009-05
Mantoulin I (ON)
JDS
2008-09
Sudbury (ON)
GL, JL
2008-09
Sudbury (ON)
GL, JL
2008-09
Sudbury (ON)
GL, JL
2008-09
Sudbury (ON)
GL, JL
2009-05
Mantoulin I (ON)
JDR, JDS
2008-09
Timmins (AB)
GL, JL
2009-05
Chelmsford (ON)
JDS
2009-05
Mantoulin I (ON)
JDR, JDS
2008-09
Timmins (AB)
GL, JL
2008-09
Timmins (AB)
GL, JL
2008-09
Timmins (AB)
GL, JL
2008-09
Sudbury (ON)
GL, JL
2008-09
Sudbury (ON)
GL, JL
n
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
¶
Parasitoid
Voucher
Placement Syndrome Host taxa
2
Par
eCto
iDio
Hemi
2
Induc •
•
•
2
Induc •
•
•
2
Induc •
•
•
2
Induc •
•
•
2
Induc •
•
•
2
Induc •
•
•
2
Induc •
•
•
2
Induc •
•
•
2
Induc •
•
•
2
Induc •
•
•
2
Induc •
•
•
2
Induc •
•
•
2
Induc •
•
•
2
Induc •
•
•
2
Induc •
•
•
2
Induc •
•
•
2
Induc •
•
•
2
Induc •
•
•
2
Induc •
•
•
2
Induc •
•
•
2
Induc •
•
•
2
Induc •
•
•
2
Induc •
•
•
2
Induc •
•
•
2
Induc •
•
•
2
Induc •
•
•
2
Induc •
•
•
2
Induc •
•
•
2
Induc •
•
•
2
Induc •
•
•
2
Induc •
•
•
2
Induc •
•
•
2
Induc •
•
•
2
Induc •
•
•
2
Induc •
•
•
2
Induc •
•
•
2
Induc •
•
•
2
Induc •
•
•
2
Induc •
•
•
2
Induc •
•
•
2
Induc •
•
•
2
Induc •
•
•
2
Induc •
•
•
2
Induc •
•
•
2
Induc •
•
•
2
Induc •
•
•
2
Induc •
•
•
2
Induc •
•
•
2
Induc •
•
•
#
Guild
226
Host stage
Nym, Ad
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
‡
Date
Collection
Site (Province)
Team
2008-09
Timmins (AB)
GL, JL
2008-09
Timmins (AB)
GL, JL
2008-09
Sudbury (ON)
GL, JL
2009-05
Sudbury (ON)
JDS
2009-05
Mantoulin I (ON)
JDR, JDS
2009-05
Mantoulin I (ON)
JDR, JDS
2009-05
Mantoulin I (ON)
JDR, JDS
2009-05
Mantoulin I (ON)
JDR, JDS
2009-05
Mantoulin I (ON)
JDR, JDS
2009-05
Mantoulin I (ON)
JDR, JDS
2009-05
Sudbury (ON)
JDS
2009-05
Chelmsford (ON)
JDS
2009-05
Chelmsford (ON)
JDS
2009-05
Chelmsford (ON)
JDS
2009-05
Chelmsford (ON)
JDS
2009-05
Chelmsford (ON)
JL
2009-05
Chelmsford (ON)
JL
2009-04
Renfrew (ON)
MRS, JDS
2009-05
Sudbury (ON)
JDS
2009-05
Sudbury (ON)
JDS
2009-05
Sudbury (ON)
JDS
2009-05
Sudbury (ON)
JDS
2009-05
Sudbury (ON)
JDS
2009-05
Sudbury (ON)
JDS
2009-05
Peachland (BC)
RGL
2009-05
Peachland (BC)
RGL
2009-05
Peachland (BC)
RGL
2008-09
Sudbury (ON)
GL, JL
2009-05
Fort Macleod (AB)
JDS
2008-09
Sudbury (ON)
GL, JL
2008-09
Sudbury (ON)
GL, JL
2008-09
Sudbury (ON)
GL, JL
2008-09
Sudbury (ON)
GL, JL
2009-05
Fort Macleod (AB)
JDS
2008-09
Timmins (AB)
GL, JL
2008-09
Timmins (AB)
GL, JL
2008-09
Sudbury (ON)
GL, JL
2008-09
Sudbury (ON)
GL, JL
2008-09
Sudbury (ON)
GL, JL
2008-09
Sudbury (ON)
GL, JL
2008-09
Sudbury (ON)
GL, JL
2009-05
Chelmsford (ON)
JDS
2008-09
Timmins (AB)
GL, JL
2008-09
Sudbury (ON)
GL, JL
2008-09
Sudbury (ON)
GL, JL
2008-09
Sudbury (ON)
GL, JL
2008-09
Timmins (AB)
GL, JL
2009-05
Fort Macleod (AB)
JDS
2009-05
Sudbury (ON)
JDS
2009-05
Fort Macleod (AB)
JDS
n
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
¶
Parasitoid
Voucher
Placement Syndrome Host taxa
2
Induc •
•
•
2
Induc •
•
•
2
Induc •
•
•
2
Induc •
•
•
2
Induc •
•
•
2
Induc •
•
•
2
Induc •
•
•
2
Induc •
•
•
2
Induc •
•
•
2
Induc •
•
•
2
Induc •
•
•
2
Induc •
•
•
2
Induc •
•
•
2
Induc •
•
•
2
Induc •
•
•
2
Induc •
•
•
2
Induc •
•
•
2
InQ
•
•
•
2
InQ
•
•
•
2
InQ
•
•
•
2
InQ
•
•
•
2
InQ
•
•
•
2
InQ
•
•
•
2
InQ
•
•
•
2
InQ
•
•
•
2
InQ
•
•
•
2
InQ
•
•
•
2
InQ
•
•
•
2
InQ
•
•
•
2
InQ
•
•
•
2
InQ
•
•
•
2
InQ
•
•
•
2
InQ
•
•
•
2
InQ
•
•
•
2
InQ
•
•
•
2
InQ
•
•
•
2
InQ
•
•
•
2
InQ
•
•
•
2
InQ
•
•
•
2
InQ
•
•
•
2
InQ
•
•
•
2
InQ
•
•
•
2
InQ
•
•
•
2
InQ
•
•
•
2
InQ
•
•
•
2
InQ
•
•
•
2
InQ
•
•
•
2
InQ
•
•
•
2
InQ
•
•
•
2
InQ
•
•
•
#
Guild
227
Host stage
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
‡
Date
Collection
Site (Province)
Team
2009-04
Renfrew (ON)
MRS, JDS
2009-05
Waterton L N P (AB)
JDS
2009-05
Waterton L N P (AB)
JDS
2010-08
Guelph (ON)
GL, JL, TE
2010-08
Guelph (ON)
GL, JL, TE
2010-08
Guelph (ON)
GL, JL, TE
2010-08
Guelph (ON)
GL, JL, TE
2010-08
Guelph (ON)
GL, JL, TE
2010-08
Guelph (ON)
GL, JL, TE
2010-08
Guelph (ON)
GL, JL, TE
2010-08
Guelph (ON)
GL, JL, TE
2010-08
Guelph (ON)
GL, JL, TE
2010-08
Guelph (ON)
GL, JL, TE
2010-08
Guelph (ON)
GL, JL, TE
2010-08
Guelph (ON)
GL, JL, TE
2010-08
Guelph (ON)
GL, JL, TE
2010-08
Guelph (ON)
GL, JL, TE
2010-08
Guelph (ON)
GL, JL, TE
2010-08
Guelph (ON)
GL, JL, TE
2010-08
Guelph (ON)
GL, JL, TE
2010-08
Guelph (ON)
GL, JL, TE
2010-08
Guelph (ON)
GL, JL, TE
2010-08
Guelph (ON)
GL, JL, TE
2010-08
Guelph (ON)
GL, JL, TE
2010-08
Guelph (ON)
GL, JL, TE
2010-08
Guelph (ON)
GL, JL, TE
2010-08
Guelph (ON)
GL, JL, TE
2010-08
Guelph (ON)
GL, JL, TE
2010-08
Guelph (ON)
GL, JL, TE
2010-08
Guelph (ON)
GL, JL, TE
2010-08
Guelph (ON)
GL, JL, TE
2010-08
Guelph (ON)
GL, JL, TE
2010-08
Guelph (ON)
GL, JL, TE
2010-08
Guelph (ON)
GL, JL, TE
2010-08
Guelph (ON)
GL, JL, TE
2010-08
Guelph (ON)
GL, JL, TE
2010-08
Guelph (ON)
GL, JL, TE
2010-08
Guelph (ON)
GL, JL, TE
2008-08
Guelph (ON)
JL
2008-08
Guelph (ON)
JL
2009-05
Sudbury (ON)
JL
2010-08
Guelph (ON)
GL, JL, TE
2010-08
Guelph (ON)
GL, JL, TE
2010-08
Guelph (ON)
GL, JL, TE
2010-08
Guelph (ON)
GL, JL, TE
2010-08
Guelph (ON)
GL, JL, TE
2010-08
Guelph (ON)
GL, JL, TE
2010-08
Guelph (ON)
GL, JL, TE
2010-08
Guelph (ON)
GL, JL, TE
2010-08
Guelph (ON)
GL, JL, TE
n
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
¶
Parasitoid
Voucher
Placement Syndrome Host taxa
2
InQ
•
•
•
2
InQ
•
•
•
2
InQ
•
•
•
2
Induc •
•
•
2
Induc •
•
•
2
Induc •
•
•
2
Induc •
•
•
2
Induc •
•
•
2
Induc •
•
•
2
Induc •
•
•
2
Induc •
•
•
2
Induc •
•
•
2
Induc •
•
•
2
Induc •
•
•
2
Induc •
•
•
2
InQ
•
•
•
2
InQ
•
•
•
2
InQ
•
•
•
2
InQ
•
•
•
2
InQ
•
•
•
2
InQ
•
•
•
2
InQ
•
•
•
2
InQ
•
•
•
2
InQ
•
•
•
2
InQ
•
•
•
2
InQ
•
•
•
2
InQ
•
•
•
2
InQ
•
•
•
2
InQ
•
•
•
2
InQ
•
•
•
2
InQ
•
•
•
2
InQ
•
•
•
2
InQ
•
•
•
2
InQ
•
•
•
2
InQ
•
•
•
2
InQ
•
•
•
2
InQ
•
•
•
2
InQ
•
•
•
2
Par
Endo
Koino
Dip
2
Par
Endo
Koino
Dip
2
Par
Endo
Koino
Dip
2
Par
Endo
Koino
Dip
2
Par
Endo
Koino
Dip
2
Par
Endo
Koino
Dip
2
Par
Endo
Koino
Dip
2
Par
Endo
Koino
Dip
2
Par
Endo
iDio
•
2
Par
Endo
iDio
•
2
Par
Endo
iDio
•
2
Par
Endo
iDio
•
#
Guild
228
Host stage
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
L-P
L-P
L-P
L-P
L-P
L-P
L-P
L-P
Pupa
Pupa
Pupa
Pupa
‡
Date
Collection
Site (Province)
Team
2010-08
Guelph (ON)
GL, JL, TE
2010-08
Guelph (ON)
GL, JL, TE
2010-08
Guelph (ON)
GL, JL, TE
2010-08
Guelph (ON)
GL, JL, TE
2010-08
Guelph (ON)
GL, JL, TE
2010-08
Guelph (ON)
GL, JL, TE
2010-08
Guelph (ON)
GL, JL, TE
2009-08
Guelph (ON)
GL, JL, JJW
2010-08
Guelph (ON)
GL, JL, TE
2010-08
Guelph (ON)
GL, JL, TE
2010-08
Guelph (ON)
GL, JL, TE
2010-08
Guelph (ON)
GL, JL, TE
2010-08
Guelph (ON)
GL, JL, TE
2010-08
Guelph (ON)
GL, JL, TE
2009-07
Churchill (MB)
JL
2009-07
Churchill (MB)
JL
2010-08
Guelph (ON)
GL, JL, TE
2009-08
Guelph (ON)
GL, JL, JJW
2009-08
Guelph (ON)
GL, JL, JJW
2009-08
Guelph (ON)
GL, JL, JJW
2009-05
Sudbury (ON)
JL
2009-05
Sudbury (ON)
JL
2008-06
Leamington (ON)
BBCL
2008-06
Leamington (ON)
BBCL
2008-06
Leamington (ON)
BBCL
2008-06
Leamington (ON)
BBCL
2008-06
Leamington (ON)
BBCL
2009-07
Churchill (MB)
JL
2010-08
Guelph (ON)
GL, JL, TE
2010-08
Guelph (ON)
GL, JL, TE
2010-08
Guelph (ON)
GL, JL, TE
2010-08
Guelph (ON)
GL, JL, TE
2009-07
Churchill (MB)
JL
2010-08
Guelph (ON)
GL, JL, TE
2010-08
Guelph (ON)
GL, JL, TE
2010-08
Guelph (ON)
GL, JL, TE
2010-08
Guelph (ON)
GL, JL, TE
2009-08
Guelph (ON)
GL, JL, JJW
2010-08
Guelph (ON)
GL, JL, TE
2009-07
Churchill (MB)
JL
2009-07
Churchill (MB)
JL
2009-07
Churchill (MB)
JL
2009-07
Churchill (MB)
JL
2009-07
Churchill (MB)
JL
2009-08
Guelph (ON)
GL, JL, JJW
2009-08
Guelph (ON)
GL, JL, JJW
2009-08
Guelph (ON)
GL, JL, JJW
2009-08
Guelph (ON)
GL, JL, JJW
2009-08
Guelph (ON)
GL, JL, JJW
2009-08
Guelph (ON)
GL, JL, JJW
n
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
¶
Parasitoid
Voucher
Placement Syndrome Host taxa
2
Par
Endo
iDio
•
2
Par
Endo
iDio
•
2
Par
Endo
iDio
•
2
Par
Endo
iDio
•
2
Par
Endo
iDio
•
2
Clepto eCto
iDio
Hym
2
Par
Endo
Koino
Coleo
2
Par
Endo
Koino
Coleo
2
Par
Endo
Koino
Lep
2
Par
Endo
Koino
Lep
2
Par
Endo
Koino
Lep
2
Par
Endo
Koino
Lep
2
Par
Endo
Koino
Lep
2
Par
Endo
Koino
Lep
2
Par
Endo
iDio
Hemi
2
Par
Endo
iDio
Hemi
2
Par
Endo
Koino
Lep
2
Par
Endo
Koino
Lep
2
Par
Endo
Koino
Lep
2
Par
Endo
Koino
Lep
2
Par
Endo
iDio
Hemi
2
Par
Endo
iDio
Hemi
2
Par
Endo
iDio
Hemi
2
Par
Endo
iDio
Hemi
2
Par
Endo
iDio
Hemi
2
Par
Endo
iDio
Hemi
2
Par
Endo
iDio
Hemi
2
Par
eCto
iDio
Lep
2
Par
eCto
iDio
Lep
2
Par
eCto
iDio
Lep
2
Par
eCto
iDio
Lep
2
Par
eCto
iDio
Lep
2
Par
eCto
iDio
Lep
2
Par
Endo
Koino
Lep
2
Par
Endo
Koino
Lep
2
Par
Endo
Koino
Lep
2
Par
Endo
Koino
Lep
2
Par
Endo
Koino
Lep
2
Par
Endo
Koino
Lep
2
Par
eCto
iDio
Lep
2
Par
Endo
Koino
Dip
2
Par
Endo
Koino
Dip
2
Par
Endo
Koino
Dip
2
Par
Endo
Koino
Dip
2
Par
Endo
Koino
Dip
2
Par
Endo
Koino
Dip
2
Par
Endo
Koino
Dip
2
Par
Endo
Koino
Dip
2
Par
Endo
Koino
Dip
2
Par
Endo
Koino
Dip
#
Guild
229
Host stage
Pupa
Pupa
Pupa
Pupa
Pupa
Egg
E-L
Larva
Larva
Larva
Larva
Larva
Larva
Larva
Nym, Ad
Nym, Ad
Larva
Larva
Larva
Larva
Nym, Ad
Nym, Ad
Nym, Ad
Nym, Ad
Nym, Ad
Nym, Ad
Nym, Ad
Larva
Larva
Larva
Larva
Larva
Larva
Larva
Larva
Larva
Larva
Larva
Larva
Larva
L-P
L-P
L-P
L-P
L-P
L-P
L-P
L-P
L-P
L-P
‡
Date
Collection
Site (Province)
Team
2009-08
Guelph (ON)
2009-08
2008-06
n
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
#
Voucher
GL, JL, JJW
2
Guelph (ON)
GL, JL, JJW
2
Leamington (ON)
BBCL
2
2008-06
Leamington (ON)
BBCL
2
2008-06
Leamington (ON)
BBCL
2
2009-07
Churchill (MB)
JL
2
2009-07
Churchill (MB)
JL
2
2009-07
Churchill (MB)
JL
2
2010-08
Guelph (ON)
GL, JL, TE
2
2010-08
Guelph (ON)
GL, JL, TE
2
2010-08
Guelph (ON)
GL, JL, TE
2
2010-08
Guelph (ON)
GL, JL, TE
2
2010-08
Guelph (ON)
GL, JL, TE
2
2010-08
Guelph (ON)
GL, JL, TE
2
2010-08
Guelph (ON)
GL, JL, TE
2
2010-08
Guelph (ON)
GL, JL, TE
2
2009-07
Churchill (MB)
JL
2
2009-07
Churchill (MB)
JL
2
2009-07
Churchill (MB)
JL
2
2009-07
Churchill (MB)
JL
2
2009-07
Churchill (MB)
JL
2
2009-07
Churchill (MB)
JL
2
2009-07
Churchill (MB)
JL
2
2009-05
Waterton L N P (AB)
JDS
2
2009-05
Waterton L N P (AB)
JDS
2
2008-09
Timmins (ON)
GL, JL
2
2009-05
Chelmsford (ON)
JL
2
2009-05
Chelmsford (ON)
JL
2
2009-05
Mantoulin I (ON)
JDR, JDS
2
2009-05
Mantoulin I (ON)
JDR, JDS
2
2009-04
Picton (ON)
JDS
2
2008-09
Sudbury (ON)
GL, JL
2
2008-09
Sudbury (ON)
GL, JL
2
2008-09
Sudbury (ON)
GL, JL
2
2008-09
Sudbury (ON)
GL, JL
2
2008-09
Sudbury (ON)
GL, JL
2
2008-09
Sudbury (ON)
GL, JL
2
2008-09
Sudbury (ON)
GL, JL
2
2008-09
Sudbury (ON)
GL, JL
2
2008-09
Sudbury (ON)
GL, JL
2
2008-09
Sudbury (ON)
GL, JL
2
2008-09
Sudbury (ON)
GL, JL
2
2008-09
Sudbury (ON)
GL, JL
2
2008-09
Sudbury (ON)
GL, JL
2
2008-09
Sudbury (ON)
GL, JL
2
2008-09
Sudbury (ON)
GL, JL
2
2009-05
Coaldale (AB)
JDS
2
2009-05
Coaldale (AB)
JDS
2
2008-09
Timmins (ON)
GL, JL
2
2008-09
Timmins (ON)
GL, JL
2
Guild
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
230
¶
Parasitoid
Placement Syndrome Host taxa
Endo
Koino
Dip
Endo
Koino
Dip
Endo
Koino
Dip
Endo
Koino
Dip
Endo
Koino
Dip
Endo
Koino
Lep
Endo
Koino
Lep
Endo
Koino
Lep
Endo
Koino
Lep
Endo
Koino
Lep
Endo
Koino
Lep
Endo
Koino
Lep
Endo
Koino
Lep
Endo
Koino
Lep
Endo
Koino
Lep
Endo
Koino
Lep
Endo
Koino
Lep
Endo
Koino
Lep
Endo
Koino
Lep
Endo
Koino
Lep
Endo
Koino
Lep
Endo
Koino
Lep
Endo
Koino
Lep
Endo
Koino
Hym
Endo
Koino
Hym
Endo
Koino
Hym
Endo
Koino
Hym
Endo
Koino
Hym
Endo
Koino
Hym
Endo
Koino
Hym
Endo
Koino
Hym
Endo
Koino
Hym
Endo
Koino
Hym
Endo
Koino
Hym
Endo
Koino
Hym
Endo
Koino
Hym
Endo
Koino
Hym
Endo
Koino
Hym
Endo
Koino
Hym
Endo
Koino
Hym
Endo
Koino
Hym
Endo
Koino
Hym
Endo
Koino
Hym
Endo
Koino
Hym
Endo
Koino
Hym
Endo
Koino
Hym
Endo
Koino
Hym
Endo
Koino
Hym
Endo
Koino
Hym
Endo
Koino
Hym
Host stage
L-P
L-P
L-P
L-P
L-P
Larva
Larva
Larva
Larva
Larva
Larva
Larva
Larva
Larva
Larva
Larva
E-L
E-L
E-L
E-L
E-L
E-L
E-L
Larva
Larva
Larva
Larva
Larva
Larva
Larva
Larva
Larva
Larva
Larva
Larva
Larva
Larva
Larva
Larva
Larva
Larva
Larva
Larva
Larva
Larva
Larva
Larva
Larva
Larva
Larva
‡
Date
Collection
Site (Province)
Team
2009-04
Picton (ON)
JDS
2
2009-05
Chelmsford (ON)
JDS
2
2009-05
Peachland (BC)
RGL
2
2008-09
Sudbury (ON)
GL, JL
2
2008-09
Sudbury (ON)
GL, JL
2
2008-09
Sudbury (ON)
GL, JL
2
2008-09
Sudbury (ON)
GL, JL
2
2008-09
Timmins (ON)
GL, JL
2
2009-07
Churchill (MB)
JL
2
2009-07
Churchill (MB)
JL
2
2009-08
Guelph (ON)
GL, JL, JJW
2
2009-08
Guelph (ON)
GL, JL, JJW
2
2009-07
Churchill (MB)
JL
2
2010-08
Guelph (ON)
GL, JL, TE
2
2009-07
Churchill (MB)
JL
2
2009-07
Churchill (MB)
JL
2
2009-07
Churchill (MB)
JL
2
2009-07
Churchill (MB)
JL
2
2009-07
Churchill (MB)
JL
2
2009-07
Churchill (MB)
JL
2
2009-08
Guelph (ON)
GL, JL, JJW
2
2009-08
Guelph (ON)
GL, JL, JJW
2
2009-08
Guelph (ON)
GL, JL, JJW
2
2009-08
Guelph (ON)
GL, JL, JJW
2
2009-07
Churchill (MB)
JL
2
2010-08
Guelph (ON)
GL, JL, TE
2
2010-08
Guelph (ON)
GL, JL, TE
2
2009-08
Guelph (ON)
GL, JL, JJW
2
2009-07
Churchill (MB)
JL
2
2009-07
Churchill (MB)
JL
2
2009-07
Churchill (MB)
JL
2
2009-07
Churchill (MB)
JL
2
2009-07
Churchill (MB)
JL
2
2009-07
Churchill (MB)
JL
2
2009-07
Churchill (MB)
JL
2
2009-07
Churchill (MB)
JL
2
2009-07
Churchill (MB)
JL
2
2009-07
Churchill (MB)
JL
2
2009-07
Churchill (MB)
JL
2
2009-07
Churchill (MB)
JL
2
2009-07
Churchill (MB)
JL
2
2009-07
Churchill (MB)
JL
2
2010-08
Guelph (ON)
GL, JL, TE
2
2010-08
Guelph (ON)
GL, JL, TE
2
2010-08
Guelph (ON)
GL, JL, TE
2
2010-08
Guelph (ON)
GL, JL, TE
2
2010-08
Guelph (ON)
GL, JL, TE
2
2010-08
Guelph (ON)
GL, JL, TE
2
2010-08
Guelph (ON)
GL, JL, TE
2
2010-08
Guelph (ON)
GL, JL, TE
2
n
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
#
Voucher
Guild
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
231
¶
Parasitoid
Placement Syndrome Host taxa
Endo
Koino
Hym
Endo
Koino
Hym
Endo
Koino
Hym
Endo
Koino
Hym
Endo
Koino
Hym
Endo
Koino
Hym
Endo
Koino
Hym
Endo
Koino
Hym
•
•
•
•
•
•
Endo
iDio
Lep
Endo
iDio
Lep
eCto
iDio
Lep
eCto
iDio
Lep
Endo
iDio
Lep
Endo
iDio
Lep
Endo
iDio
Lep
eCto
iDio
Lep
eCto
iDio
Lep
eCto
iDio
Lep
Endo
Koino
Lep
Endo
Koino
Lep
Endo
Koino
Lep
Endo
Koino
Lep
Endo
Koino
Lep
Endo
Koino
Lep
Endo
Koino
Lep
Endo
Koino
Lep
Endo
Koino
Lep
Endo
Koino
Lep
Endo
Koino
Lep
Endo
Koino
Lep
Endo
Koino
Lep
Endo
Koino
Lep
Endo
Koino
Lep
Endo
Koino
Lep
Endo
Koino
Lep
Endo
Koino
Lep
Endo
Koino
Lep
Endo
Koino
Lep
Endo
Koino
Lep
Endo
Koino
Lep
Endo
Koino
Lep
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
Host stage
Larva
Larva
Larva
Larva
Larva
Larva
Larva
Larva
•
•
Pupa
Pupa
Pupa
Pupa
Pupa
Pupa
Pupa
Pupa
Pupa
Pupa
Larva
Larva
Larva
Larva
Larva
Larva
Larva
Larva
Larva
Larva
Larva
Larva
Larva
Larva
Larva
Larva
Larva
Larva
Larva
Larva
Larva
L-P
L-P
•
•
•
•
•
•
•
‡
Date
Collection
Site (Province)
Team
2010-08
Guelph (ON)
GL, JL, TE
2
2010-08
Guelph (ON)
GL, JL, TE
2
2010-08
Guelph (ON)
GL, JL, TE
2
2009-07
Churchill (MB)
JL
2
2009-07
Churchill (MB)
JL
2
2010-08
Guelph (ON)
GL, JL, TE
2
2010-08
Guelph (ON)
GL, JL, TE
2
2010-08
Guelph (ON)
GL, JL, TE
2
2010-08
Guelph (ON)
GL, JL, TE
2
2010-08
Guelph (ON)
GL, JL, TE
2
2010-08
Guelph (ON)
GL, JL, TE
2
2009-08
Guelph (ON)
GL, JL, JJW
2
2010-08
Guelph (ON)
GL, JL, TE
2
2010-08
Guelph (ON)
GL, JL, TE
2
2009-07
Churchill (MB)
JL
2
2009-07
Churchill (MB)
JL
2
2009-07
Churchill (MB)
JL
2
2010-08
Guelph (ON)
GL, JL, TE
2
2010-08
Guelph (ON)
GL, JL, TE
2
2010-08
Guelph (ON)
GL, JL, TE
2
2009-07
Churchill (MB)
JL
2
2009-07
Churchill (MB)
JL
2
2009-07
Churchill (MB)
JL
2
2009-07
Churchill (MB)
JL
2
2009-07
Churchill (MB)
JL
2
2009-07
Churchill (MB)
JL
2
2009-07
Churchill (MB)
JL
2
2009-07
Churchill (MB)
JL
2
2009-07
Churchill (MB)
JL
2
2009-07
Churchill (MB)
JL
2
2009-07
Churchill (MB)
JL
2
2009-07
Churchill (MB)
JL
2
2009-05
Sudbury (ON)
JL
2
2009-05
Sudbury (ON)
JL
2
2009-05
Sudbury (ON)
JL
2
2009-08
Guelph (ON)
GL, JL, JJW
2
2009-07
Churchill (MB)
JL
2
2009-07
Churchill (MB)
JL
2
2009-07
Churchill (MB)
JL
2
2010-08
Guelph (ON)
GL, JL, TE
2
2010-08
Guelph (ON)
GL, JL, TE
2
2010-08
Guelph (ON)
GL, JL, TE
2
2009-07
Churchill (MB)
JL
2
2010-08
Guelph (ON)
GL, JL, TE
2
2010-08
Guelph (ON)
GL, JL, TE
2
2010-08
Guelph (ON)
GL, JL, TE
2
2010-08
Guelph (ON)
GL, JL, TE
2
2010-08
Guelph (ON)
GL, JL, TE
2
2009-08
Guelph (ON)
GL, JL, JJW
2
2009-08
Guelph (ON)
GL, JL, JJW
2
n
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
#
Voucher
Guild
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
232
¶
Parasitoid
Placement Syndrome Host taxa
•
•
•
•
•
•
•
•
•
Endo
Koino
Dip
Endo
Koino
Dip
Endo
Koino
Hym
Endo
Koino
Hym
Endo
Koino
Hym
Endo
Koino
Hym
Endo
Koino
Hym
Endo
Koino
Hym
Endo
Koino
Hym
Endo
Koino
Hym
Endo
Koino
Hym
eCto
Koino
Hym
eCto
Koino
Hym
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
Endo
Koino
Dip
eCto
Koino
Hym
eCto
Koino
Hym
eCto
Koino
Hym
Endo
Koino
Dip
Endo
Koino
Dip
Endo
Koino
Dip
Endo
Koino
Dip
Endo
iDio
Lep
Endo
iDio
Lep
Endo
iDio
Lep
•
iDio
Lep
eCto
iDio
Lep
eCto
iDio
Lep
eCto
iDio
Lep
eCto
iDio
Lep
eCto
iDio
Lep
Endo
iDio
Lep
Endo
iDio
Lep
Host stage
•
•
•
L-P
L-P
Larva
Larva
Larva
Larva
Larva
Larva
Larva
Larva
Larva
Larva
Larva
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
L-P
Larva
Larva
Larva
L-P
L-P
L-P
L-P
Pupa
Pupa
Pupa
Pupa
Pupa
Pupa
Pupa
Pupa
Pupa
Pupa
Pupa
‡
Date
Collection
Site (Province)
Team
2009-07
Churchill (MB)
JL
2
2010-08
Guelph (ON)
GL, JL, TE
2
2010-08
Guelph (ON)
GL, JL, TE
2
2010-08
Guelph (ON)
GL, JL, TE
2
2010-08
Guelph (ON)
GL, JL, TE
2
2009-08
Guelph (ON)
GL, JL, JJW
2
2009-08
Guelph (ON)
GL, JL, JJW
2
2010-08
Guelph (ON)
GL, JL, TE
2
2010-08
Guelph (ON)
GL, JL, TE
2
2010-08
Guelph (ON)
GL, JL, TE
2
2010-08
Guelph (ON)
GL, JL, TE
2
2009-07
Churchill (MB)
JL
2
2009-05
Sudbury (ON)
JL
2
2009-05
Sudbury (ON)
JL
2
2009-07
Churchill (MB)
JL
2
2009-07
Churchill (MB)
JL
2
2009-08
Guelph (ON)
GL, JL, JJW
2
2010-08
Guelph (ON)
GL, JL, TE
2
2010-08
Guelph (ON)
GL, JL, TE
2
2009-07
Churchill (MB)
JL
2
2009-07
Churchill (MB)
JL
2
2009-07
Churchill (MB)
JL
2
2009-07
Churchill (MB)
JL
2
2009-07
Churchill (MB)
JL
2
2009-07
Churchill (MB)
JL
2
2009-07
Churchill (MB)
JL
2
2009-08
Guelph (ON)
GL, JL, JJW
2
2009-07
Churchill (MB)
JL
2
2009-07
Churchill (MB)
JL
2
2009-07
Churchill (MB)
JL
2
2009-07
Churchill (MB)
JL
2
2009-07
Churchill (MB)
JL
2
2009-07
Churchill (MB)
JL
2
2009-07
Churchill (MB)
JL
2
2009-07
Churchill (MB)
JL
2
2009-07
Churchill (MB)
JL
2
2009-07
Churchill (MB)
JL
2
2009-08
Guelph (ON)
GL, JL, JJW
2
2009-08
Guelph (ON)
GL, JL, JJW
2
2009-07
Churchill (MB)
JL
2
2009-08
Guelph (ON)
GL, JL, JJW
2
2009-07
Churchill (MB)
JL
2
2010-08
Guelph (ON)
GL, JL, TE
2
2010-08
Guelph (ON)
GL, JL, TE
2
2010-08
Guelph (ON)
GL, JL, TE
2
2010-08
Guelph (ON)
GL, JL, TE
2
2010-08
Guelph (ON)
GL, JL, TE
2
2010-08
Guelph (ON)
GL, JL, TE
2
2009-07
Churchill (MB)
JL
2
2009-07
Churchill (MB)
JL
2
n
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
#
Voucher
Guild
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
Par
233
¶
Parasitoid
Placement Syndrome Host taxa
Endo
Koino
Dip
•
•
•
•
•
•
•
•
•
•
•
•
eCto
iDio
Lep
eCto
iDio
Lep
eCto
iDio
Lep
eCto
iDio
Lep
eCto
iDio
Lep
eCto
iDio
Lep
•
•
•
Endo
Koino
Hym
Endo
Koino
Hym
Endo
Koino
Hym
•
•
•
Endo
Koino
Lep
Endo
Koino
Hym
Endo
Koino
Lep
Endo
Koino
Lep
Endo
Koino
Lep
Endo
Koino
Lep
Endo
Koino
Lep
Endo
Koino
Lep
Endo
Koino
Lep
Endo
Koino
Lep
Endo
Koino
Lep
Endo
Koino
Lep
Endo
Koino
Lep
Endo
Koino
Lep
Endo
Koino
Lep
Endo
Koino
Lep
eCto
iDio
Lep
eCto
iDio
Lep
eCto
iDio
Lep
eCto
iDio
Lep
eCto
iDio
Lep
•
•
•
eCto
iDio
Lep
eCto
iDio
Lep
eCto
iDio
Lep
eCto
iDio
Lep
eCto
Koino
Hym
eCto
Koino
Hym
eCto
Koino
Hym
eCto
Koino
Hym
eCto
Koino
Hym
eCto
Koino
Hym
Endo
iDio
Lep
Endo
Koino
Dip
Host stage
L-P
•
•
•
•
Pupa
Pupa
Pupa
Pupa
Pupa
Pupa
•
Larva
Larva
Larva
•
L-P
Larva
Larva
Larva
Larva
Larva
Larva
Larva
Larva
Larva
Larva
Larva
Larva
Larva
Larva
Larva
Pupa
Pupa
Pupa
Pupa
Pupa
•
Pupa
Pupa
Pupa
Pupa
Larva
Larva
Larva
Larva
Larva
Larva
Pupa
E-L
‡
Date
Collection
Site (Province)
Team
2010-08
Guelph (ON)
GL, JL, TE
2010-08
Guelph (ON)
GL, JL, TE
2010-08
Guelph (ON)
GL, JL, TE
2010-08
Guelph (ON)
GL, JL, TE
2010-08
Guelph (ON)
GL, JL, TE
2010-08
Guelph (ON)
GL, JL, TE
2010-08
Guelph (ON)
GL, JL, TE
2010-08
Guelph (ON)
GL, JL, TE
2010-08
Guelph (ON)
GL, JL, TE
2010-08
Guelph (ON)
GL, JL, TE
2010-08
Guelph (ON)
GL, JL, TE
2010-08
Guelph (ON)
GL, JL, TE
2010-08
Guelph (ON)
GL, JL, TE
2010-08
Guelph (ON)
GL, JL, TE
2010-08
Guelph (ON)
GL, JL, TE
2010-08
Guelph (ON)
GL, JL, TE
2010-08
Guelph (ON)
GL, JL, TE
2010-08
Guelph (ON)
GL, JL, TE
2010-08
Guelph (ON)
GL, JL, TE
2010-08
Guelph (ON)
GL, JL, TE
2010-08
Guelph (ON)
GL, JL, TE
2010-08
Guelph (ON)
GL, JL, TE
2010-08
Guelph (ON)
GL, JL, TE
2010-08
Guelph (ON)
GL, JL, TE
2010-08
Guelph (ON)
GL, JL, TE
2010-08
Guelph (ON)
GL, JL, TE
2010-08
Guelph (ON)
GL, JL, TE
2009-08
Guelph (ON)
GL, JL, JJW
2009-05
Sudbury (ON)
JL
2009-08
Guelph (ON)
GL, JL, JJW
2009-07
Churchill (MB)
JL
2009-05
Sudbury (ON)
JL
2010-08
Guelph (ON)
GL, JL, TE
2009-07
Churchill (MB)
JL
2009-07
Churchill (MB)
JL
2009-07
Churchill (MB)
JL
2010-08
Guelph (ON)
GL, JL, TE
2010-08
Guelph (ON)
GL, JL, TE
2009-07
Churchill (MB)
JL
2009-05
Sudbury (ON)
JL
2009-05
Sudbury (ON)
JL
2009-05
Sudbury (ON)
JL
2009-05
Sudbury (ON)
JL
2009-07
Churchill (MB)
JL
2010-08
Guelph (ON)
GL, JL, TE
2010-08
Guelph (ON)
GL, JL, TE
2010-08
Guelph (ON)
GL, JL, TE
2009-07
Churchill (MB)
JL
2009-07
Churchill (MB)
JL
2009-07
Churchill (MB)
JL
n
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
¶
Parasitoid
Voucher
Placement Syndrome Host taxa
2
Par
Endo
Koino
Dip
2
Par
Endo
Koino
Dip
2
Par
Endo
Koino
Dip
2
Par
Endo
Koino
Dip
2
Par
Endo
Koino
Dip
2
Par
Endo
Koino
Dip
2
Par
Endo
iDio
Hemi
2
Par
Endo
iDio
Hemi
2
Par
Endo
iDio
Hemi
2
Par
Endo
iDio
Hemi
2
Par
Endo
iDio
Hemi
2
Par
Endo
iDio
Hemi
2
Par
Endo
iDio
Hemi
2
Par
Endo
iDio
Dip
2
Par
Endo
iDio
Dip
2
Par
Endo
iDio
Dip
2
Par
Endo
iDio
Dip
2
Par
Endo
iDio
Lep
2
Par
Endo
iDio
Lep
2
Par
Endo
iDio
Lep
2
Par
Endo
iDio
Lep
2
Par
Endo
iDio
Lep
2
Par
Endo
iDio
Lep
2
Par
Endo
iDio
Lep
2
Par
Endo
iDio
Lep
2
Par
Endo
iDio
Lep
2
Par
Endo
iDio
Lep
2
Par
Endo
Koino
Coleo
2
Phyto •
•
•
2
Phyto •
•
•
2
Phyto •
•
•
2
Phyto •
•
•
2
Phyto •
•
•
2
Phyto •
•
•
2
Phyto •
•
•
2
Phyto •
•
•
2
Phyto •
•
•
2
Phyto •
•
•
2
Phyto •
•
•
2
Phyto •
•
•
2
Phyto •
•
•
2
Phyto •
•
•
2
Phyto •
•
•
2
Phyto •
•
•
2
Phyto •
•
•
2
Phyto •
•
•
2
Phyto •
•
•
2
Phyto •
•
•
2
Phyto •
•
•
2
Phyto •
•
•
#
Guild
234
Host stage
E-L
E-L
E-L
E-L
E-L
E-L
Egg
Egg
Egg
Egg
Egg
Egg
Egg
Egg
Egg
Egg
Egg
Egg
Egg
Egg
Egg
Egg
Egg
Egg
Egg
Egg
Egg
Larva
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
‡
Date
Collection
Site (Province)
Team
2009-07
Churchill (MB)
JL
2009-07
Churchill (MB)
JL
2009-05
Sudbury (ON)
JL
2009-05
Sudbury (ON)
JL
2009-05
Sudbury (ON)
JL
2009-05
Sudbury (ON)
JL
2009-05
Sudbury (ON)
JL
2009-05
Sudbury (ON)
JL
2009-05
Sudbury (ON)
JL
2009-05
Sudbury (ON)
JL
2009-07
Churchill (MB)
JL
2009-07
Churchill (MB)
JL
2009-07
Churchill (MB)
JL
2009-08
Guelph (ON)
GL, JL, JJW
2009-08
Guelph (ON)
GL, JL, JJW
2009-07
Churchill (MB)
JL
2009-07
Churchill (MB)
JL
2009-07
Churchill (MB)
JL
2009-07
Churchill (MB)
JL
2009-07
Churchill (MB)
JL
2009-07
Churchill (MB)
JL
2009-07
Churchill (MB)
JL
2009-07
Churchill (MB)
JL
2009-07
Churchill (MB)
JL
2009-07
Churchill (MB)
JL
2009-07
Churchill (MB)
JL
2009-07
Churchill (MB)
JL
2009-07
Churchill (MB)
JL
2009-07
Churchill (MB)
JL
2009-07
Churchill (MB)
JL
2009-07
Churchill (MB)
JL
2009-07
Churchill (MB)
JL
2009-07
Churchill (MB)
JL
2009-07
Churchill (MB)
JL
2009-07
Churchill (MB)
JL
2009-07
Churchill (MB)
JL
2009-05
Sudbury (ON)
JL
2009-07
Churchill (MB)
JL
2009-07
Churchill (MB)
JL
2009-05
Sudbury (ON)
JL
2010-08
Guelph (ON)
GL, JL, TE
2010-08
Guelph (ON)
GL, JL, TE
2010-08
Guelph (ON)
GL, JL, TE
2009-07
Churchill (MB)
JL
2009-07
Churchill (MB)
JL
2009-07
Churchill (MB)
JL
2009-07
Churchill (MB)
JL
2009-07
Churchill (MB)
JL
2009-08
Guelph (ON)
GL, JL, JJW
2009-08
Guelph (ON)
GL, JL, JJW
n
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
¶
Parasitoid
Voucher
Placement Syndrome Host taxa
2
Phyto •
•
•
2
Phyto •
•
•
2
Miner •
•
•
2
Miner •
•
•
2
Miner •
•
•
2
Miner •
•
•
2
Miner •
•
•
2
Miner •
•
•
2
Miner •
•
•
2
Miner •
•
•
2
Phyto •
•
•
2
Phyto •
•
•
2
Phyto •
•
•
2
Phyto •
•
•
2
Phyto •
•
•
2
Phyto •
•
•
2
Phyto •
•
•
2
Phyto •
•
•
2
Phyto •
•
•
2
Phyto •
•
•
2
Phyto •
•
•
2
Phyto •
•
•
2
Phyto •
•
•
2
Phyto •
•
•
2
Phyto •
•
•
2
Phyto •
•
•
2
Phyto •
•
•
2
Phyto •
•
•
2
Phyto •
•
•
2
Phyto •
•
•
2
Phyto •
•
•
2
Phyto •
•
•
2
Phyto •
•
•
2
Phyto •
•
•
2
Phyto •
•
•
2
Phyto •
•
•
2
Phyto •
•
•
2
•
•
•
•
2
•
•
•
•
2
Induc •
•
•
2
Induc •
•
•
2
Induc •
•
•
2
Phyto •
•
•
2
Phyto •
•
•
2
Phyto •
•
•
2
Phyto •
•
•
2
Phyto •
•
•
2
Phyto •
•
•
2
Pred •
•
•
2
Pred •
•
•
#
Guild
235
Host stage
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
‡
Date
Collection
Site (Province)
Team
2009-08
Guelph (ON)
GL, JL, JJW
2
2009-08
Guelph (ON)
GL, JL, JJW
2
2009-08
Guelph (ON)
GL, JL, JJW
2
2009-08
Guelph (ON)
GL, JL, JJW
2
2009-08
Guelph (ON)
GL, JL, JJW
2
2009-07
Churchill (MB)
JL
2
2009-07
Churchill (MB)
JL
2
2009-07
Churchill (MB)
JL
2
2009-07
Churchill (MB)
JL
2
2009-07
Churchill (MB)
JL
2
2009-07
Churchill (MB)
JL
2
2009-07
Churchill (MB)
JL
2
2009-07
Churchill (MB)
JL
2
2009-08
Guelph (ON)
GL, JL, JJW
2
2009-08
Guelph (ON)
GL, JL, JJW
2
2009-08
Guelph (ON)
GL, JL, JJW
2
2009-08
Guelph (ON)
GL, JL, JJW
2
2009-08
Guelph (ON)
GL, JL, JJW
2
2009-08
Guelph (ON)
GL, JL, JJW
2
2009-08
Guelph (ON)
GL, JL, JJW
2
2009-08
Guelph (ON)
GL, JL, JJW
2
2009-08
Guelph (ON)
GL, JL, JJW
2
2009-07
Churchill (MB)
JL
2
2009-07
Churchill (MB)
JL
2
2009-07
Churchill (MB)
JL
2
2009-08
Guelph (ON)
GL, JL, JJW
2
2009-08
Guelph (ON)
GL, JL, JJW
2
2009-08
Guelph (ON)
GL, JL, JJW
2
2009-08
Guelph (ON)
GL, JL, JJW
2
2009-08
Guelph (ON)
GL, JL, JJW
2
2009-08
Guelph (ON)
GL, JL, JJW
2
2010-08
(BC)
NJ
2
2009-08
Guelph (ON)
GL, JL, JJW
2
2009-08
Guelph (ON)
GL, JL, JJW
2
2009-08
Guelph (ON)
GL, JL, JJW
2
2009-08
Guelph (ON)
GL, JL, JJW
2
2009-08
Guelph (ON)
GL, JL, JJW
2
2009-08
Guelph (ON)
GL, JL, JJW
2
2009-08
Guelph (ON)
GL, JL, JJW
2
2009-08
Guelph (ON)
GL, JL, JJW
2
2009-08
Guelph (ON)
GL, JL, JJW
2
2009-08
Guelph (ON)
GL, JL, JJW
2
2009-08
Guelph (ON)
GL, JL, JJW
2
2009-08
Guelph (ON)
GL, JL, JJW
2
2009-08
Guelph (ON)
GL, JL, JJW
2
2009-08
Guelph (ON)
GL, JL, JJW
2
2009-07
Churchill (MB)
JL
2
2009-08
Guelph (ON)
GL, JL, JJW
2
2009-08
Guelph (ON)
GL, JL, JJW
2
2009-08
Guelph (ON)
GL, JL, JJW
2
n
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
#
Voucher
Guild
Pred
Pred
Pred
Pred
Pred
Pred
Pred
Pred
Pred
Pred
Pred
Pred
Pred
Pred
Pred
Pred
Pred
Pred
Pred
Pred
Pred
Pred
Pred
Pred
Pred
Pred
Pred
Pred
Pred
Pred
Pred
Pred
Pred
Pred
Pred
Pred
Pred
Pred
Pred
Pred
Pred
Pred
Pred
Pred
Pred
Pred
Pred
Pred
Pred
Pred
236
¶
Parasitoid
Placement Syndrome Host taxa
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
Host stage
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
‡
Date
Collection
Site (Province)
Team
2009-08
Guelph (ON)
GL, JL, JJW
2
2009-08
Guelph (ON)
GL, JL, JJW
2
2009-08
Guelph (ON)
GL, JL, JJW
2
2009-08
Guelph (ON)
GL, JL, JJW
2
n
850
851
852
853
#
Voucher
Guild
Pred
Pred
Pred
Pred
¶
Parasitoid
Placement Syndrome Host taxa
•
•
•
•
•
•
•
•
•
•
•
•
Host stage
•
•
•
•
‡ Collection team: acronyms of names are as follows:
BBCL = BioBest Canada Limited, BIC = Beneficial Insectary Canada,
TE = Elliott T, NJ = Jeffery N, RGL = Lalonde RG, GL = Lima G, JL = Lima J, ADR = Renelli AD,
JDR = Renelli JD, JDS = Shorthouse JD, MRS = Shorthouse MR, JJW = Wilson JJ.
Collection voucher: acronym of location is as follows:
2 = JLima collection (University of Guelph).
curator = JL.
volunteers: TE, NJ, GL and JJW.
# Guild: acronyms of guilds are as follows:
Clepto = cleptoparasite, Induc = inducer, InQ = inquiline, Miner = leaf miner, Par = parasitoid,
Phyto = phytophagous, Pred = predator.
¶ Parasitoid placement: acronyms of placement are as follows:
eCto = ectoparasitoid, Endo = endoparasitoid.
Parasitoid syndrome: acronyms of syndrome are as follows:
iDio = idiobiont, Koino = koinobiont.
Parasitoid host taxa: acronyms of taxa are as follows:
Coleo = Coleoptera, Dip = Diptera, Hemi = Hemiptera, Hym = Hymenoptera, Lep = Lepidoptera.
Parasitoid host stgae: acronyms of host stage are as follows:
Ad = Adult, E-L = egg-larva, L-P = larva-pupa, Nym = nymph.
237
238
Appendix 4. Published studies of genome size estimation of Hymenoptera with information on biology.
Identification
Genome
†
(pg)
size
Family
Subfamily
Species
Study Superfamily
Apidae
Andreninae
Andrena dunningi
6 Apoidea
0.50
Apidae
Apinae
Apis mellifera
JL, 6, 11 Apoidea
0.25
Apidae
Apinae
Bombus bimaculatus
6 Apoidea
0.34
Apidae
Apinae
Bombus impatiens
JL, 6, 10 Apoidea
0.50
Apidae
Apinae
Bombus occidentalis
10 Apoidea
0.46
Apidae
Apinae
Bombus terrestris
1 Apoidea
0.53
Apoidea
Apidae
Apinae
Lestrimelitta
sp
8
0.46
Apidae
Apinae
Melipona asilvai
7 Apoidea
0.29
Apidae
Apinae
Melipona bicolor
7 Apoidea
0.28
Apidae
Apinae
Melipona capixaba
7 Apoidea
1.38
Apidae
Apinae
Melipona compressipes
7 Apoidea
0.78
Apidae
Apinae
Melipona crinita
7 Apoidea
0.73
Apidae
Apinae
Melipona eburnea
7 Apoidea
1.11
Apidae
Apinae
Melipona fuscopilosa
7 Apoidea
1.10
Apidae
Apinae
Melipona grandis
7 Apoidea
0.95
Apidae
Apinae
Melipona mandacaia
7 Apoidea
0.35
Apidae
Apinae
Melipona marginata
7 Apoidea
0.28
Apidae
Apinae
Melipona mondury
5, 7 Apoidea
0.95
Apidae
Apinae
Melipona quadrifasciata
7 Apoidea
0.27
Apidae
Apinae
Melipona quinquefasciata
7 Apoidea
0.70
Apidae
Apinae
Melipona rufiventris
5, 7 Apoidea
0.93
Apidae
Apinae
Melipona scutellaris
7 Apoidea
1.08
Apidae
Apinae
Melipona seminigra
7 Apoidea
0.85
Apoidea
Apidae
Apinae
Melipona
subnitida
7
0.27
Apidae
Apinae
Scaptotrigona xantotricha
5 Apoidea
0.43
Apidae
Apinae
Melissodes desponsa
JL, 6 Apoidea
0.52
Apidae
Apinae
Melissodes illata
6 Apoidea
0.37
Apidae
Apinae
Ceratina calcarata
6 Apoidea
0.68
Apidae
Apinae
Ceratina dupla dupla
6 Apoidea
0.59
Apidae
Colletinae
Hylaeus affinis
JL, 6 Apoidea
0.64
Apidae
Halictinae
Augochloropsis metallica
6 Apoidea
0.90
Apidae
Halictinae
Halictus ligatus
6 Apoidea
0.60
Apidae
Megachilinae
Megachile rotundata
6 Apoidea
0.83
Crabronidae
Bembicinae
Gorytes atricornis
6 Apoidea
0.48
Crabronidae
Crabroninae
Ectemnius continuus
6 Apoidea
0.38
Crabronidae
Crabroninae
Larra bicolor
6 Apoidea
0.19
Sphecidae
Sceliphrinae
Chalybion californicus
JL, 6 Apoidea
0.54
Parasitoid¶
Placement Syndrome Host taxa
Phyto •
•
•
Phyto •
•
•
Phyto •
•
•
Phyto •
•
•
Phyto •
•
•
Phyto •
•
•
Phyto •
•
•
Phyto •
•
•
Phyto •
•
•
Phyto •
•
•
Phyto •
•
•
Phyto •
•
•
Phyto •
•
•
Phyto •
•
•
Phyto •
•
•
Phyto •
•
•
Phyto •
•
•
Phyto •
•
•
Phyto •
•
•
Phyto •
•
•
Phyto •
•
•
Phyto •
•
•
Phyto •
•
•
Phyto •
•
•
Phyto •
•
•
Phyto •
•
•
Phyto •
•
•
Phyto •
•
•
Phyto •
•
•
Phyto •
•
•
Phyto •
•
•
Phyto •
•
•
Phyto •
•
•
Pred •
•
•
Pred •
•
•
Pred •
•
•
Pred •
•
•
Guild#
Host stage
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
239
Study† Superfamily
JL, 6 Apoidea
10 Cephoidea
6 Chalcidoidea
JL, 6 Chalcidoidea
JL, 6 Chalcidoidea
6 Chalcidoidea
JL, 6 Chalcidoidea
JL, 6 Chalcidoidea
3 Chalcidoidea
JL, 2, 6 Chalcidoidea
JL, 6 Chalcidoidea
6 Chalcidoidea
9 Cynipoidea
9 Cynipoidea
9 Cynipoidea
9 Cynipoidea
JL, 6 Ichneumonoidea
JL, 6 Ichneumonoidea
JL, 6, 10 Ichneumonoidea
10 Ichneumonoidea
6, 4 Vespoidea
4 Vespoidea
6 Vespoidea
6 Vespoidea
4 Vespoidea
4 Vespoidea
4 Vespoidea
4, 6 Vespoidea
4 Vespoidea
4 Vespoidea
4 Vespoidea
4 Vespoidea
4 Vespoidea
4 Vespoidea
4 Vespoidea
4 Vespoidea
6 Vespoidea
6 Vespoidea
Subfamily
Sceliphrinae
•
Aphelininae
Coccophaginae
Eretmocerinae
Eretmocerinae
Tetracneminae
Eulophinae
Pteromalinae
Trichogrammatinae
Trichogrammatinae
Trichogrammatinae
•
•
•
•
Alysiinae
Aphidiinae
Aphidiinae
Microgastrinae
Amblyoponinae
Cerapachyinae
Dolichoderinae
Dolichoderinae
Dolichoderinae
Dolichoderinae
Dolichoderinae
Dolichoderinae
Dolichoderinae
Ecitoninae
Ecitoninae
Ectatomminae
Formicinae
Formicinae
Formicinae
Formicinae
Formicinae
Formicinae
Family
Sphecidae
Cephidae
Aphelinidae
Aphelinidae
Aphelinidae
Aphelinidae
Encyrtidae
Eulophidae
Pteromalidae
Trichogrammatidae
Trichogrammatidae
Trichogrammatidae
Figitidae
Figitidae
Figitidae
Figitidae
Braconidae
Braconidae
Braconidae
Braconidae
Formicidae
Formicidae
Formicidae
Formicidae
Formicidae
Formicidae
Formicidae
Formicidae
Formicidae
Formicidae
Formicidae
Formicidae
Formicidae
Formicidae
Formicidae
Formicidae
Formicidae
Formicidae
Identification
Species
Lasius minutus
Lasius latipes
Lasius alienus
Formica pallidifulva
Camponotus pennsylvanicus
Camponotus castaneus
Ectatomma tuberculatum
Labidus coecus
Eciton burchelli
Tapinoma sessile B
Tapinoma sessile A
Liometopum occidentale
Linepithema humile
Dormyrmex bicolor
Dolichoderus taschenbergi
Dolichoderus mariae
Cerapachys edentata
Amblyopone pallipes
Cotesia flavipes
Aphidius ervi
Aphidius colemani
Dacnusa sibirica
Leptopilina victoriae
Leptopilina heterotoma
Leptopilina boulardi
Ganaspis xanthopoda
Trichogramma pretiosum
Trichogramma platneri
Trichogramma brassicae
Catolaccus grandis
Diglyphus isaea
Leptomastix dactylopii
Eretmocerus mundus
Eretmocerus eremicus
Encarsia formosa
Aphelinus abdominalis
Cephus cinctus
Sceliphron caementarium
Genome
Guild#
size (pg)
Placement
1.15 Pred •
0.21 Phyto •
0.65 Par
Endo
0.42 Par
Endo
0.55 Par
Endo
0.75 Par
Endo
0.56 Par
•
0.23 Par
eCto
0.47 Par
•
0.24 Par
Endo
0.18 Par
Endo
0.19 Par
Endo
0.99 Par
Endo
0.37 Par
Endo
0.47 Par
Endo
0.53 Par
Endo
0.16 Par
Endo
0.10 Par
Endo
0.15 Par
Endo
0.18 Par
Endo
0.36 Pred •
0.22 Pred •
0.18 Pred •
0.23 Pred •
0.25 Pred •
0.26 Pred •
0.29 Pred •
0.38 Pred •
0.61 Pred •
0.27 Pred •
0.37 Pred •
0.71 Pred •
0.31 Pred •
0.33 Pred •
0.39 Pred •
0.31 Pred •
0.27 Pred •
0.23 Pred •
¶
Parasitoid
Syndrome Host taxa
•
•
•
•
iDio
Hemi
iDio
Hemi
iDio
Hemi
iDio
Hemi
•
•
iDio
Dip
•
•
iDio
•
iDio
•
iDio
•
Koino
Dip
Koino
Dip
Koino
Dip
Koino
Dip
Koino
Dip
iDio
Hemi
iDio
Hemi
Koino
Lep
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
Host stage
•
•
Nym, Ad
Nym, Ad
Nym, Ad
Nym, Ad
•
Larva
•
Egg
Egg
Egg
L-P
L-P
L-P
L-P
L-P
Nym, Ad
Nym, Ad
Larva
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
240
Study† Superfamily
4 Vespoidea
4 Vespoidea
4 Vespoidea
4 Vespoidea
6 Vespoidea
4 Vespoidea
4 Vespoidea
4 Vespoidea
4 Vespoidea
6 Vespoidea
6 Vespoidea
4 Vespoidea
4 Vespoidea
4 Vespoidea
4 Vespoidea
4 Vespoidea
4 Vespoidea
6 Vespoidea
6 Vespoidea
6 Vespoidea
6 Vespoidea
6 Vespoidea
4 Vespoidea
4 Vespoidea
2 Vespoidea
6 Vespoidea
4 Vespoidea
6, 4 Vespoidea
4 Vespoidea
4 Vespoidea
4 Vespoidea
4 Vespoidea
4 Vespoidea
4 Vespoidea
4 Vespoidea
6, 4 Vespoidea
6, 4 Vespoidea
10 Vespoidea
Subfamily
Formicinae
Myrmicinae
Myrmicinae
Myrmicinae
Myrmicinae
Myrmicinae
Myrmicinae
Myrmicinae
Myrmicinae
Myrmicinae
Myrmicinae
Myrmicinae
Myrmicinae
Myrmicinae
Myrmicinae
Myrmicinae
Myrmicinae
Myrmicinae
Myrmicinae
Myrmicinae
Myrmicinae
Myrmicinae
Myrmicinae
Myrmicinae
Myrmicinae
Myrmicinae
Myrmicinae
Myrmicinae
Ponerinae
Ponerinae
Ponerinae
Ponerinae
Ponerinae
Ponerinae
Ponerinae
Ponerinae
Pseudomyrmecinae
•
Family
Formicidae
Formicidae
Formicidae
Formicidae
Formicidae
Formicidae
Formicidae
Formicidae
Formicidae
Formicidae
Formicidae
Formicidae
Formicidae
Formicidae
Formicidae
Formicidae
Formicidae
Formicidae
Formicidae
Formicidae
Formicidae
Formicidae
Formicidae
Formicidae
Formicidae
Formicidae
Formicidae
Formicidae
Formicidae
Formicidae
Formicidae
Formicidae
Formicidae
Formicidae
Formicidae
Formicidae
Formicidae
Mutillidae
Identification
Species
Dasymutilla occidentalis
Pseudomyrmex gracilis
Ponera pennsylvanica
Odontomachus haematodus
Odontomachus clarus
Odontomachus chelifer
Odontomachus cephalotes
Odontomachus brunneus
Odontomachus bauri
Dinoponera australis
Tetramorium caespitum
Solenopsis xyloni
Solenopsis molesta
Solenopsis invicta
Pheidole hyatti
Messor andrei
Aphaenogaster treatae
Aphaenogaster rudis-texana, N22b
Aphaenogaster rudis-texana, N17
Aphaenogaster rudis-texana, N16
Aphaenogaster fulva
Pogonomyrmex coarctatus
Pogonomyrmex californicus
Pogonomyrmex badius
Myrmecina americana B
Myrmecina americana A
Myrmecia varians
Temnothorax texanus
Temnothorax ambiguus
Strumigenys rostrata
Basiceros procera
Crematogaster hespera
Sericomyrmex amabilis
Atta texana
Atta columbica
Atta cephalotes
Apterostigma dentigerum
Prenolepis imparis
Genome
Guild#
size (pg)
Placement
0.30 Pred •
0.62 Pred •
0.31 Phyto •
0.31 Phyto •
0.27 Phyto •
0.45 Phyto •
0.28 Pred •
0.39 Pred •
0.28 Pred •
0.31 Pred •
0.32 Pred •
0.28 Pred •
0.26 Pred •
0.31 Pred •
0.27 Pred •
0.25 Pred •
0.29 Pred •
0.42 Pred •
0.43 Pred •
0.46 Pred •
0.44 Pred •
0.50 Pred •
0.26 Pred •
0.33 Pred •
0.77 Pred •
0.38 Pred •
0.48 Pred •
0.27 Pred •
0.57 Pred •
0.49 Pred •
0.44 Pred •
0.43 Pred •
0.54 Pred •
0.42 Pred •
0.51 Pred •
0.58 Pred •
0.38 Pred •
0.67 Par
eCto
¶
Parasitoid
Syndrome Host taxa
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
iDio
Hym
Host stage
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
Pupa
241
Subfamily
•
Eumeninae
Polistinae
Polistinae
Polistinae
Polistinae
Vespinae
Vespinae
Vespinae
Vespinae
Vespinae
Family
Mutillidae
Vespidae
Vespidae
Vespidae
Vespidae
Vespidae
Vespidae
Vespidae
Vespidae
Vespidae
Vespidae
Species
Vespula vulgaris
Vespula squamosa
Vespula maculifrons
Vespula germanica
Dolichovespula arenaria
Polistes fuscatus
Polistes exclamans
Polistes dominulus
Polistes carolina
Symmorphus canadensis
Spherophthalma pennsylvanica
Genome
size (pg)
0.54
0.23
0.38
0.29
0.55
0.41
0.32
0.23
0.22
0.24
0.20
Par
Pred
Pred
Pred
Pred
Pred
Pred
Pred
Pred
Pred
Pred
Guild#
Parasitoid¶
Placement Syndrome Host taxa
eCto
iDio
Hym
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
Host stage
Pupa
•
•
•
•
•
•
•
•
•
•
¶ Parasitoid placement: acronym of placement is as follows: eCto = ectoparasitoid, Endo = endoparasitoid.
Parasitoid syndrome: acronym of syndrome is as follows: iDio = idiobiont, Koino = koinobiont.
Parasitoid host taxa: acronym of taxa is as follows: Coleo = Coleoptera, Dip = Diptera, Hemi = Hemiptera, Hym = Hymenoptera, Lep = Lepidoptera.
Parasitoid host stgae: acronym of host stage is as follows: Ad = Adult, E-L = egg-larva, L-P = larva-pupa, Nym = nymph.
# Guild: acronym of guilds is as follows: Par = parasitoid, Phyto = phytophagous, Pred = predator.
Study† Superfamily
10 Vespoidea
6 Vespoidea
10 Vespoidea
2, 6 Vespoidea
10 Vespoidea
6 Vespoidea
6 Vespoidea
6, 10 Vespoidea
6 Vespoidea
6, 10 Vespoidea
6, 10 Vespoidea
Identification
242
JL = Unpublished genome size estimate also in Appendix 2 by Lima J.
11 = Honeybee Genome Sequencing Consortium (2006)
Insights into social insects from the genome of the honeybee Apis mellifera . Nature 443: 931-949.
10 = Hanrahan SJ, Johnston JS (2011)
New genome size estimates of 134 species of arthropods. Chromosome Research 19: 809-823.
9 = Gokhman VE, Johnston JS, Small C,Rajwani R, Hanrahan SJ, Govind S (2011)
Genomic and karyotypic variation in Drosophila parasitoids (Hymenoptera, Cynipoidea, Figitidae). Comparative Cytogenenetics 5: 211-221.
8 = Tavares MG, Carvalho CR, Soares FAF, Fernandes A (2010)
Detection of diploid males in a natural colony of the cleptobiotic bee Lestrimelitta sp ( Hymenoptera , Apidae ).
Genetics and Molecular Biology 33: 491-493.
7 = Tavares MG, Carvalho CR, Soares FAF (2010)
Genome size variation in Melipona species (Hymenoptera: Apidae) and sub-grouping by their DNA content. Apidologie 41: 636 - 642.
6 = Ardila-Garcia AM, Umphrey GJ and Gregory TR (2010)
An expansion of the genome size dataset for the insect order Hymenoptera, with a first test of parasitism and eusociality as possible constraints.
Insect Molecular Biology 19: 337-346.
5 = Lopes DM, de Carvalho CR, Clarindo WR, Praça MW, Tavares MG (2009)
Genome size estimation of three stingless bee species (Hymenoptera, Meliponinae) by flow cytometry. Apidologie 40: 517-523.
4 =Tsutsui ND, Suarez AV, Spagna JC, Johnston JS (2008)
The evolution of genome size in ants. BMC Evolutionary Biology 8: 64.
3 = Barcenas NM, Thompson NJ, Gomez-Tovar V, Morales-Ramos JA, Johnston JS (2008)
Sex determination and genome size in Catolaccus grandis (Burks, 1954) (Hymenoptera: Pteromalidae). Journal of Hymenoptera Research 17: 201-209.
2 = Johnston JS, Ross LD, Beani L, Hughes DP, Kathirithamby (2004)
Tiny genomes and endoreduplication in Strepsiptera. Insect Molecular Biology 13: 581-585.
References:
1 = Gadau J, Gerloffs CU, Krugers N, Chan H, Schmid-Hempel P, Wille A, Page Jr RE (2001)
A linkage analysis of sex determination in Bombus terrestris (L.) (Hymenoptera: Apidae). Heredity 87: 234-242.